
Citation: Negi, P.; Sahoo, T.;

Singh, N.; Stepanyants, Y. Dynamics

of Benjamin–Ono Solitons in a

Two-Layer Ocean with a Shear Flow.

Mathematics 2023, 11, 3399. https://

doi.org/10.3390/math11153399

Academic Editors: Sergey Ershkov

and Evgeniy Yur’evich

Prosviryakov

Received: 17 July 2023

Revised: 31 July 2023

Accepted: 1 August 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dynamics of Benjamin–Ono Solitons in a Two-Layer Ocean
with a Shear Flow
Pawan Negi 1 , Trilochan Sahoo 1 , Niharika Singh 2 and Yury Stepanyants 2,3,*

1 Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India; pawan.negi04@iitkgp.ac.in (P.N.); tsahoo@naval.iitkgp.ac.in (T.S.)

2 School of Mathematics, Physics and Computing, University of Southern Queensland,
Toowoomba, QLD 4350, Australia; niharika.singh@usq.edu.au

3 Department of Applied Mathematics, Nizhny Novgorod State Technical University,
603950 Nizhny Novgorod, Russia

* Correspondence: yury.stepanyants@usq.edu.au

Abstract: The results of a theoretical study on Benjamin–Ono (BO) soliton evolution are presented in
a simple model of a two-layer ocean with a shear flow and viscosity. The upper layer is assumed to
move with a constant speed relative to the lower layer with a tangential discontinuity in the flow
profile. It is shown that in the long-wave approximation, such a model can be appropriate. If the
flow is supercritical, i.e., its speed (U) exceeds the speed of long linear waves (c1), then BO solitons
experience “explosive-type” enhancement due to viscosity, such that their amplitudes increase to
infinity in a finite time. In the subcritical regime, when U < c1, BO solitons experience very slow
decay due to viscosity. Soliton amplitude decays with time as A ∼ t−1/2 or A ∼ t−1/3, depending on
whether both layers are weakly viscous (the former case) or only the lower layer is viscous (the latter
case). Estimates of "explosion time" are presented for real oceanic parameters.

Keywords: ocean waves; Benjamin–Ono equation; soliton; explosive instability; stratified ocean;
viscous fluid
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1. Introduction

As is well known, weakly nonlinear internal waves in the ocean can be described with
the Benjamin–Ono (BO) equation if one of the layers is relatively thin compared with the
wavelength [1–3]. Such a situation is rather ubiquitous in oceans. The BO equation is a
very useful model that provides both periodic and solitary solutions describing stationary
waves close to observable waves in the ocean and laboratory [4]. The equation is completely
integrable and possesses many remarkable mathematical properties, such as the infinite set
of integrals of motion; for example, see [3].

In the meantime, there are many factors in the ocean that are not accounted for in the
BO model; among them are shear flows, dissipation, bottom topography, the geometrical
spreading of waves, etc. Some of these factors have been considered in applications of
BO solitons, for example, the influence of different types of dissipation and radiative
losses caused by global water rotation [5]. In this paper, we study the influence of two
other specific factors, shear flow and water viscosity. Using the well-known method of
separate derivation of small nonlinear, dispersion, and dissipation terms [6,7], we derive the
generalized BO equations for the case when the shallow upper layer moves with a uniform
velocity profile relative to the immovable lower layer. We show that viscosity can play a
destabilizing role that leads to the growth in soliton amplitude if the flow in the upper layer
is supercritical, i.e., its speed (U) exceeds the speed of long linear waves (c1) at the interface
between the layers. In such a situation, one of the branches of the dispersion relations
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corresponds to negative-energy waves [8–11]. Such co-current-propagating waves can
grow in the course of propagation due to the influence of viscosity in the lower layer. We
show that within the framework of the simplified model, the amplitudes of BO solitons turn
to infinity in a finite time. The “explosion time” of solitons is estimated for realistic ocean
parameters. Interfacial waves decay due to viscosity if the upper-layer flow is subcritical,
i.e., if U < c1. As is well known, the presence of shear flows can drastically change
the character of wave equations. The essence of physical effects related to the presence
of shear flows can be understood with the help of simple flow models with piece-wise
linear or even piece-wise constant profiles. As an example, we refer to publications [12,13],
where nonlinear waves in a three-layer model with a shear flow were considered in a
rotating fluid.

The paper structure is as follows: In Section 2, we derive a dispersion relation for
interfacial waves in a two-layer model of an ocean with a uniformly moving upper layer
using the rigid-lid approximation to filter out the surface mode. We analyze the derived
dispersion equation in the long-wave approximation and consider the influence of layer
viscosity values. Then, in Section 3, we derive the generalized BO equation, which is
augmented with different dissipative terms; the structure of these terms depends on water-
flow criticality (either U < c1 or U > c1) and viscosity in the layers. In Section 4, we
study BO soliton evolution under the influence of viscosity and show that they can grow in
the supercritical case when U > c1. Such growth is of the “explosion type” when soliton
amplitude turns to infinity in a finite time. We estimate the “explosion time” for realistic
ocean parameters. In the Conclusions section, we summarize the results obtained and
discuss factors that can restrict the infinite growth of solitons.

2. Dispersion Relations for a Two-Layer Fluid with a Shear Flow

Let us consider a two-layer model of an ocean with a shear flow. For the sake of
simplicity, we assume that the shear flow has a tangential discontinuity at the interface
between the layers, as shown in Figure 1. The fluid density in the upper layer is assumed
to be ρ1, and the thickness of the upper layer is h1, whereas the fluid density in the lower
layer is assumed to be ρ2 and the thickness of the lower layer is h2. We also assume that
the upper layer fluid is perfect and the lower layer is viscous, with kinematic viscosity ν2.
Our interest is related to internal waves propagating at the interface between the layers;
therefore, we apply a rigid-lid approximation to the surface to filter out surface waves.
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Figure 1. Sketch of a fluid flow in the two-layer model with infinitely deep and immovable lower layer.

The basic set of hydrodynamic equations for two-dimensional motion in the linear
approximation is

∂u1,2

∂x
+

∂v1,2

∂z
= 0, (1)
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∂u1

∂t
+ U

∂u1

∂x
+

1
ρ1

∂P1

∂x
= 0, (2)

∂v1

∂t
+ U

∂v1

∂x
+

1
ρ1

∂P1

∂z
+ g = 0, (3)

∂u2

∂t
+

1
ρ2

∂P2

∂x
= ν2

(
∂2u2

∂x2 +
∂2u2

∂z2

)
, (4)

∂v2

∂t
+

1
ρ2

∂P2

∂z
+ g = ν2

(
∂2v2

∂x2 +
∂2v2

∂z2

)
, (5)

where subscripts 1 and 2 refer to the upper and lower layers, respectively; g is the accelera-
tion due to gravity; and P1,2 are pressure values in the corresponding layers. Further, u1,2
and v1,2 are the horizontal and vertical velocity components, respectively. The boundary
conditions are

v1|z=h1 = 0, v2|z=−h2 = 0, (6)(
∂

∂t
+ U

∂

∂x

)
η = v1,

∂η

∂t
= v2 at z = η. (7)

The dynamic condition follows from the equality of the tangential and normal
stresses [14]:

P1 = P2 − 2ν2ρ2
∂v2

∂z
,

∂u2

∂z
+

∂v2

∂x
= 0 at z = η. (8)

A solution to the above-presented set of equations can be sought in the form

u1(x, z, t) = A1 cosh k(z− h1)ei(kx−ωt), (9)

u2(x, z, t) = [A2 cosh k(z + h2) + B2 cosh m(z + h2)]ei(kx−ωt), (10)

v1(x, z, t) = −iA1 sinh k(z− h1)ei(kx−ωt), (11)

v2(x, z, t) =
[
−iA2 sinh k(z + h2)− i

k
m

B2 sinh m(z + h2)

]
ei(kx−ωt), (12)

P1(x, z, t) =
ρ1

k
(ω− kU)A1 cosh k(z− h1)ei(kx−ωt) − ρ1gz and (13)

P2(x, z, t) =
ρ2

k
ωA2 cosh k(z + h2)ei(kx−ωt) − ρ2gz. (14)

Here, m2 = k2 − iω/ν2. Using the equation for the tangential stress as given in
Equation (8), we derive the dispersion relation for the interfacial waves: In the case of weak
viscosity, ν2k2 � ω, the dispersion relation yields

a(ω− kU)2 tanh kh2 + ω2 tanh kh1 − (1− a)gk tanh kh1 tanh kh2 = −4iν2ωk2 tanh kh1, (15)

where a = ρ1/ρ2 is the density ratio.
Similarly, the dispersion relation, in the case when the upper layer is viscous (ν1 6= 0)

and the lower layer is ideal (ν2 = 0), is derived as

a(ω− kU)2 tanh kh2 + ω2 tanh kh1 − (1− a)gk tanh kh1 tanh kh2

= −4iaν1(ω− kU)k2 tanh kh2. (16)

If both layers are viscous, then a rigorous solution to the problem in linear approx-
imation leads to the investigation of the eigenvalues of a fourth-order Orr–Sommerfeld
equation [15]. In a viscous fluid, a flow with a discontinuous profile cannot exist. However,
in the initial stage of the development of the shear flow, when the boundary layers on either
side of the interface between the layers are small in comparison with a wavelength, the
velocity profile can be approximated by a profile with a tangential velocity discontinuity.
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This is even more true when the characteristic wavelength is much greater than not only
the boundary layer thickness but also the total depth of the upper layer. A similar approxi-
mation is not infrequently used in the theory of instabilities of a homogeneous liquid [15].
To obtain an approximate dispersion relation with allowance for the weak viscosity in both
layers, we represent the dispersion relation in the functional form D(ω, k) = iF(νl , ν2, ω, k),
where D(ω, k) = 0 is the dispersion relation for an ideal fluid as per Equations (15) and (16).
We expand function F in a series in terms of ν1 and ν2 and restrict ourselves to the first
terms in the expansion:

D(ω, k) ≈ i
[
F′ν1

(ω, k)ν1 + F′ν2
(ω, k)ν2

]
. (17)

The form of the expansion coefficients is obtained from the solution to the “half-
viscous” problems for each of the layers, as presented in Equations (15) and (16). Assuming
that imaginary correction ωi to the frequency is small compared with real part ω0 (it is in
this case where the viscosity of the layers is assumed to be small), ωi can be easily derived
by summing up the imaginary parts of Equations (15) and (16) [16]. Therefore, the resultant
dispersion relation in the case of both upper and lower layers being weakly viscous can
readily be obtained as a combination of the viscous effects on both layers:

a(ω− kU)2 tanh kh2 + ω2 tanh kh1 − (1− a)gk tanh kh1 tanh kh2

= −4ik2[aν1(ω− kU) tanh kh2 + ν2ω tanh kh1]. (18)

In the next subsection, we present the analysis of dispersion relation (18).

Analysis of the Dispersion Relation

Dispersion Equation (18) can be re-written in the following equivalent forms:

(ω−ω0
1)(ω−ω0

2) = −4ik2 aν1(ω− kU) tanh kh2 + ν2ω tanh kh1

tanh kh1 + a tanh kh2
, (19)

where ω0
1,2 are the roots of the dispersion relation without viscosity, that is,

ω0
1,2 =

aUk tanh kh2 ±
√

tanh kh1 tanh kh2[(1− a)gk(a tanh kh2 + tanh kh1)− aU2k2]

tanh kh1 + a tanh kh2
. (20)

Assuming that the viscosity is small in both layers, the correction to the lower branch
of the dispersion relation (ω0

2) can be derived for ω2 = ω0
2 + ωi2, where |ωi2| � ω0

2. By
substituting this in Equation (19), we obtain

(ω0
2 −ω0

1)ωi2 ≈ −4ik2 aν1(ω
0
2 − kU) tanh kh2 + ν2ω0

2 tanh kh1

tanh kh1 + a tanh kh2
, (21)

Taking into account Equation (20), we derive the imaginary correction to ω0
2:

ωi2 = 2ik2 (aν1 tanh kh2 + ν2 tanh kh1)ω2 − aν1kU tanh kh2√
tanh kh1 tanh kh2[gk(1− a)(a tanh kh2 + tanh kh1)− k2U2a]

. (22)

Similarly, the imaginary correction to ω0
1 can be derived:

ωi1 = −2ik2 (aν1 tanh kh2 + ν2 tanh kh1)ω1 − aν1kU tanh kh2√
tanh kh1 tanh kh2[gk(1− a)(a tanh kh2 + tanh kh1)− k2U2a]

. (23)

We shall now focus on the particular case suitable to the typical oceanic situation when
the upper layer is relatively shallow compared with the characteristic length of internal
waves, i.e., kh1 � 1, and the lower layer is infinitely deep, i.e., kh2 � 1. Then, for the real
parts of the dispersion relation, we obtain, up to (kh1)

2 inclusive,
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ω0
1 =

c1

h1

[
(1 + Fr)kh1 −

1
2a

(1 + Fr)2(kh1)
2
]

, (24)

ω0
2 =

c1

h1

[
−(1− Fr)kh1 +

1
2a

(1− Fr)2(kh1)
2
]

, (25)

where Fr = U/c1 is the Froude number and c1 =
√
(1− a)gh1/a is the speed of long waves.

When there is no shear flow, Fr = 0, or the shear flow is relatively weak, Fr < 1, long
waves travel in the opposite direction, whereas when Fr > 1, long waves propagate in the
same direction as the current. Waves corresponding to the lower branch of the dispersion
relation possess negative energy when Fr > 1 (see, e.g., Refs. [10,11] and references therein).
Graphics of approximate dispersion relations are shown in Figure 2.


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Figure 2. (Color online). Real parts of approximate dispersion relations (25) in terms of dimensionless
variables Ω1,2(κ) = ω0

1,2h1/c1, where κ = kh1 and a = 0.999. Lines 1 and 2 pertain to ω0
1 and ω0

2 ,
respectively, with Fr = 0. Lines 3 and 4 pertain to ω0

1 and ω0
2 , respectively, with Fr = 1.1.

The first terms of the Taylor expansions of the dispersion relation in parameter kh1
depend on the viscosity. If we assume that the upper layer of a fluid is perfect and the
lower layer is viscous, which yields ν1 = 0 and ν2 6= 0, then the first non-zero terms of the
imaginary parts of the dispersion relations are reduced to

ωi,1 = −2iν2

ah2
1
(1 + Fr)(kh1)

3, ωi,2 = −2iν2

ah2
1
(1− Fr)(kh1)

3. (26)

In Equation (26), the negative sign of ωi corresponds to wave decay, whereas the
positive sign corresponds to wave growth. Therefore, co-current-propagating waves of
the upper branch of the dispersion relation with ω0

1 > 0 and ωi1 < 0 that possess positive
energy decay in the course of propagation. Counter-current-propagating internal waves
of the lower branch of the dispersion relation with Fr < 1 and with ω0

2 < 0 and ωi2 < 0
also possess positive energy and decay in the course of propagation. However, co-current-
propagating waves of the lower branch of the dispersion relation with Fr > 1 and with
ω0

2 > 0 and ωi2 > 0 that possess negative energy grow in the course of propagation. The
restriction of only quadratic terms on kh1 in the real parts of the dispersion relation is
consistent with the cubic terms in the imaginary parts of the dispersion relation. Simple
estimates for the upper branch of the dispersion relation, ω0

1 , show that this can occur when
a characteristic scale of a wave process is subjected to

kh1 ≤
c1h1

4ν2
(1 + Fr)� 1; or ν2 �

c1h1

4
(1 + Fr). (27)
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For h1 = 50 m, (ρ2 − ρ1)/ρ1 = 10−3, and this requires ν2 � 18 m2/s. In the ocean,
eddy turbulent viscosity can attain up to 103 m2/s (Ref. [17]). Nevertheless, such a condition
with an inviscid upper layer and a highly viscous lower layer is hardly realistic for the
ocean. Similar estimates for the lower branch of the dispersion relation, ω0

2 , show that this
can occur when

kh1 ≤
c1h1

4ν2
|1− Fr| � 1; or ν2 �

c1h1

4
|1− Fr|. (28)

These conditions look quite realistic, especially when the Froude number is close to
unity. Moreover, viscosity leads to wave decay if Fr < 1 and to wave enhancement if
Fr > 1. In the former case, waves indeed propagate in a counter-current manner and have
positive energy, whereas in the latter case, waves actually propagate in a co-current manner
and have negative energy. We focus below on this mode and consider its evolution in the
nonlinear regime.

On the other hand, if the upper layer fluid is viscous, ν1 6= 0, and the lower layer is
perfect, ν2 = 0, then waves of both upper and lower branches decay under the influence
of viscosity, because the imaginary parts of the corresponding dispersion equation do not
depend on the Froude number and are negative in the principal order on parameter kh1:

ωi,1 = ωi,2 = −2i
ν1

h2
1
(kh1)

2. (29)

Finally, when fluids in both layers are viscous and ν1 = ν2, then ωi,1 and ωi,2 are
determined with the same formula (29).

3. Generalized Benjamin–Ono Equations with Dissipative Terms

A preliminary analysis of the dispersion relation reveals that waves of the lower
branch of the dispersion relation, ω0

2(k), can exponentially grow with time in the course
of propagation when ν1 = 0, ν2 6= 0, and Fr > 1. The growth rate is determined as
γ = −iωi,2 = −2ν2h1(1− Fr)k3/a. In the nonlinear regime, wave growth can be different.
This is, apparently, the most interesting case and is studied below. We first restore a linear
evolution equation describing interfacial waves of the lower branch of the dispersion
relation; then, we augment it with a nonlinear term to describe a nonlinear regime of wave
evolution. In the derivation of the nonlinear term, we use a well-known approach, which
consists in the separate consideration of small terms of the same order of magnitude [6,7]. In
such a case, small terms can be involved in the equation only additively, i.e., independently
of each other, because their products are terms of a higher order of smallness.

3.1. Linear Evolution Equations

Using the approximate dispersion equations derived above, one can construct linear
evolution equations that possess such dispersion equations [18]. If the viscosity in both
layers is ignored, then the evolution equation is reduced to the linearized Benjamin–Ono
equation. This equation, augmented with a viscous term in the case where ν1 = 0 and
ν2 6= 0, yields

∂η

∂t
+ C2

∂η

∂x
+ β2

∂2

∂x2

 1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξ

 = δ2
∂3

∂x3

 1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξ

, (30)

where the integral terms (in the sense of a principal value) represent the Hilbert transform
of η(x, t). The coefficients of this equation are

C2 = −c1(1− Fr); β2 =
h1c1

2a
(1− Fr)2; δ2 =

2ν2h1

a
(1− Fr). (31)

In the subcritical case, for Fr < 1, coefficient δ2 is positive, which corresponds to
the decay of counter-current-propagating waves with positive energy. However, in the
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supercritical case, when Fr > 1, coefficient δ2 is negative, which corresponds to the en-
hancement in co-current-propagating waves of negative energy [8–11]. The first two terms
in Equation (31) are of zeroth order of magnitude on the small parameter kh1, whereas the
other two terms, the dispersive and dissipative ones, are of the first order of magnitude.

3.2. Derivation of the Nonlinear Term in the BO Equation

Here, we derive a nonlinear term for Equation (30), assuming that it is of the same
order of smallness as the dispersive term. To this end, we consider the basic set of equations
neglecting dispersion and dissipation. For the upper shallow layer, the basic equations are

∂u1

∂t
+ U

∂u1

∂x
− g

∂η

∂x
− 1

ρ1

∂P1

∂x
= −u1

∂u1

∂x
, (32)

∂η

∂t
+ U

∂η

∂x
+ h1

∂u1

∂x
= −∂u1η

∂x
. (33)

On the other hand, for the lower infinitely deep layer, the governing equations are

∂u2

∂x
+

∂v2

∂z
= 0, (34)

∂u2

∂t
+

1
ρ2

∂P2

∂x
= −u2

∂u2

∂x
− v2

∂u2

∂z
, (35)

∂v2

∂t
+

1
ρ2

∂P2

∂z
+ g = −u2

∂v2

∂x
− v2

∂v2

∂z
. (36)

The kinematic boundary conditions at the interface, z = η, yield

∂η

∂t
= v2 − u2

∂η

∂x
;

∂η

∂t
+ U

∂η

∂x
= −u1

∂η

∂x
. (37)

Additionally, the dynamic boundary condition at the interface, z = η, is given by

P1 = P2 at z = η. (38)

Finally, the boundary condition as z approaches −∞ is reduced to the absence of any
perturbation, which yields

u2|z−→ −∞ = 0, v2|z−→ −∞ = 0. (39)

As we neglect viscosity, the fluid flow in the lower layer becomes a flow of the
potential type, and we introduce velocity potential ϕ such that u2 = ∂ϕ/∂x and v2 = ∂ϕ/∂z.
Subsequently, Equation (34) is reduced to

∇2 ϕ = 0. (40)

Further, Equations (35) and (36) are reduced to Bernoulli’s equation as given by

∂ϕ

∂t
+

P2

ρ2
+ gη +

1
2

(
∂ϕ

∂x

)2
+

1
2

(
∂ϕ

∂z

)2
= 0. (41)

The first kinematic condition in Equation (37) in terms of the velocity potential is
reduced to

∂η

∂t
− ∂ϕ

∂z
= −u2

∂η

∂x
, at z = η. (42)

Thus, by eliminating P1 and P2 from Equations (32) and (41) using dynamic boundary
condition (38), we obtain

∂

∂x

[
∂ϕ

∂t
+ gη +

1
2

(
∂ϕ

∂x

)2
+

1
2

(
∂ϕ

∂z

)2
]
= a

[
g

∂η

∂x
− ∂u1

∂t
−U

∂u1

∂x
− u1

∂u1

∂x

]
. (43)
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By differentiating the above equation with respect to x, it can be easily derived that

(1− a)g
∂2η

∂x2 + a
(

∂

∂t
+ U

∂

∂x

)
∂u1

∂x
+

a
2

∂2u2
1

∂x2 = − ∂2

∂x2

[
∂ϕ

∂t
+

1
2

(
∂ϕ

∂x

)2
+

1
2

(
∂ϕ

∂z

)2
]

. (44)

The right-hand side of Equation (44) contains high-order derivatives in comparison with
the left-hand side, which corresponds to the dispersive term, and we neglect the same in
accordance with our decision to keep only linear and nonlinear terms. Consequently, we obtain

(1− a)g
∂2η

∂x2 + a
(

∂

∂t
+ U

∂

∂x

)
∂u1

∂x
+

a
2

∂2u2
1

∂x2 = 0. (45)

By applying operator (∂/∂t + U∂/∂x) to Equation (33), we obtain(
∂

∂t
+ U

∂

∂x

)2
η + h1

(
∂

∂t
+ U

∂

∂x

)
∂u1

∂x
= −

(
∂

∂t
+ U

∂

∂x

)
∂u1η

∂x
. (46)

Equations (45) and (46) are combined into one with the elimination of the second
terms, which yields(

∂

∂t
+ U

∂

∂x

)2
η − c2

1
∂2η

∂x2 =
h1

2
∂2u2

1
∂x2 −

(
∂

∂t
+ U

∂

∂x

)
∂u1η

∂x
, (47)

where c2
1 = (1− a)gh/a. The left-hand side of this equation can be factorized as(

∂

∂t
+ U

∂

∂x
+ c1

∂

∂x

)(
∂

∂t
+ U

∂

∂x
− c1

∂

∂x

)
η =

h1

2
∂2u2

1
∂x2 −

(
∂

∂t
+ U

∂

∂x

)
∂u1η

∂x
. (48)

The above equation describes dispersionless weakly nonlinear waves propagating in
the opposite direction with respect to calm water (or in the reference frame moving with
the upper layer). Our main interest is in the description of the counter-current-propagating
waves that are described in the linear approximation given by(

∂

∂t
+ U

∂

∂x
− c1

∂

∂x

)
η = 0. (49)

Using Equations (48) and (49), we obtain the next approximation on the wave pertur-
bation, given by

∂η

∂t
+ U

∂η

∂x
− c1

∂η

∂x
− h1

4c1

∂u2
1

∂x
+

1
2

∂u1η

∂x
= 0. (50)

Next, by combining Equation (49) with the linearized Equation (33), we derive

c1
∂η

∂x
+ h1

∂u1

∂x
= 0, (51)

which on integration gives u1 = −c1η/h1. This relationship is used to eliminate u1 in the
nonlinear terms in Equation (50), which are of high order of smallness with respect to the
wave perturbation. Subsequently, Equation (50) yields

∂η

∂t
− c1(1− Fr)

∂η

∂x
− 3

2
c1

h1
η

∂η

∂x
= 0. (52)

Thus, Equation (52) gives the small nonlinear correction to Equation (49) describing
counter-current wave propagation to the left without dispersion. Consequently, by combin-
ing Equation (52) and Equation (30), we finally obtain the generalized BO (genBO) equation
describing counter-current wave propagation that contains small nonlinear, dispersive, and
dissipative terms of the same order of smallness:
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∂η

∂t
+ C2

∂η

∂x
+ αη

∂η

∂x
+ β2

∂2

∂x2

 1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξ

 = δ2
∂3

∂x3

 1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξ

, (53)

where α = −3c1/2h1 and the other coefficients are given in Equation (31). On the other
hand, for ν1 6= 0, ν2 = 0, and ν1 = ν2 6= 0, the generalized BO equation differs from
Equation (53) by the viscosity term on the right-hand side (see Equation (29)):

∂η

∂t
+ C2

∂η

∂x
+ αη

∂η

∂x
+ β2

∂2

∂x2

 1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξ

 = 2ν1
∂2η

∂x2 . (54)

In the next section, we consider the dynamics of a solitary wave (a BO soliton) under
the influence of the dissipative terms in Equations (53) and (54).

4. Dynamics of a Solitary Wave Under the Influence of Dissipation

As is well known, the BO equation, when δ2 = ν2 = 0, is completely integrable [3]. It
has a family of periodic stationary solutions as well as solitary solutions called BO solitons.
A BO soliton has a simple algebraic structure and is described by the following function [3]:

η(x, t) =
A

1 + (x−Vt)2/∆2 , (55)

where A is the soliton amplitude, V = C2 − αA/4 is its velocity, and ∆ = 4β2/αA is its
characteristic width.

Under the influence of small dissipation, a soliton undergoes adiabatic evolution when
its shape remains unchanged but its parameters (amplitude, width, velocity) slowly vary
with time, preserving the relationship between parameters V(A) and ∆(A) [5]. To deter-
mine the time variation of the soliton parameter, one can use the asymptotic approach [19],
which is reduced to the energy balance equation. In terms of a multiple-scale analysis, the
energy balance equation is the condition for the elimination of secular terms. To obtain this
equation, we multiply Equation (53) or Equation (54) by η and integrate with respect to x,
which yields

dE
dt

= −F1,2, (56)

where “wave energy” E and dissipative functions F1,2 are given by

E =
1
2

+∞∫
−∞

η2(x, t) dx, F1 = δ2

+∞∫
−∞

∂3η

∂x3

 1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξ

dx, F2 = 2ν1

+∞∫
−∞

(
∂η

∂x

)2
dx. (57)

The Hilbert transform of soliton (55) is

1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξdx =
A
∆

x−Vt
1 + (x−Vt)2/∆2 . (58)

Wave energy E is obviously conserved when there is no dissipation (F1,2 ≡ 0). For BO
soliton (55), the energy is given by

Es =
π

4
∆A2 =

πβ2 A
α

. (59)

Now, dissipative functions F1,2 can be easily evaluated using solution (55):

F1 = δ2

+∞∫
−∞

∂3η

∂x3

 1
π

+∞∫
−∞

η(ξ, t)
x− ξ

dξ

dx =
3
8

πδ2
A2

∆2 =
3

128
πδ2

α2

β2
2

A4, F2 = ν1
πα

8β
A3. (60)
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4.1. Soliton Decay Due to Reynolds-Type Dissipation

Let us first consider the case of Reynolds-type dissipation described by dissipative
function F2. By substituting the expressions for soliton energy E and dissipative function
F2 into energy balance Equation (56), we derive the ODE for soliton amplitude:

dA
dt

= −ν1α2

8β2 A3. (61)

By integrating the above equation, we obtain the time dependence of soliton ampli-
tude as

A(t) =
A0√

1 + t/τ
, τ =

4β2

ν1α2 A2
0
=

∆2
0

4ν1
. (62)

It is worth mentioning that a linear wave decays exponentially due to Reynolds-type
dissipation, ηlin ∼ exp

(
−2ν1k2t

)
, where k is the wavenumber.

The theoretical dependence of normalized soliton amplitude A(t)/A0, where A0 is the
initial soliton amplitude at t = 0, is depicted in Figure 3, together with the direct numerical
solution of genBO Equation (54) with the initial condition in the form of BO soliton (55).
As one can see, the agreement between numerical data and adiabatic theory is very good,
even for a relatively large dissipation coefficient, ν1 = 0.05. Such big dissipation can occur
if turbulent viscosity is taken instead of molecular water viscosity. Note that the simple
estimate of the relative strength of the dissipative term (∼ 2ν1 A(t)/∆(t)2) in comparison
with the nonlinear or dispersive terms (∼ β2 A(t)/∆(t)2) does not depend on time and
remains small, 2ν1/β2 < 1, at all times if it is small at t = 0.

Figure 4 illustrates the solitary wave profile (line 1) at t/τ = 3000 (line 1). At this
large time, the wave profile deviates slightly from the BO soliton of the same amplitude
(line 2). One can clearly see the formation of a shelf behind the leading pulse in the near
field, whereas in the far field, a decaying quasi-periodic trailing wave forms (similar results
were obtained in Ref. [5]).

1 10
1−

 1 10
0

 1 10
1

 1 10
2

 1 10
3

 1 10
4



1 10
2−



1 10
1−



t 0A A

Figure 3. (Color online). Soliton amplitude’s dependence on normalized time (t/τ) for Reynolds
dissipation. Solid line—theoretical dependence (62); dots—numerical data; dashed line—asymptotic
dependence η ∼ (t/τ)−1/2.
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

0.01

0.02

x



1 2

Figure 4. (Color online). Solitary wave profile (line 1) at t/τ = 3000 for BO Equation (54) with
Reynolds-type dissipation. Line 2 represents a BO soliton of the same amplitude as the leading pulse
shown by line 1.

4.2. Soliton Dynamics under the Influence of Viscosity in a Moving Upper Layer

Let us now consider the most interesting case of soliton dynamics under the influence
of integral term F1 describing dissipation due to viscosity in the moving upper layer. This
case is of special interest because the dissipation can change its sign when the Froude
number passes through the unity. By substituting the expressions for soliton energy E
and dissipative function F1 into energy balance Equation (56), we obtain the ODE for
soliton amplitude:

dA
dt

= − 3
128

δ2
α3

β3
2

A4. (63)

After the integration of this equation, we obtain the time dependence of soliton
amplitude:

A(t) =
A0

(1 + t/τ)1/3 , τ =
128β3

9δ2α3 A3
0
=

2∆2
0

9δ2
. (64)

If δ2 > 0, i.e., if Fr < 1, then this formula describes soliton decay, but if δ2 < 0, i.e., if
Fr > 1, then the formula predicts soliton-amplitude enhancement, formally up to infinity;
the explosive instability occurs in finite time texp = τ. The dependence of soliton amplitude
on positive and negative δ2 are shown in Figure 5.

In reality, an infinite enhancement in soliton amplitude is, certainly, impossible due to
several reasons. First of all, the weakly nonlinear genBO model becomes inapplicable. Sec-
ondly, the adiabatic theory describing wave amplification also ceases to work because the
dissipative term becomes not small in comparison with the nonlinear and dispersive terms.
Indeed, a simple estimate of the relative strength of the dissipative term (∼δ2 A(t)/∆(t)3)
and dispersive term (∼β2 A(t)/∆(t)2) shows that their ratio is proportional to A(t). If
soliton amplitude decreases with time when δ2 > 0, then this ratio also decreases; therefore,
the applicability of the asymptotic theory becomes better and better. Otherwise, when
δ2 < 0, the dissipative term becomes dominant in the genBO equation, and the asymptotic
theory ceases to work.
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1
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Figure 5. (Color online). Soliton amplitude’s dependence on normalized time (t/τ) as per
Equation (64) in genBO Equation (53). Line 1—soliton decay when δ2 > 0; line 2—soliton en-
hancement when δ2 < 0.

Let us estimate the characteristic time of soliton “explosion”( τ) for a realistic oceanic
condition. Let us set h1 = 50 m, g = 9.81 m/s2, ρ1 = 1000 kg/m3, ρ2 = 1001 kg/m3,
ν2 = 10−3 m2/s (conditional turbulent viscosity), A0 = 0.1 m (initial soliton amplitude),
U = 0.714 m/s. Then, we obtain (see Equation (31)) c1 =

√
(1− a)gh1/a ≈ 0.7 m/s,

Fr = U/c1 = 1.02, C2 = −c1(1 − Fr) = 0.014 m/s, α = −3c1/2h1 = −0.021 1/s,
β2 = (1− Fr)2h1c1/2a = 7.007 · 10−3 m2/s, δ2 = 2ν2h1(1− Fr)/a ≈ −2.002 · 10−3 m3/s.
This gives “explosion time”

τ =
128β3

9δ2α3 A3
0
= 2

(
2
3

)5 h5
1(Fr− 1)5

ν2a2|A0|3
≈ 2.639 · 105 s ≈ 73.3 h. (65)

Thus, if the Froude number exceeds the critical value by 2%, then even a small-
amplitude soliton formally “blows up” in approximately three days. This can lead to the
efficient mixing and turbulization of a flow. As follows from Equation (65), the “explosion
time” strongly depends on supercriticality parameter Fr− 1. This can be explained by the
strong dependence of the dispersion coefficient on supercriticality parameter β2 ∼ (Fr− 1)2.
In particular, when β2 → 0, the moderating effect of dispersion on the “explosion time”
vanishes.

A similar analysis can be performed for periodic perturbation; the corresponding
calculations are presented in the Appendix A.

5. Discussion and Conclusions

In this paper, we have demonstrated that within a simple model of a two-layer ocean
with a shear flow in the upper layer, BO solitons can experience an enhancement due to
viscosity if the flow is supercritical, i.e., its speed (U) exceeds the speed of long linear waves
(c1). BO solitons, in this case, possess negative energy, and the lower layer’s viscosity
leads to their amplification. Other mechanisms of energy loss can also lead to soliton
enhancement. One more possible mechanism of energy loss is related to the radiation of
internal waves from the interface between the layers to the bulk of the lower layer if the
latter is continuously stratified [9–11,20]. However, in the subcritical regime, when U < c1,
BO solitons experience very slow decay due to viscosity. Soliton amplitude decays with
time as A ∼ t−1/2 or as A ∼ t−1/3, depending on whether both layers are weakly viscous
(the former case) or only the lower layer is viscous (the latter case). A similar analysis
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can be performed for the case when the lower layer is shallow, whereas the upper layer
is infinite; such a situation can also occur in real oceans. We derived the same equations
as Equations (53) and (54) and obtained similar solutions for the adiabatic evolution of BO
solitons. The results obtained are not included in the paper just for the sake of avoiding
article extension.

Here, we only demonstrated a principal possibility of soliton enhancement within the
simplest model of a shear flow with a tangential discontinuity of velocity and presented
an estimate of a characteristic time of soliton-amplitude growth from a small value up
to infinity. Such “explosive instability” of solitons can only occur in the early stage of
soliton evolution. In a later stage, when soliton amplitude becomes big enough, the
weakly nonlinear model becomes invalid, and a more advanced model (see, for example,
Ref. [21]) should be used. This incurs, however, significant complications, because in the
next order of smallness of wave amplitude, not only additional nonlinear terms appear
but also dispersive, dissipative, and mixed terms do. Generalization can also include
two-dimensional effects in the Kadomtsev–Petviashvili approximation [21–23], as well as a
more realistic, smooth shear-flow profile. Higher-order effects, apparently, can restrict the
infinite growth in soliton amplitude and lead to either soliton stabilization at a certain level
or wave breaking and the turbulization of a flow. All this requires a more comprehensive
analysis, which is beyond the scope of this paper.
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Appendix A. Dynamics of Periodic Waves within the genBO Equation with
Dissipative Terms

The BO equation has both solitary and periodic solutions [24]. We have presented
solitary wave dynamics under the action of dissipative factors. Here, we present the
dynamics of periodic waves under the influence of the same factors. A periodic solution of
the BO equation with wavelength Λ and zero mean value is

η = 4π
β

αΛ

[ √
1− γ2

1 + γ cos (ξ + π)
− 1

]
, (A1)
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where ξ = (2π/Λ)(x−Vt), V = 2πβ/
√

1− γ2, and γ is the parameter of “nonsinusoidal-
ity”. When γ→ 0, the wave shape is close to sinusoidal, whereas when γ→ 1, the wave
shape resembles a periodic sequence of solitary waves, as shown in Figure A1.

7− 5− 3− 1− 1 3 5 7

5

10

15

x



1

2

− 

Figure A1. (Color online). Shapes of periodic solutions of the BO equation of the same wavelength
(Λ− 2π) and zero mean values but with different parameter γ. Line 1—quasi-sinusoidal wave with
γ = 0.1 (wave amplitude multiplied by 10 to make it clearly visible); line 2—a periodic sequence of
quasi-soliton waves with γ = 0.99.

The wave energy per one period of a periodic wave (A1) as per Equation (57) is

E = 16π2 β2

α2Λ

(
1√

1− γ2
− 1

)
. (A2)

Now, let us first calculate the dissipation function per one period F2 as per Equation (57):

F2 = 32π4ν1
β2

α2Λ3
γ2

(1− γ2)3/2 . (A3)

By substituting E and F2 in Equation (56) and assuming that γ is a function of t,
we obtain

dγ

dt
= −2π2 ν1

Λ2 γ. (A4)

Thus, the solution is γ(t) = γ0e−2π2ν1t/Λ2
, where γ0 is the initial value of parameter

γ. This formula shows that even if, initially, this parameter is close to unity and the wave
shape is close to the periodic set of solitons, then γ exponentially quickly decreases with
time; wave amplitude also decreases; and the shape becomes sinusoidal.

Similar but more cumbersome calculations can be performed with function F1 in
Equation (57). This gives

F1 = −
(

2π

Λ

)4 πδ2β2γ2

α2(1− γ2)4

(
4− 24γ + 65γ2 − 14γ3 − 52γ4 + 185γ5 + 88γ6 + 28γ7

)
, (A5)

and the corresponding equation for γ becomes

dγ

dt
= −

(π

Λ

)3 δ2γ

(1− γ2)5/2

(
4− 24γ + 65γ2 − 14γ3 − 52γ4 + 185γ5 + 88γ6 + 28γ7

)
. (A6)

This equation can be hardly solved analytically but can be easily solved numerically. The typical
plots of γ(τ) are shown in Figure A2, where τ = δ2t(π/Λ)3.

Thus, in a supercritical flow, a small-amplitude sinusoidal wave increases and transforms into a
periodic sequence of solitons, which subsequently blow up within the framework of this simplified
model. In a subcritical flow, perturbations decay, so that even an initial periodic sequence of solitons
gradually decay and transform into a quasi-sinusoidal wave, which then completely disappears.
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1 

 

 

Figure A2. (Color online). Dependence of parameter γ on normalized time (τ = δ2t(π/Λ)3). Line
1 shows the increase in parameter γ from γ0 = 0.01 to γlim = 1 for the supercritical case of a flow.
Line 2 shows the decrease in parameter γ from γ0 = 0.95 to zero for the subcritical case of a flow.
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