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Abstract: Some existing chaotic maps have the drawbacks of a narrow range of chaotic parameters
and discontinuities, which may be inherited by new chaotic systems generated from them as seed
maps. We propose a chaotic model that can generate N-dimensional chaotic systems to overcome the
problem. By fixing the original parameters of the seed map in the chaotic range, we then introduce
new parameters and use modular operations to widen the range of the parameters and increase the
complexity. Simulation results show that the generated chaotic system has good chaotic dynamics.
Based on this chaotic model, we propose a multiple-image encryption algorithm that is not limited
by image type, number, and size. The resistance to plaintext attacks is enhanced by a permutation–
diffusion algorithm based on overlapping blocks. We design a newly defined lookup table operation
based on Latin squares with enhanced nonlinearity and randomness. By adjusting the overlapping
block parameters and the number of Latin squares, users can design different encryption levels to
balance encryption efficiency and encryption effectiveness. The experimental results show that the
proposed image encryption algorithm can effectively encrypt multiple images, and all the evaluation
indexes reach the expected value.

Keywords: multiple-image; image encryption; new chaotic model; permutation–diffusion

MSC: 37N99; 68P25

1. Introduction

In the era of information technology, multimedia carriers have experienced rapid
development due to their rich means of expressing information. Digital images can directly
convey visual information while having small storage sizes, making them one of the
most commonly used means of information communication [1]. However, images can be
susceptible to illegal attacks, leading to privacy breaches and property losses, both during
transmission and storage. Encrypting images into unrecognizable noisy images is an
effective means of protection. Access without the correct key will be unable to extract valid
information from them. Various types of image encryption schemes have been proposed
nowadays, such as chaotic systems, fractal theory [2,3], quantum computing [4,5], and
optical methods [6,7].

Among the aforementioned technologies, chaotic systems have received increasing
attention and are widely used in image encryption algorithms. Chaos is a pseudo-random
dynamic complex phenomenon generated by deterministic nonlinear systems. Chaotic sys-
tems exhibit characteristics such as sensitivity to control parameters and initial conditions,
pseudo-randomness, ergodicity, and unpredictability, making them highly suitable for
cryptography. Chaotic systems are usually classified into one-dimensional (1D) and high-
dimensional (HD) chaotic systems. One-dimensional chaotic systems have characteristics
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of simple structure, ease of implementation, and fast iteration speed. HD chaotic systems
have characteristics of high complexity, multiple parameters, and long periods. Some
encryption schemes directly utilize classical chaotic systems to complete the encryption.
Kumar et al. [8] utilized the logistic map to generate chaotic sequences for key generation
and then employed an improved shuffling technique to permute the image at the pixel level.
Chen et al. [9] used the hyperchaotic Lorentz system to generate the key stream and pro-
posed a nonsequential encryption mechanism, with improved permutation and diffusion
methods as the core of encryption. However, some existing chaotic systems may exhibit
defects such as a narrow and discontinuous range of chaotic parameters. Researchers have
developed methods to improve chaotic systems to address these defects. Hua et al. [10]
utilize sinusoidal functions as nonlinear transformations and apply them to the output of
1D chaotic maps to enhance complexity. Wang et al. [11] apply exponential and sinusoidal
functions to both 1D and HD maps. However, due to the inherent inhomogeneity of the
output from the nonlinear functions they use, the enhanced chaotic system also possesses
the weakness of accumulating at the edges of the phase space. Modular arithmetic is used
in chaotic systems because of its boundedness and uniform output. Hua et al. [12,13]
improved the performance of the original chaotic maps by applying modular arithmetic
to increase the chaotic complexity. However, this approach is limited to existing chaotic
systems and does not create new ones. Zhou et al. [14] nonlinearly coupled two seed
chaotic maps to improve the chaotic range using modular arithmetic, which is limited
to 2D chaotic systems. Additionally, various chaotic maps have been employed as seed
maps to generate new chaotic maps. Lin et al. [15] construct a crossed 2D hyperchaotic
map using a nonlinear function and two chaotic maps with crossed structures. Sun [16]
design a chaotic model based on cascaded modulation coupling. Gao [17] multiplies the
outputs and employs nonlinear transformations to construct a 2D chaotic model. These
methods typically retain the original parameters of the seed maps, which may inherit the
disadvantages of the seed maps. Consequently, when one or more of the seed maps exist
within a nonchaotic parameter space, the new chaotic system may also fail to enter the
chaotic state.

Most image encryption algorithms employ a permutation–diffusion structure. The
permutation phase involves rearranging the pixel positions in the image, making it chal-
lenging for attackers to identify the original pixel positions and the relationships between
adjacent pixels. The diffusion phase propagates subtle changes throughout the entire image,
introducing complex transformations to the pixel values. Diffusion enhances the complex-
ity and unpredictability of the relationship between pixel values and encryption keys,
improving resistance against plaintext attacks. Encryption can be performed at different
levels, such as block level [18,19], pixel level [20,21], bit level [22,23], and DNA level [24].
Wang et al. [25] utilize a modified zigzag transform permutation at the pixel level, index
sequence permutation, and dynamic encoding diffusion at the DNA level. Wei et al. [26]
horizontally and vertically extend to a bit-level plane, exchanging row/column vectors
for the permutation process. Bit-level and DNA-level permutations not only alter pixel
positions but also pixel values, potentially requiring the generation of additional chaotic
sequences. Hua et al. [27] partition the image into blocks equal to the block size during
the disarrangement phase, evenly spreading pixels within blocks to other blocks. Wang
et al. [28] divide the image into equal-sized blocks during the diffusion phase and select
pixels from different sub-blocks using the Joseph problem, applying modular sum and
XOR operations to change pixel values. Block-based operations can enhance encryption
efficiency, but dividing the image into equal-sized blocks may introduce risks. The diffusion
step transforms the plaintext image pixels using chaotic pixels to mask the pixels randomly.
Common transformations include XOR operation, modular sum operation, and finite field
operation. Wang et al. [29] combine XOR and modular sum operations to design four
diffusion formulas, dynamically selected using chaotic sequences. To avoid information
loss when the multiplier is 0, Xu et al. [30] utilize the multiplication table of GF(257) for
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diffusion operations instead of the multiplication table of GF(28). Existing diffusion operations
often exhibit monotonicity and vulnerability to attacks like differential attacks.

Image encryption technology finds applications in various fields such as personal,
medical, industrial, and military, and the demand for image encryption is diverse. Firstly,
different levels of confidentiality require different encryption requirements. Generally,
as the security of encryption increases, the efficiency of encryption decreases. Therefore,
finding a balance between encryption efficiency and security is crucial. The appropriate
encryption scheme should be selected based on the desired level of confidentiality. Secondly,
users may have diverse requirements in terms of the number, size, and type of images they
need to encrypt. However, many existing image encryption schemes have limitations, such
as only supporting a specific image type or images of the same size. Lastly, the design of
encryption keys varies based on different needs. Users should have the option to use either
a randomly generated key provided by the encryption scheme or a user-defined fixed key.
In existing image encryption schemes, hash functions are often used to design keys to resist
plaintext attacks, but this restricts user participation in the key design process.

To address the aforementioned issues, we propose a multidimensional chaos model
based on modular arithmetic and a multiple-image encryption algorithm. In the proposed
chaotic model, we fix the original parameters of the seed maps within the chaotic range,
introduce new parameters through the nonlinear coupling of multiple outputs, and collapse
the outputs using modular arithmetic. The chaotic model is not limited to some fixed
number of dimensions, and it can generate chaotic systems of arbitrary dimensions. Users
can design chaotic systems of varying dimensions based on the desired level of encryption
confidentiality. We generate three chaotic systems using the model, with dimensions of two,
three, and four, and validate their dynamics through simulation experiments, including
phase diagrams, bifurcation diagrams, Lyapunov exponent diagrams, and sample entropy.
The simulation results demonstrate that the generated chaotic systems possess a wide
and continuous range of chaotic parameters, exhibiting good ergodicity and parameter
sensitivity. In the proposed multiple-image encryption algorithm, we combine multiple
images into a 1D array for encryption, making it adaptable to any image type, number, and
size. For key design, we present two methods: the first method involves combining the
hash value generated from plaintext images with random noise to generate the key, while
the second method allows the user to set the key themselves. By incorporating chaotic
systems, we achieve strong key sensitivity. We introduce a permutation–diffusion algorithm
based on overlapping blocks, where permutation and diffusion mutually affect each other.
This approach effectively reduces the correlation between adjacent pixels, significantly
enhancing resistance against plaintext attacks. We provide adjustable parameters for block
size and overlapping parts, enabling users to achieve different levels of security by adjusting
these parameters. Additionally, we define a novel lookup table operation based on the Latin
square. Through chaotic sequences, we generate several different Latin squares to reach
dynamic operations in the form of row and column lookups. This enhances the nonlinearity
and diversity of diffusion operations. We have conducted several simulation tests, and the
experimental results demonstrate that the proposed image encryption algorithm effectively
encrypts multiple images with strong security and efficiency.

The paper is organized as follows. In Section 2, a new chaotic model is introduced and
three example chaotic systems are designed based on it. In Section 3, the performance of
these chaotic systems is analyzed. In Section 4, the proposed new multi-image encryption
algorithm is presented. In Section 5, the simulation results and the security of the algorithm
are analyzed. In Section 6, conclusions about this thesis are given.

2. N-Dimensional Modular Chaotic Model

This section describes the construction of the N-dimensional coupled modular chaos
model (ND-CMCM) and creates three different dimensional chaotic systems as examples
by this model.
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2.1. Construction of ND-CMCM

In order to improve the performance of chaotic maps, while users can construct
suitable chaotic systems according to different needs, ND-CMCM is proposed in this paper.

Consider an N dimension of input x = (x1, x2, . . .xN)T. Fi(xi, µi) (i = 1, 2, . . . N) are the
N-selected 1D seed chaotic maps, where µi are the control parameters. The original control
parameters of the seed chaotic maps are fixed at a number that can enter the chaotic state.
Create new control parameters ai (i = 1, 2, . . . N). We define the structure of ND-CMCM as
Equation (1).

x1,j+1 = mod
(
a1F1

(
x1,j
)
+ a1 f1

(
xj
)
+ a2 f2

(
xj
)
· · ·+ aN fN

(
xj
)
, C
)

x2,j+1 = mod
(
a2F2

(
x2,j
)
+ a1 fN+1

(
xj
)
+ a2 fN+2

(
xj
)
· · ·+ aN f2N

(
xj
)
, C
)

...
xN,j+1 = mod

(
aN FN

(
xN,j

)
+ a1 fN2−N+1

(
xj
)
+ a2 fN2−N+2

(
xj
)
· · ·+ aN fN2

(
xj
)
, C
) (1)

where xj is an N-dimensional vector which is the j-th state of the chaotic system iteration,
fi(x) (i = 1, 2, . . . N2) are nonlinear functions that couple multidimensional outputs, mod is
the modular arithmetic, and C is the modulus coefficient. In the general case, the model
can be simplified to Equation (2).

x1,j+1 = mod
(
a1F1

(
x1,j
)
+ a2 f1

(
xj
)
, C
)

x2,j+1 = mod
(
a2F2

(
x2,j
)
+ a3 f2

(
xj
)
, C
)

...
xN−1,j+1 = mod

(
aN−1FN−1

(
xN−1,j

)
+ aN fN−1

(
xj
)
, C
)

xN,j+1 = mod
(
aN FN

(
xN,j

)
+ a1 fN

(
xj
)
, C
)

(2)

The chaotic system designed by this model has a more complex dynamical behavior
than the seed chaotic maps. The modular arithmetic can keep the output in a finite range,
which not only allows ai to be set to any larger value but also increases the complexity of
the chaotic system. Compared to other bounded functions, modular operations can make
the output more uniform in phase space. The modulus coefficient C can be arbitrarily set to
a relatively small number compared to the parameter ai, which increases the diversity of
the system. By utilizing various 1D chaotic systems and nonlinear functions, ND-CMCM
can generate multiple chaotic systems, thus simplifying the design process and giving the
user the freedom to design the desired chaotic system.

2.2. Examples of the Proposed Chaotic Model

In order to verify the excellent performance of ND-CMCM, we choose some classical
1D chaotic maps and some 1D chaotic maps from recent literature as examples, which are
combined into three different dimensions of chaotic maps.

2.2.1. 2D Logistic–PWLCM Coupled Modular Map

The logistic map [31] is one of the most classical and commonly used chaotic maps. It
is defined as Equation (3).

xn+1 = µxn(1− xn) (3)

where xn ∈ (0, 1), µ ∈ [0, 4] is a control parameter. When the parameter µ is in the interval
(3.57, 4], the logistic map enters the chaotic state.

The piece-wise linear chaotic map (PWLCM) [32] is widely used for its simple structure
and good traversability. PWLCM is defined as Equation (4).

xn+1 = T(xn, p) =


xn/p 0 ≤ xi < p

(xn − p)/(0.5− p) p ≤ xi < 0.5
T(1− xn, p) 0.5 ≤ xi < p

(4)
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where xn ∈ (0, 1), p ∈ (0, 0.5) is the control parameter and the map is in the chaotic state
within this range.

The 2D logistic–PWLCM coupled modular map (2D-LPCMM) is obtained by combin-
ing the logistic map and PWLCM, with the parameter µ of the logistic map fixed at 4 and
the parameter p of the PWLCM fixed at 0.3. The expression is as Equation (5).

xn+1 = mod(4axn(1− xn) + byn(1− xn), 1)

yn+1 = mod(byn/0.3 + axn(1− yn), 1) 0 ≤ yn < 0.3

yn+1 = mod(b(yn − 0.3)/0.2 + axn(1− yn), 1) 0.3 ≤ yn < 0.5

yn+1 = mod(b(0.7− yn)/0.2 + axn(1− yn), 1) 0.5 ≤ yn < 0.7

yn+1 = mod(b(1− yn)/0.3 + axn(1− yn), 1) 0.7 ≤ yn < 1

(5)

where xn ∈ (0, 1), a and b are the two newly created control parameters. Since the mod is a
bounded function that collapses the output, a and b can be very large values. In this paper,
we investigate the properties of 2D-LPCMM for a, b in the range [1, 1000].

2.2.2. 3D Cubic–Fraction–IST Coupled Modular Map

The form of the cubic map [33] can be expressed by Equation (6).

xn+1 = ρxn

(
1− x2

n

)
(6)

where xn ∈ (0, 1), ρ ∈ [0, 3] is a control parameter. When the parameter ρ is in the interval
(2.59,3], the cubic map exhibits complex behavior.

The fraction map [34] was discovered in the study of evolutionary algorithms. This
map is more complex than the logistic map and its expression is Equation (7).

xn+1 =
1

x2 + 0.1
− pxn (7)

where xn ∈ [−10.0025, 10.0025], p ∈ [−0.999, 0.999] is a control parameter. In the interval
p ∈ [0.699, 0.1510] ∪ [0.2470, 0.3590] ∪ [0.3770, 0.5170] ∪ [0.5680, 0.6280] ∪ [0.6310, 0.6770],
the system is chaotic.

The improved sine–tangent map (IST map) [35] is derived from the sine map, the
tangent function, and the first class of Chebyshev polynomials. It is defined as follows.

xn+1 = sin
(

α tan
(

3xn
2 − 1.5

))
(8)

where xn ∈ [−1, 1], α ∈ (0, 8] is a control parameter and in this interval the map is chaotic.
The 3D cubic–fraction–IST coupled modular map (3D-CFICMM) is obtained by com-

bining the cubic map, fraction map, and IST map, with the parameter ρ of the cubic map
fixed at 3, the parameter p of the fraction map fixed at 0.5, and the parameter α of the IST
fixed at 7. The expression is as Equation (9).

xn+1 = mod
(
3axn(1− xn

2) + bynzn cos(xn), 2
)

yn+1 = mod
(
b/
(
yn

2 + 0.1
)
− 0.5byn + cxnzn cos(yn), 2

)
zn+1 = mod

(
c sin

(
7 tan

(
3zn

2 − 1.5
))

+ axnyn cos(zn), 2
) (9)

where xn ∈ (0, 2), a, b, and c are the three newly created control parameters. a, b, and c
can be very large values. In this paper, we investigate the properties of 3D-CFICMM for
a, b, c ∈ [1, 1000].
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2.2.3. 4D ICMIC–ICMIC–1DSP–1DCP Coupled Modular Map

The iterative chaotic map with infinite collapses (ICMIC) [36] is also a commonly used
1D chaotic system and is often used as a seed map to construct new functions. The formal
definition of the ICMIC is given by Equation (10).

xn+1 = sin
(

β

xn

)
(10)

where xn ∈ [−1, 1], β ∈ (0, ∞) is a control parameter. This map has many periodic windows
that lead to discontinuities in the chaotic range. For example, there are large periodic
windows for the parameter β ∈ (0, 1.8197) ∪ (4.1411, 4.8143) ∪ (7.5073, 7.9163). There are
also many narrow period windows such as β ∈ (2.5584, 2.5686).

The 1D sine powered chaotic map (1DSP) [37] was designed inspired by the sine map
and the sine map was used to avoid exponential growth of the output. The 1DSP is defined
as Equation (11).

xn+1 = (xn(α + 1))sin (βπ+xi) (11)

where xn ∈ [0, 1], α ∈ (0, ∞) and β ∈ [0, 1] are two control parameters. For α ∈ (2, ∞) and
β ∈ [0.011, 0.46], 1DSP exhibits continuous chaotic behavior.

The 1D cosine polynomial (1DCP) [38] is designed as a simple structure with highly
chaotic behavior. The 1DCP is defined as Equation (12).

xn+1 = cos
(

µ
(

x3
n + xn

))
(12)

where xn ∈ [−1, 1], µ ∈ (−∞, ∞) is a control parameter. When the parameter µ is small,
there is a narrow period window.

The 4D ICMIC–ICMIC–1DSP–1DCP coupled modular map (4D-IISCCMM) is obtained
by combining the ICMIC c map, 1DSP, and 1DCP, with the parameter β of the ICMIC map
fixed at 6 and 8, the parameter α and β of the 1DSP fixed at 4.4926 and 0.3306, and the
parameter µ of the 1DCP fixed at 1000. ICMIC is used twice, implying that ND-CMCM
does not necessarily require different seed chaotic maps. The expression is as Equation (13).

xn+1 = mod(a sin(6/xn) + b(znwn + sin(xnyn)), 3)

yn+1 = mod(b sin(8/yn) + c(wnxn + sin(ynzn)), 3)

zn+1 = mod
(

czn(4.4926 + 1)sin (0.3306π+zn) + d(xnyn + sin(znwn)), 3
)

wn+1 = mod
(
d cos

(
1000

(
w3

n + wn
))

+ a(ynzn + sin(wnxn)), 3
)

(13)

where xn ∈ (0, 3), a, b, c, and d are the four newly created control parameters. a, b, c, and d
can be very large values. In this paper, we investigate the properties of 4D-IISCCMM for a,
b, c, d ∈ [1, 1000].

The 3D-CFICMM and 4D-IISCCMM suffer from computational overload. We cite them
as examples to demonstrate the generation of chaotic systems with different dimensions, using
various nonlinear function coupling methods and modulus coefficients. Therefore, these two
chaotic systems are designed without significant consideration of efficiency. The computa-
tional workload of the generated chaotic system is related to the seed chaotic maps and the
nonlinear function it employs, both of which are determined by the designer. Users have the
freedom to design chaotic systems according to their individual needs and preferences.

3. Performance Analysis of New Systems

In this section, we conduct a quantitative analysis of three chaotic systems gener-
ated by ND-CMCM to verify their complexity, ergodicity, and sensitivity to parameters.
The evaluation encompasses three aspects: bifurcation and phase diagrams, Lyapunov
exponents, and sample entropy.
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3.1. Bifurcation Diagram and Phase Diagram

The dynamical behavior of a chaotic system can be revealed by using bifurcation
diagrams and phase diagrams, which are visualizations of the trajectory and ergodicity
of the chaotic system. The bifurcation diagram shows the distribution of the output of a
chaotic system in the phase space over a specific range of parameters. The phase diagram
draws the values of two or more state variables against each other, representing the intrinsic
relationship of the state variables. Figures 1 and 2 show the bifurcation and phase diagrams
of 2D-LPCMM, 3D-CFICMM, and 4D-IISCCMM, respectively. The 3D and 4D systems
require multiple figures to show all the bifurcation and phase diagrams because of the
high dimensionality and many parameters. Since the contents of these figures are similar,
only some of them are shown. From the figures, we can see that the chaotic trajectory
spreads over the whole phase space. There is no period window over a large range of
parameters. The chaotic output values are not clustered at the edges of the phase space and
are extremely uniformly distributed.
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3.2. Lyapunov Exponent

The Lyapunov exponent (LE) is an index for the quantitative evaluation of chaotic
systems. It reflects the sensitivity of a chaotic system to the initial conditions and enables
determination of whether the chaotic system is in a chaotic or periodic state with specific
parameters. The number of Lyapunov exponents of a chaotic system is equal to the number
of dimensions of its phase space. One positive Lyapunov exponent indicates that the
system exhibits chaotic behavior, and more than one positive Lyapunov exponent indicates
that the system exhibits hyperchaotic behavior. The spectrum of Lyapunov exponents
is shown in Figure 3. All three systems have positive Lyapunov exponents equal to the
dimensionality in all parameter ranges. To visualize the superiority of our proposed system,
the maximum Lyapunov exponent (MLE) spectrum of the proposed systems and the seed
maps are plotted in Figure 4. The MLE spectrums of chaotic systems are scaled to the figure
with horizontal coordinates in the range a ∈ [1,1000]. For example, the parameter range of
the logistic map is µ ∈ [µmin,µmax] = [0,4], and the value of µ as the horizontal coordinate a
varies can be obtained by Equation (14). The other parameter of 2D-LPCMM was set to
b = 500. The other parameters of 3D-CFICMM were set to b = 500 and c = 500. The other
parameters of 4D-IISCCMM were set to b = 500, c = 500, and d = 500. The other parameter
of 1DSP was set to α = 4.4926.

µ =
a− 1

(1000− 1)
× (µmax − µmin) + µmin (14)
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3.3. Sample Entropy

Sample entropy (SE) is a measure that quantifies the level of regularity or complexity
observed in a time series, allowing us to assess the predictability and unpredictability of the
resulting chaotic output. Consider a time series of the form {x1, x2, . . ., xN}. Set the value of
the parameter m, which means the length of the template vector. For each template vector
Xm(i), defined as {xi, xi+1, . . ., xi+m−1}, we calculate the Chebyshev distance between each
pair of template vectors and denote it as d[Xm(i), Xm(j)]. Set another parameter r, which
means tolerance threshold. The number of vectors with Chebyshev distances below the
threshold r is calculated and denoted as B. The number of vectors with Chebyshev distances
below the threshold r is calculated for each pair of template vectors after increasing the
length of the template by 1, i.e., m + 1, and denoted as A. SE can be defined as

SE(m, r, N) = − log
A
B

(15)

A lower SE value indicates a higher regularity in the chaotic sequence, with more
certainty and order. On the contrary, higher SE values indicate higher complexity and
irregularity. The parameters m and r affect the magnitude of the calculated SE, and in this
paper we set them to 2 and 0.2, respectively. Figure 5 plots part of the SE of 2D-LPCMM,
3D-CFICMM, and 4D-IISCCMM, and it can be seen that in all parameter ranges SE is
greater than 2. Figure 6 shows a comparison of the SE of the proposed systems and the
seed maps. The other parameter settings for the multiparameter chaotic systems are the
same as in Figure 4.
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4. Proposed Encryption Algorithm

Chaotic systems are generally used as pseudo-random sequence generators in image
encryption algorithms. The performance of the chaotic system affects the effectiveness of
image encryption. Our proposed chaotic system has excellent sensitivity to parameters,
complexity, and unpredictability, while the chaotic trajectory is very uniform and covers
the whole phase space. The chaotic system generated by ND-CMCM is well suited for
application in image encryption. Based on this, we have developed an algorithm that can
be used regardless of the number, type, and size of images. The flowchart of this algorithm
is shown in Figure 7.
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4.1. Overlapping Block

The overlapping block is designed to increase the complexity of image encryption
while designing adjustable parameters to balance the encryption time and encryption effect.
The length of the overlapping blocks is random and generated by the chaotic sequence. We
designed the parameters Bmin and Bmax, which are the minimum and maximum values
of the random length of the overlapping blocks, respectively, and they determine the
percentage of overlapping blocks.

The method of overlapping block partition is shown in Figure 8. First, determine
the values of Bmin and Bmax. The smaller the Bmin and the larger the Bmax, the longer
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the encryption time and the better the encryption effect. Second, calculate the number of
overlapping blocks:

Bn = ceil(Blen/Bmin) (16)

where Blen is the length of the 1D array being partitioned and ceil is an upward rounding
function. Finally, the random length of overlapping blocks S(i) (i = 1, 2, . . ., Bn) is generated
by chaotic sequences. The overlapping parts are repeatedly involved in the permutation–
diffusion process. For a detailed algorithm on overlapping block permutation–diffusion,
please refer to Section 4.3.
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4.2. Newly Defined Operations Based on Latin Squares and Lookup Table

A Latin square is a mathematical structure that is a square array of n × n. In this
n × n square, there are n different elements, and each different element appears only
once in the same row or column. Elements can be numbers, letters, symbols, etc. We use
Algorithm 1 [39] to generate a n-th-order Latin squares with elements of positive integers
from 0 to n.

A lookup table operation is a way to quickly access values based on data in a table or
similar array. We define a new operation using the Latin square as a lookup table. Consider
a Latin square L of order n + 1 with constituent elements 0, 1, . . ., n. The lookup table
operation function based on the Latin square (LL) is defined as

k = LL(i, j, L) = L[i + 1, j + 1] (17)

where LL is the name of the function, L[i,j] represents taking out the elements of the i-th row
and j-th column of matrix L. We take an example of a lookup table based on the four-order
Latin square L0 to illustrate the operation specifically, as shown in Figure 9a, where the
white squares are the Latin squares L0, the gray column squares are the i in Equation (17),
and the gray row squares are the j. It is easy to know that performing an addition operation
on 2 and 3 yields 5 and performing a bitxor operation on 2 and 3 yields 1. However, when
we perform the L0-based LL operation on 2 and 3, i.e., LL(2,3,L0), the result of the operation
is the number in row 3, column 4 of L0, i.e., L0[2 + 1,3 + 1] = L0[3,4] = 1. In order to obtain i
through k and j, we need to perform an reverse LL operation. Specifically, we obtain the
reverse Latin square through Equation (18), and then we perform the LL operation on k
and j. The algorithm for generating the reverse Latin square is shown in Algorithm 2, and
the reverse Latin square L0

′ of L0 is shown in Figure 9b.

i = LL
(
k, j, L′

)
= L′[(L[i + 1, j + 1] + 1, j + 1) (18)

More examples of LL operations are shown below.

LL(1, 2, L0) = L0[2, 3] = 0 (19)

LL
(
0, 2, L0

′) = L0
′[1, 3] = 1 (20)

LL(3, 1, L0) = L0[4, 2] = 2 (21)
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LL
(
2, 1, L0

′) = L0
′[3, 2] = 3 (22)

LL is an operation with both input and output in the range of integers 0 to n. It has
more complex nonlinear properties than additive operations, XOR operations, and Galois
field, and it is suitable to be used in confusion diffusion of image encryption. In order
to visually compare the differences between the proposed operation and other different
operations, we generated three Latin squares L1, L2, and L3 and drew the results of their
operations. Figure 10 shows a discrete plot of the results of the different operations, where
x and y are integers in the range 0 to 255 and the blue color represents the points in the
3D plot determined by x, y and the results obtained from x and y. It can be seen that our
proposed operation is more complex compared to other operations. In addition, different
Latin squares can give different results, so the operations are diverse.
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Algorithm 1 Pseudo-code for generating Latin squares

Input: chaotic sequences Q1 and Q2 of length n
Output: nth order Latin square L
1: [~,I1] = sort(Q1);
2: [~,I2] = sort(Q2);
3: I1 = I1 − 1;
4: for i = 0 to n − 1
5: L(i + 1,:) = circshift(I1,I2(i + 1));
6: end for

Algorithm 2 Pseudo-code for generating reverse Latin squares

Input: nth Latin square L
Output:nth reverse Latin square L′

1: for i = 0 to n − 1
2: for j = 0 to n − 1
3: L′(L(i + 1,j + 1) + 1,j + 1) = i;
4: end for
5: end for

4.3. Encryption Process

The proposed encryption algorithm provides parameters that can balance the encryp-
tion time and efficiency. The parameters we provide are Bmin, Bmax, and Lnum; the first two
are used to determine the length of the random overlapping block and the latter determines
the number of Latin squares used for the LL operation.

4.3.1. Generation of Secret Key and Chaotic Sequences

The proposed encryption algorithm offers two methods for setting the key, which
is the parameter of the chaotic system. The first method involves dividing it into an
internal key and an external key. The internal key is generated using the hash function,
while the external key is generated by random noise. By combining the sensitivity of the
hash function to the plaintext and the sensitivity of the chaotic system to the parameters,
even a small change in the plaintext image will lead to a completely different encryption
result. The external key is derived from random noise, increasing security and making
the encryption result different each time. The second method allows users to set their
own keys. The diffusion phase in the proposed encryption algorithm can propagate small
changes in the plaintext image to the whole image, and in combination with the newly
defined nonlinear operations, the encryption becomes unpredictable. In this paper, we use
2D-LPCMM for encryption.

The steps to generate the chaotic sequences are as follows.
Step 1: Input n images and record their sizes.
Step 2: Expand the input images into a 1D array in column-major order and concate-

nate them horizontally, denoted as P. Calculate the length of P, denoted as Blen. Calculate
Bn according to Equation (16).

Step 3: In this step, the key is generated by the hash function. It can be skipped if the
key is customized. The hash function we use is SHA-512. Input P into the hash function to
obtain a binary number H of length 512. Convert H to decimal and divide it into 32 parts
named k1, k2, k3, . . ., k32. H and ki are calculated as follows.

H = hash
(

P,′ SHA− 512′
)

(23)

ki = bin2dec(H(16(i− 1) + 1 : 16i), i = 1, 2, · · · 32 (24)
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Obtain the control and initial parameters of the chaotic system from the following equation.

a = sum(k1, k2, k3, k4)× sum(k5, k6, k7, k8)/236 × 1000+5

b = sum(k9, k10, k11, k12)× sum(k13, k14, k15, k16)/236 × 1000+5

x0 = mod(sum(k17, k18, k19, k20)/sum(k21, k22, k23, k24) + rand(1), 1)

y0 = mod(sum(k25, k26, k27, k28)/sum(k29, k30, k31, k32) + rand(1), 1)

t = mod(ceil(mean(k1, k2, . . . , k32)), 1000) + 1000

(25)

where a and b are the control parameters, x0 and y0 are the initial parameters of the chaotic
system, t denotes the first t values of the chaotic sequence discarded to prevent transient
effects, and rand is a function that generates uniform random noise.

Step 4: Substitute a, b, x0, y0 into 2D-LPCMM for iteration, and after discarding the
first t values, chaotic sequence CS0 of length 512 × Lnum and chaotic sequences CS1, CS2,
CS3, CS4, CS5, CS6, CS7, CS8 of length Bn are generated. Each overlapping block length S1
and S2 can be calculated by the following equation.

S1 = mod
(

ceil
(

CS1 × 1010
)

, Bmax − Bmin

)
+ Bmin (26)

S2 = mod
(

ceil
(

CS2 × 1010
)

, Bmax − Bmin

)
+ Bmin (27)

BS1 = sum(S1) (28)

BS2 = sum(S2) (29)

where Bs1 and Bs2 are the sum of the lengths of all overlapping blocks. Then, generate the
chaotic sequences CS9 and CS10 of length BS1, CS11 of length BS2.

4.3.2. Overlapping Block Permutation–Diffusion

Permutation and diffusion are simultaneous and are divided into forward permutation–
diffusion and backward diffusion. The permutation can scramble the values within a block
into the entire 1D array. The diffusion includes inter-block diffusion, intra-block diffusion,
and mask diffusion.

To facilitate understanding, we first present an example before summarizing the
encryption process, as shown in Figure 11. In this example, the parameter Bmin is set to 4,
Bmax is set to 8, and Lnum is set to 2.

Step 1: Generate Lnum (2) Latin squares denoted L{1} and L{2}, as shown in Figure 12.
Step 2: Input two images of size 3 × 3 and expand them column-wise into a 1D array

P of length 18.
Step 3: Divide P into 5 (ceil(18/4), see Equation (16)) overlapping blocks. The initial

position of each overlapping block in the figure is indicated by the black dashed line. The length
of each block is between Bmin (4) and Bmax (8) and is determined by the chaotic sequence.

Step 4: Choose the first overlapping block, framed by the black line, whose length is 7.
Record the index of the first overlapping block as A, A = [1, 2, 3, 4, 5, 6, 7].

Step 5: Generate 7 random numbers E ranging from 1 to 18, E = [17, 13, 18, 15, 10, 3, 13].
Step 6: Process arrays A and E. As there are many duplicate numbers in A and E, this

may cause data loss. Combine E and A into a temporary array Temp = [17, 13, 18, 15, 10, 3,
13, 1, 2, 3, 4, 5, 6, 7], remove the duplicates, and split it into two arrays E1 = [17, 13, 18, 15,
10, 3] and A1 = [1, 2, 4, 5, 6, 7]. The process is represented by Algorithm 3.

Step 7: Swap the pixel of P indexed by E1 and A1, shown in the figure with black
bi-directional arrows. For example, the 17th pixel (7) and the first pixel (0) swap positions.

Step 8: Perform the L{2}-based LL operation on the first two pixels of the first overlap-
ping block and the first two pixels of the last overlapping block. This operation is indicated
by orange arrows in the figure. For example, the first pixel of the first block is 7, and the
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first pixel of the last block is 0. Operate on them to obtain LL(7,0,L{2}) = 7. Similarly, the
second pixel of these two blocks is operated on to obtain LL(3,3,L{2}) = 1.

Step 9: Perform the L{1}-based LL operation on each pixel of the first overlapping
block and its previous pixel. This operation is indicated by purple arrows in the figure.
For example, the first pixel of the first block is 7, and the last pixel of the last block is 3.
Operating on them obtains LL(7,3,L{1}) = 1. Similarly, the second pixel of the first block is 1,
and now the first pixel of the first block is 1. Operating on them obtains LL(1,1,L{1}) = 4.

Step 10: Generate 7 random numbers D ranging from 0 to 8, D = [5, 8, 8, 1, 3, 6, 2].
Step 11: Perform the L{1}-based LL operation on each pixel of the first overlapping

block and numbers in array D. This operation is indicated by gray arrows in the figure. For
example, the first pixel of the first overlapping block is 1 and the first number in D is 5.
Operating on them obtains LL(1,5,L{1}) = 5. The second pixel of the first overlapping block
is 4 and the second number in D is 8. Operating on them obtains LL(4,8,L{1}) = 6.

Step 12: The first Bmin (4) blocks of the first overlapping block are no longer involved
in the subsequent permutations. This means that the index of the 1D array P starts at the
first pixel of the second overlapping block.

Step 13: Choose the second overlapping block, framed by the black line, whose length
is 8. Record the index of the first overlapping block as A, A = [1, 2, 3, 4, 5, 6, 7, 8].

Step 14: Repeat step 5 to step 11. The generated random arrays E and D are E = [7, 13,
2, 3, 6, 8, 6, 7], D = [8, 1, 6, 5, 0, 5, 5, 4]. The Latin squares used in steps 8, 9, and 11 are L{1},
L{2}, and L{2}, respectively.

Step 15: Recover the encrypted 1D array P into two images of size 3 × 3.
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Algorithm 3 Pseudo-code for index processing

Input: E, A
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3: Stemp = length(Temp);
4: if mod(Stemp,2) = 1
5: Temp(end) = [];
6: Stemp = Stemp − 1;
7: end if
8: E1 = Temp(1: Stemp/2);
9: A1 =Temp(Stemp/2 + 1:end);

The detailed encryption process is summarized as follows.
Step 1: Confirm the parameters Bmin, Bmax, and Lnum. Bmin and Bmax determine the

length range of the overlapping blocks, and Lnum determines the number of Latin squares
to be generated.

Step 2: Generate Lnum Latin squares. Divide CS0 into Lnum groups, each group
has 2 arrays of length 256, and generate Lnum Latin squares L{i} (i = 1, 2, . . ., Lnum) by
Algorithm 1.

Step 3: Obtain the random number used to select Latin squares L1, L2, and L3 through
the chaotic sequences CS3, CS4, CS5.

Step 4: Input n images and record their sizes. Expand the input images into a 1D
array in column-major order and concatenate them horizontally, denoted as P. Calculate
the length of P, denoted as Blen.

Step 5: Divide P into Bn overlapping blocks, where Bn = ceil(Blen/Bmin).
Step 6: Select the i-th (i = 1, 2, . . ., Bn) overlapping block. Denote the length of the

block as S, where S = S1(i) and S1 is obtained from Equation (26).
Step 7: Denote the length of the array in which the overlapping blocks are to be

arranged as Plen, where Plen= Blen − (i − 1) × Bmin. When Plen is less than S1(i), S = Plen.
Step 8: Generate S random numbers E ranging from 1 to Plen through the chaotic

sequences CS9, where E = mod(ceil(CS9 × 1014),Plen) + 1.
Step 9: Permutation. Let A be the array from 1 to S1(i). Obtain E1 and A1 by inputting

E and A into Algorithm 3. Swap the pixels of P indexed by E1 and A1.
Step 10: Inter-block diffusion. Perform the LL operation based on the L1-th Latin

square L{L1} for the first Bmin pixels of the i-th overlapping block and the first Bmin pixels
of the i − 1-th overlapping block.
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Step 11: Intra-block diffusion. Perform the LL operation based on the L2-th Latin square
L{L2} for the k-th (k = 1, 2,. . ., S) pixel and the k − 1-th pixel of the i-th overlapping block.

Step 12: Generate S random numbers D ranging from 0 to 255 through the chaotic
sequences CS10, where D = mod(ceil(CS10 × 1014),256).

Step 13: Mask diffusion. Perform LL operations based on the L3-th Latin square L{L3}
for the whole i-th overlapping block and D.

Step 14: Forward permutation–diffusion. Add 1 to i (i = i + 1) and loop step 4 to step 11
until i = Bn. The specific pseudo-code is shown in Algorithm 4.

Step 15: Flip the array P from left to right P = fliplr(P).
Step 16: Select the i-th (i = 1, 2, . . ., Bn) overlapping block. Denote the length of the

block as S, where S = S2(i) and S2 is obtained from Equation (27).
Step 17: Backward diffusion. Add 1 to i (i = i + 1) and loop step 8 to step 11 until i = Bn.
Step 18: Recover the encrypted 1D array P into multiple images based on the sizes of

the recorded original images.

Algorithm 4 Pseudo-code for forward permutation–diffusion

Input: P, Blen, Bmin, S1, CS3, CS4, CS5, CS9, CS10, CS13,
Output: P

1: Ct = 1; Plen = Blen;
2: for i = 1 to Bn
3: if Plen < S1(i)
4: S = Plen;
5: end if
6: L1 = mod(ceil(CS3(i) × 1014),Lnum) + 1; L2 = mod(ceil(CS4(i) × 1014),Lnum) + 1;
7: L3 = mod(ceil(CS5(i) × 1014),Lnum) + 1; E = mod(ceil(CS9(Ct:Ct + S − 1) × 1014),Plen) + 1;
8: D = mod(ceil(CS10(Ct:Ct + S − 1) × 1014),256); Ct = Ct + S;
9: A = 1 to S;

10: [E1,A1] = Algorithm 2(E,A); E1 =E1 + (i − 1) × Bmin; A1 =A1 + (i − 1) × Bmin;
11: P(E1)⇔P(A1)
12: if i > 1
13: if Plen > Bmin

14:
P((i − 1) × Bmin + 1:i × Bmin) = LL(P((i − 1) × Bmin + 1:i × Bmin),P((i − 2) ×

Bmin + 1:(i − 1) × Bmin),L{L1});
15: else

16:
P((i − 1) × Bmin + 1:end)= LL(P((i − 1) × Bmin + 1:end),P((i − 2) × Bmin + 1:(i −

1) × Bmin),L{L1});
17: end if
18: for k = 1 to S
19: P((i − 1) × Bmin + k) = LL(P((i − 1) × Bmin + k),P((i − 1) × Bmin + k − 1),L{L2});
20: end for
21: else

22:
P(1:Blen − ((Bn − 1) × Bmin)) = LL(P(1:Blen − ((Bn − 1) × Bmin)),P((Bn − 1) × Bmin +

1:end), L{L1});
23: P(1) = LL(P(1),P(Bn),L{L2});
24: for k = 2 to S
25: P(k) = LL(P(k),P(k − 1),L{L2});
26: end for
27: end if

28:
P((i − 1) × Bmin + 1:(i − 1) × Bmin + S) = LL(P((i − 1) × Bmin + 1:(i − 1) × Bmin +

S),D,L{L3});
29: Plen = Plen − Bmin;
30: end for

4.4. Decryption Process

The decryption process is the inversion of the encryption. The specific decryption
process is as follows.
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Step 1: Record the size of the ciphertext images and expand them into a 1D array in
column-major order, concatenate them horizontally to obtain a 1D array P. Calculate the
length of P, denoted as Blen. Calculate Bn according to Equation (16).

Step 2: Generate chaotic sequences from keys.
Step 3: Generate the Latin squares used in the encryption process and input them into

Algorithm 2 to obtain the reverse Latin squares.
Step 4: Perform the reverse operation of overlapping block permutation–diffusion to

obtain the decrypted 1D array P, where the Latin square used is changed to the reverse
Latin square.

Step 5: Recover the decrypted 1D array P into multiple images based on the sizes of
the recorded original images.

5. Experimental Results and Security Analysis

In this section, to test the performance of the image encryption algorithm, we encrypt
multiple color and grayscale images of different sizes at the same time. These tests analyze
the effectiveness of the proposed algorithm from various aspects. The test images were
obtained from the USC-SIPI Image Database (https://sipi.usc.edu/database/, accessed
on 13 July 2023). The test images we used include 256 × 256 × 3 4.1.01.tiff, 512 × 512 × 1
5.2.10.tiff, 512 × 512 × 3 4.2.05.tiff, and 1024 × 1024 × 1 5.3.01.tiff. In Section 4.1, we
set parameters that can balance encryption time and encryption effect. We used three
different groups of parameters to set up three different levels of encryption. The first group
is Bmin = ceil(power(Blen,1/2)) × 3, Bmax = 1.5 × Bmin, Lnum = 20. The second group is
Bmin = ceil(power(Blen/3,1/2)), Bmax = 2 × Bmin, Lnum = 50. The third group is Bmin =
ceil(power(Blen,1/3)), Bmax = 4 × Bmin, Lnum = 100. To accommodate different numbers
of pixels, Bmin and Bmax are related to the total number of image pixels Blen. Power is a
function used to raise a number or array element-wise to a specified power. These three
groups of parameters are labeled as Level 1, Level 2, and Level 3, with the speeds ranging
from slow to fast and the effects ranging from low to high. If not specified, the second
group of parameters is used by default in the following tests.

The encrypted and decrypted images are shown in Figure 13. To facilitate the layout,
we have resized the images to the same size, but the actual amount of pixels encrypted
remains the same. It can be seen that the images are encrypted into noisy images and their
original contents cannot be recognized.
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5.1. Key Space Analysis

The key space refers to the total number of possible keys. In this paper, the keys
are set as parameters of the chaotic system, including control parameters a, b and initial

https://sipi.usc.edu/database/
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parameters x0, y0 and iteration parameters t. In a platform with a computational accuracy
of 10−14, the key space is 1014×4 > 2186. A key space of at least 2100 is required to resist brute
force attacks [40]. Since ND-CMCM can generate multidimensional chaotic systems, it is only
necessary to generate chaotic systems of two dimensions or more to resist brute force attacks.

5.2. Key Sensitivity Analysis

A key-sensitive algorithm means that even a very small change in the key can pro-
duce completely different results. The proposed chaotic system has good sensitivity to
the initial conditions, and very small changes in the parameters generate completely
different chaotic sequences, thus making the decryption results different. In the case
of using SHA-512 to generate the key, a = 128.2116103055887, b = 103.4568560525077,
x0 = 0.803690307174427, y0 = 0.750177111375968, t = 1973, after modifying the number at the
end of a, a = 128.2116103055888, and the decrypted image obtained is shown in Figure 14.
In the case of the custom key, we set a = 123.45, b = 567.89, x0 = 0.12345, y0 = 0.56789,
t = 1000 and the decrypted image shown in Figure 14 is after adding 10−14 to x0. It can
be seen that the decrypted images are all unrecognizable, which shows that the proposed
encryption algorithm has good key sensitivity.
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5.3. Histogram Analysis

The histogram of the image shows the distribution of all pixel values and visualizes
the frequency of pixel occurrences. The histogram of the test image counts the number
of pixels from 0 to 255, as shown in Figure 15. The color image has three channels, while
the grayscale image has only one. The histograms of the ciphertext images are close to
horizontal, indicating that the pixels appear almost equally often and the attacker cannot
decrypt them from the statistical analysis.
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5.4. Chosen Plaintext Attack Analysis

An attacker can break the encryption by choosing to encrypt a specific plaintext to
obtain a plaintext–ciphertext pair. We encrypted a 512 × 512 × 3 pure black image and a
pure white image, and the test results are represented in Figure 16. It can be seen that the
special images are still unrecognizable as noisy images after encryption. The test data of
pure black and pure white are also added in the subsequent tests.
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5.5. Differential Attack Analysis

Differential attack is a method that involves continuously modifying plaintext images,
encrypting them, and comparing the resulting ciphertext images to obtain key information.
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The number of pixels change rate (NPCR) and the uniform average change intensity (UACI)
are commonly used to test the resistance of image encryption algorithms to differential
attacks. Considering encrypting a plaintext image of size M × N to obtain a ciphertext
image C1 and modifying the plaintext image by a one-pixel value to obtain a ciphertext
image C2, the NPCR and UACI are calculated as follows.

NPCR =
∑ij D(i, j)

M× N
× 100% (30)

UACI =
1

M× N

[
∑
ij

|C1(i, j)− C2(i, j)|
255

]
× 100% (31)

D(i, j) =
{

1 C1(i, j) 6= C2(i, j)
0 C1(i, j) = C2(i, j)

}
(32)

When the NPCR is close to 99.6094070% and the UACI is close to 33.4635070%, the
image encryption algorithm can be considered to have a strong resistance to differential
attacks [41,42]. The NPCR and UACI for encrypting different images are listed in Table 1.
This table indicates that the secret key generated by SHA-512 maintains good resistance
to differential attacks at any size. However, the customized key exhibits performance
degradation at small image sizes, possibly due to the limited number of diffusions caused
by the small image sizes.

Table 1. NPCR and UACI for encrypting different images.

Key Type Image Size
Level 1 Level 2 Level 3

NPCR (%) UACI (%) NPCR (%) UACI (%) NPCR (%) UACI (%)

Key generated by
SHA-512

5.1.11 256 × 256 × 1 99.6184 33.4516 99.6120 33.4797 99.6445 33.5498
1.1.01 512 × 512 × 1 99.6088 33.4600 99.6132 33.4604 99.6235 33.5580
1.3.01 1024 × 1024 × 1 99.6108 33.4651 99.6078 33.4424 99.6058 33.4144
4.1.01 256 × 256 × 3 99.6049 33.4838 99.6119 33.4793 99.5900 33.4514
4.2.01 512 × 512 × 3 99.6146 33.4744 99.6131 33.4682 99.6260 33.4593
2.2.01 1024 × 1024 × 3 99.6087 33.4596 99.6102 33.4637 99.6088 33.4732

Pure black 512 × 512 × 3 99.6084 33.4465 99.6111 33.4456 99.6241 33.4705
Mean - 99.6107 33.4630 99.6113 33.4627 99.6175 33.4824

Customized key

5.1.12 256 × 256 × 1 99.5911 33.2539 99.6030 33.5674 99.6124 33.5947
5.2.10 512 × 512 × 1 99.5975 33.3703 99.6088 33.4564 99.6029 33.4332
5.3.01 1024 × 1024 × 1 99.6031 33.4669 99.6107 33.4592 99.6011 33.4326
4.1.05 256 × 256 × 3 99.5967 33.4399 99.6014 33.4807 99.6282 33.4856
4.2.05 512 × 512 × 3 99.6015 33.4614 99.6084 33.4686 99.6160 33.4847
6.2.02 1024 × 1024 × 3 99.6111 33.4849 99.6099 33.4630 99.6044 33.4669

Pure white 512 × 512 × 3 99.6168 33.4971 99.6032 33.4590 99.6170 33.4838
Mean - 99.6025 33.4249 99.6065 33.4792 99.6117 33.4831

5.6. The Correlation between Adjacent Pixels Analysis

The correlation of adjacent pixels of an image can be measured by the correlation
coefficient. The correlation coefficient is calculated as:

Corxy =

N
∑

i=1

[
xi − 1

N

N
∑

i=1
xi

][
yi − 1

N

N
∑

i=1
xi

]
√

N
∑

i=1

[
xi − 1

N

N
∑

i=1
xi

]2

×

√
N
∑

i=1

[
yi − 1

N

N
∑

i=1
xi

]2
(33)

where xi and yi are two sequences of pixels of length N and yi is an adjacent pixel of xi.
There is the presence of a strong correlation among adjacent pixels within a plaintext image.
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A smaller correlation coefficient of neighboring pixels of the ciphertext image indicates a
better performance of the algorithm. Good image encryption algorithms aim to reduce
the adjacent pixel correlation coefficient to close to 0. We randomly selected 10,000 pairs
of adjacent pixels in the horizontal, vertical, and diagonal directions of image “4.2.05”,
respectively, and plotted the correlation graph in Figure 17. In addition, Table 2 shows
the specific values of the correlation coefficients for the plaintext and ciphertext images at
different levels of multiple images.
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where xi and yi are two sequences of pixels of length N and yi is an adjacent pixel of xi. 
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cates a better performance of the algorithm. Good image encryption algorithms aim to 
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where Q denotes the number of gray levels, p(xi) denotes the occurrence probability of 
pixel xi. For an 8-bit image, the maximum information entropy is 8. Higher information 
entropy indicates higher security. The information entropy of each plaintext image and 
ciphertext image is given in Table 3. 

  

Figure 17. Correlation of horizontal, vertical, and diagonal directions of image “4.2.05”: (a–c) plaintext
image, (d–f) ciphertext image.

Table 2. Correlation coefficients for the plaintext images and ciphertext images.

Image Size Direction
Plaintext

Image
Ciphertext Image

Level 1 Level 2 Level 3

4.1.01 256 × 256 × 3
H 0.9679 −0.0032 0.0040 0.0019
V 0.9588 0.0065 0.0068 0.0067
D 0.9447 0.0019 −0.0010 0.0028

5.2.10 512 × 512 × 1
H 0.9317 0.0199 −0.0054 −0.0022
V 0.9435 −0.0029 0.0000 0.0063
D 0.9036 −0.0075 0.0003 0.0009

4.2.05 512 × 512 × 3
H 0.9604 0.0022 −0.0044 −0.0015
V 0.9543 0.0066 0.0036 0.0009
D 0.9251 0.0027 −0.0011 −0.0014

5.3.01 1024 × 1024 × 1
H 0.9818 −0.0062 0.0051 0.0001
V 0.9769 0.0074 0.0005 −0.0018
D 0.9665 0.0087 0.0047 0.0001

Pure black 512 × 512 × 3
H - −0.0045 −0.0020 −0.0014
V - 0.0082 0.0005 −0.0065
D - 0.0066 0.0040 −0.0013
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5.7. Information Entropy Analysis

Information entropy is a quantification of the randomness of the image pixels and
helps to compare the degree of randomness of the encryption. Information entropy can be
calculated as follows.

IE = −
Q

∑
i=0

p(xi) log2 p(xi) (34)

where Q denotes the number of gray levels, p(xi) denotes the occurrence probability of
pixel xi. For an 8-bit image, the maximum information entropy is 8. Higher information
entropy indicates higher security. The information entropy of each plaintext image and
ciphertext image is given in Table 3.

Table 3. Information entropy of plaintext image and ciphertext image.

Image Size PI
CI

Image Size PI
CI

Level
1

Level
2

Level
3

Level
1

Level
2

Level
3

5.1.11 256 × 256 × 1 6.4523 7.9971 7.9975 7.9978 5.1.12 256 × 256 × 1 6.8981 7.9977 7.9981 7.9979
1.1.01 512 × 512 × 1 6.7057 7.9993 7.9992 7.9994 5.2.10 512 × 512 × 1 7.0686 7.9993 7.9992 7.9993
1.3.01 1024 × 1024 × 1 7.6702 7.9998 7.9998 7.9998 5.3.01 1024 × 1024 × 1 7.2428 7.9999 7.9998 7.9998
4.1.01 256 × 256 × 3 5.7056 7.9990 7.9992 7.9992 4.1.05 256 × 256 × 3 6.6639 7.9998 7.9998 7.9998
4.2.01 512 × 512 × 3 7.4404 7.9997 7.9998 7.9998 4.2.05 512 × 512 × 3 7.6133 7.9999 7.9999 7.9999
2.2.01 1024 × 1024 × 3 7.5237 7.9999 7.9999 7.9999 6.2.02 1024 × 1024 × 3 6.5786 7.9999 7.9999 7.9999

Pure black 512 × 512 × 3 0 7.9997 7.9998 7.9998 Pure white 512 × 512 × 3 0 7.9998 7.9998 7.9998

5.8. Robustness Analysis

Robustness tests can detect whether the receiver is still able to obtain useful informa-
tion after the image has been subjected to various levels of noise contamination or cropping
attacks. We used 1% and 5% salt and pepper noise to attack the ciphertext image and show
the decrypted image after suffering from noise in Figure 18. In addition, we cropped 5%,
10% of the ciphertext image and show the decrypted image after suffering the cropping
attack in Figure 19. In the proposed algorithm, there are two factors that will affect the
robustness. The first factor is the newly defined LL operation. Unlike addition and XOR
operations, the result of encrypted pixel values can be completely different even if one bit
is changed. The second factor is diffusion, because intra-block diffusion and inter-block
diffusion lead to the propagation of erroneous pixel values multiple times, resulting in
multiple decryption errors of the pixel values.
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5.9. Speed Analysis

Encryption speed is an important factor in the performance of image encryption. In
this paper, several parameters affecting the encryption time are designed so that users can
choose different levels of encryption speed according to their needs. Since the size of the
encrypted image varies, we use 256 × 256 as the image unit to compare the time required
to encrypt each unit. The encryption times for different sizes are shown in Table 4.

Table 4. Encryption time.

Size
Level 1 Level 2 Level 3

Time (s) Time (s/Unit) Time (s) Time (s/Unit) Time (s) Time (s/Unit)

256 × 256 × 1 0.064 0.064 0.121 0.121 0.229 0.229
512 × 512 × 1 0.226 0.057 0.337 0.084 0.749 0.187

1024 × 1024 × 1 0.807 0.050 1.161 0.073 2.502 0.156
256 × 256 × 3 0.171 0.057 0.264 0.088 0.579 0.193
512 × 512 × 3 0.624 0.052 0.886 0.074 1.944 0.162

1024 × 1024 × 3 2.221 0.046 3.153 0.066 6.626 0.138
Mean - 0.054 - 0.084 - 0.178

5.10. Comparison with Other Schemes

The proposed multiple-image encryption scheme is compared with some recent related
schemes. Table 5 compares NPCR, UACI, correlation coefficient, information entropy, and
encryption speed. The table exhibits that the proposed algorithm has better performance
along with good efficiency. The encryption performance is passable even for the relatively
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low encryption Level 1. Adjusting the parameters Bmin, Bmax, and Lnum to obtain a higher
encryption level actually makes the computational complexity of the encryption increase.
However, since the data are all close to the ideal values, it is difficult to see the exact difference.

Table 5. Comparison with other schemes.

Scheme NPCR (%) UACI (%)
Correlation

IE Time (s/Unit)
Horizontal Vertical Diagonal

Ref. [18] 99.6229 33.4809 0.0019 0.0012 0.0020 7.9994 -
Ref. [43] 99.6060 33.5126 −0.0003 0.0011 0.0013 7.9998 0.107
Ref. [44] - - 0.0044 −0.0050 −0.0002 - 0.515
Ref. [45] 99.6167 33.4772 −0.0036 −0.0049 −0.0023 7.9993 -
Ref. [46] 99.6200 33.4600 0.0013 0.0009 −0.0018 7.9999 0.540
Ref. [47] 99.6085 33.4634 0.0011 0.0008 0.0015 7.9993 0.320
Ref. [48] 99.6012 33.4418 0.0015 −0.0002 −0.0004 7.9996 0.503
Ref. [49] 99.6077 33.4399 −0.0016 0.0057 −0.0189 7.9996 1.711
Ref. [50] 99.6367 33.3733 0.0116 0.0057 0.0039 7.9994 -
Ref. [51] 99.6174 33.4657 −0.0164 0.0056 0.0289 7.9993 0.123
Level 1 99.6107 33.4630 0.0022 0.0066 0.0027 7.9993 0.054
Level 2 99.6113 33.4627 −0.0044 0.0036 −0.0011 7.9994 0.084
Level 3 99.6175 33.4824 −0.0015 0.0009 −0.0014 7.9994 0.178

6. Conclusions

We propose ND-CMCM to overcome the drawbacks of the current existing chaotic
systems. The chaotic model can generate chaotic maps with different dimensions to satisfy
different scenarios. Simulation experiments show that the chaotic systems generated by
ND-CMCM have an infinite range of chaotic parameters with positive Lyapunov exponents
equal to the dimension. Our proposed newly defined operations can be used in image
encryption algorithms to replace the previously used operations such as modular sum, XOR,
and finite field with higher complexity. The proposed overlapping block-based permutation
algorithm not only scrambles the position and value of pixels efficiently but also controls
the number of pixels being encrypted by adjusting the length of the overlapping block.
Our proposed image encryption algorithm gives a lot of freedom to the user: the chaotic
system can be customized, the secret key can be set freely, there can be no restriction on the
image type, number, and size, and different encryption levels can be set. The algorithm
can be universally used in various scenarios and under different requirements to fulfill a
wide range of needs. In addition, the algorithm has high efficiency while the encryption
performance reaches the ideal standard and can cope with many different attacks. In future
research, we will work on image encryption schemes with stronger robustness and explore
ways to apply these proposed encryption schemes to daily life.
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