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Abstract: Metaheuristic optimization algorithms play a crucial role in optimization problems. How-
ever, the traditional identification methods have the following problems: (1) difficulties in nonlinear
data processing; (2) high error rates caused by local stagnation; and (3) low classification rates result-
ing from premature convergence. This paper proposed a variant based on the gray wolf optimization
algorithm (GWO) with chaotic disturbance, candidate migration, and attacking mechanisms, naming
it the enhanced gray wolf optimizer (EGWO), to solve the problem of premature convergence and
local stagnation. The performance of the EGWO was tested on IEEE CEC 2014 benchmark functions,
and the results of the EGWO were compared with the performance of three GWO variants, five tradi-
tional and popular algorithms, and six recent algorithms. In addition, EGWO optimized the weights
and biases of a multi-layer perceptron (MLP) and proposed an EGWO-MLP disease identification
model; the model was tested on IEEE CEC 2014 benchmark functions, and EGWO-MLP was verified
by UCI dataset including Tic-Tac-Toe, Heart, XOR, and Balloon datasets. The experimental results
demonstrate that the proposed EGWO-MLP model can effectively avoid local optimization problems
and premature convergence and provide a quasi-optimal solution for the optimization problem.

Keywords: swarm intelligence; GWO; EGWO; multi-layer perceptron; EGWO-MLP disease identifi-
cation model

MSC: 68T20; 68T07

1. Introduction

The agrochemical network reported that an informal meeting of EU agriculture minis-
ters was held in Prague. The conference’s theme was food security, the role of European
agriculture, and food in global sustainable food production. Conflicts between Russia
and Ukraine, the lingering effects of the COVID-19 pandemic, and rising climate change
are majorly impacting global food security and prices. As the world’s population grows,
more food must be produced to increase sustainable agricultural production and reduce
food waste.

Farmers face crop disease management and prevention issues [1]. Due to the diversity
and complexity of soybean diseases, they are more likely to appear in large areas under
certain conditions, resulting in escalating soybean yield reductions. The impact of soybean
disease increases with scale, but identifying and evaluating the crop’s final yield through
improved and enhanced disease models remain a challenge [2]. During the growth of
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soybean, a variety of leaf diseases often occur, affecting the yield and quality of the soybean,
which are also major factors in destroying crop health and causing genetic mutations.
Cell mutations or tissue damage can lead to reduced yields and even crop extinction [3].
Agricultural diseases can seriously affect crop growth and threaten food security. Timely
spraying of pesticides can control the spread of diseases and is one of the main measures
to reduce losses [4]. Soybean acreage and planting methods are constantly changing.
Conservation tillage operations such as intercropping, environmental disease of straw, and
returning farmland to farmland are increasing, which makes it more difficult to predict and
control diseases [5]. Rapid and accurate diagnosis of crop diseases will enable measures to
be taken to improve their overall management and the effective prevention and control of
the diseases [6]. Soybean leaf diseases are shown in Figure 1.

(a) Brown-Stem-Rot （b） Brown-Spot

(c) Anthracnose (d) Phyllosticta-Leaf-Spot

Figure 1. Soybean diseases.

The gradual emergence of food crop diseases has attracted significant attention from
various countries. Therefore, conducting in-depth research on the identification and effec-
tive and accurate control of crop diseases is of great significance. Learning-based image
processing techniques are often used for crop disease diagnosis and recognition [7]. Tradi-
tional image recognition technology based on manually collecting image features will affect
the model’s overall classification and recognition performance [8]. Agricultural intelligent
detection based on the Internet of Things (IoT) and artificial intelligence (AI) is aimed at
monitoring and detecting diseases [9].

With the development of group intelligence, artificial intelligence, and intelligent
agriculture, scholars have researched crop disease identification, crop image processing
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based on computer technology, and crop disease identification technology [10]. Pests and
pathogens enter crops and produce externally visible traits. Neural networks use deep
convolutional migration to identify foliage diseases of crops [11]. Semantic segmentation
uses pictures of dead plant leaves to identify disease [12]. Image processing strategies
have recently been used widely and increasingly in agriculture due to their excellent
characteristics, including accuracy, speed, and cost sensitivity [13].

Artificial neural networks (ANNs), called neural networks (NNs) or connectivity mod-
els, are algorithmic mathematical models with distributed parallel information processing
that mimic the behavioral characteristics of animal neural networks. Neural networks have
multiple and single layers. Each layer contains several neurons connected by a directed arc
with variable weights. The network is trained by iterative learning of known information,
which is changed by gradually adjusting the connection weights of neurons to process
information and simulate input–output relationships. NNs are commonly used in machine
learning [14]. For example, NNs can be used for image identification [15], speech identi-
fication [16], and so on, and can be extended to other fields. Computer vision and deep
learning advances can predict impending crop disease [17]. Examples of common NNs
are backpropagation (BP) [18] convolutional neural networks (CNNs) [19,20]. The most
classic neural network is the multi-layer perceptron (MLP) [21]. The advantages of MLP
can be summarized as follows: (1) high parallel processing; (2) highly nonlinear global
effect; (3) good fault tolerance; (4) an associative memory function; (5) an adaptive solid
and self-learning function.

There has been a tendency to use MLP to structure identification models, with remote
sensing spectral imaging based on the MLP-CNN classifier [22]. Swarm intelligence op-
timization algorithms have been applied to optimize the weights and biases of the MLP,
such as the PSO-based back propagation learning MLP [23], the application layer attack
detection algorithm based on MLP-GA [24], and neural-based electric load forecasting
using hybrid feature selection of GA and ACO [25].

The swarm intelligence optimization algorithm is a new computing intelligence tech-
nology, shown in Figure 2, which has become the focus of increasingly more scholars. It
originates from the simulation of biological evolution processes or behavior in nature. The
objective function measures individual adaptability to the environment. The survival of
the fittest or individual foraging is compared. It finds the best agents and replaces poorly
feasible solutions with reasonable, achievable solutions in the iterative optimization process.
Forming a search algorithm with the characteristics of “generation + testing” is a method
to solve the optimization problem based on adaptive artificial intelligence technology.

Metaheuristic Algorithm

Evolutionary Computational
Algorithms:

Swarm Intelligence Algorithms Human-based Algorithm Physics-based Algorithms:

● Genetic Algorithm (GA)
● Particle Swarm Optimization (

PSO)
● Differential Evolution (DE)
● Memetic Algorithms (MA).
● Cultural Algorithms (CA)

● Ant Colony Optimization (ACO)
● Fish School Search (FSS)
● Bee Algorithm (BA)
● Bird Swarm Algorithm (BSA)
● Gray Wolf Optimizer（GWO）
●  Butterfly Optimization

Algorithm （BOA）

● Corona virus Herd Immunity
Optimization(GHIO)

● Political Optimizer(PO)
●  Battle Royale Optimization(BR

O)
● Forensic-Based Investigation

Optimization(FBIO)

● Simulated Annealing (SA)
● Gravitational Search Algorithm(G

SA)
● Atom Search Algorithm (ASO)
● Big-Bang Big-Crunch(BBBC)
● Colliding Bodies Optimization(C

BO)

Figure 2. Metaheuristic Optimization Algorithms (MOAs).

The gray wolf optimizer (GWO) [26] is an efficient optimization algorithm that imitates
the wolf hierarchy and has a more vital ability to approximate the global optimum. In the
GWO, gray wolves are generally divided into four levels and the α wolf, β wolf, δ wolf, and
ω wolf represent the gray wolves of the first, second, third, and fourth levels, respectively.
It has been successfully applied to solve feature subset selection [27], optimization of
MLP weights and biases [28], etc. Scholars have been studying it and have proposed
several variants, such as MGWO [29] and binary GWO with the integration of DE and
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GWO [30], the hybrid version of GWO and PSO [31]. However, No Free Lunch (NFL)
states that no single heuristic algorithm can solve all optimization problems in different
scenarios [32], which means newly proposed hybrid optimization algorithms can only
solve some problems. Some heuristics can enhance their ability to relieve local optima,
but there is still premature convergence [33]. Then, although some of the above variants
have been proposed, there is room for improvement. In this regard, the motivations of the
present study are as follows.

1.1. Motivations behind the Present Work

Although the GWO algorithm has certain advantages in some aspects, it also has some
disadvantages:

1. Slow convergence speed;
2. Affected by the initial parameters;
3. Poor effect on high-latitude problems.
Therefore, the performance of the GWO should be guaranteed to become infinitely

close to the global optimal solution and alleviate local stagnation.

• The performance of the GWO should be ensured to become infinitely close to the
global optimal solution.

• Local stagnation should be relieved.
• The possible defects of MLP include overfitting, difficulty in determining the optimal

structure, long training times, and the ease of falling into a locally optimal solution.
The improved GWO-MLP alleviates these problems and increases the optimization
capability of the MLP to improve the classification rate and alleviate local stagnation.

1.2. Contribution of This Study

In order to further improve the performance of the GWO algorithm and make up for
its shortcomings, the weight and biases of the MLP are modified by adding the enhanced
GWO. Introducing MLP into the GWO algorithm can bring the advantages of a non-linear
modeling ability, a better generalization ability, automatic learning of feature representation,
and a faster optimization speed. The following is a summary of the specific contributions:

• EGWO with the non-linear change of parameter a contributes to the balance between
the exploration and exploitation capability.

• The introduction of the chaotic disturbance mechanism is conducive to search diver-
sity.

• The candidate migration mechanism ensures the accuracy of the global optimal solu-
tion to strengthen the global convergence ability.

• The attacking mechanism guarantees a trade-off between the exploration and exploita-
tion capabilities.

• The EGWO-MLP model is built to identify crop disease.

The remainder of this paper is organized as follows. Section 2 presents previous
studies about GWO, MLP, and ptheir ractical applications. MLP, GWO, and the proposed
enhanced gray wolf optimizer (EGWO) are introduced in Section 3. Section 4 explains the
EGWO-MLP model. Section 5 presents the experiments and dataset. Section 6 analyzes
and discusses the experimental results. The soybean identification model is expressed in
Section 7. In Section 8, the conclusion of the paper and prospects are presented. The overall
structure of the whole study is shown in Figure 3.
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Figure 3. The overall structure of the whole study.

2. Literature Review
2.1. Meta heuristic Optimization Algorithms (MOAs)

Meta-heuristic optimization algorithms (MOAs) are a class of universal algorithms that
can solve complex optimization problems. These algorithms do not rely on knowledge of
specific problem domains but instead use highly exploratory search strategies to find global
or near-optimal solutions in the solution space [34]. Tube element heuristic algorithms
cannot guarantee finding the global optimal solutions, but they have been proven effective
in achieving excellent results in many practical applications. In addition, compared with
the traditional deterministic algorithm, meta-heuristic algorithms have the advantages of
good parallel performance, strong global search ability, and adaptability to the problem
structure. Computational techniques that derive inspiration from physical or biological
logical phenomena can solve optimization problems. These can be divided into four
categories: algorithms (a) based on physics, (b) based on evolution, (c) based on population,
and (d) based on humans.

(1) Evolutionary computation class algorithms

This idea is mainly used to optimize the search space continuously by simulating
biological evolution and genetic mechanisms [35,36]. Standard evolutionary computation
algorithms include genetic algorithms, differential evolution algorithms, etc.
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(2) Swarm intelligence optimization algorithm

This algorithm mainly simulates the behavior of certain natural groups, such as ant
colonies, bird colonies, fish colonies, etc., treating the search space as an “ecosystem” to
achieve a global optimal search through collaborative action. Common swarm intelligence
algorithms include the Ant Algorithm (AA) [37], particle swarm optimization (PSO) [38],
the Artificial Fish Swarm Algorithm (AFSA) [39], etc.

(3) Physics-based optimization algorithm

Physics-based meta-heuristic optimization algorithms are a class of heuristic algo-
rithms inspired by physical phenomena and principles [40]. These algorithms simulate
physical processes or physical behaviors in nature to solve optimization problems. Common
physics-based meta-heuristic optimization algorithms are as follows: Simulated Annealing
(SA) [41], the Gravitational Search Algorithm (GSA) [42], the Atomic Search Algorithm
(ASO) [43], Big-Bang Big-Crunch (BBBC) [44], etc. These physics-based meta-heuristic
optimization algorithms are flexible, easy to implement, and applicable to various opti-
mization problems. They can be widely used in continuous, discrete, and combinatorial
optimization, etc., with global search and fast convergence abilities to some degree.

(4) Human-based optimization algorithms

Human-based meta-heuristic optimization algorithms are a class of heuristic algo-
rithms that are inspired by the way humans think and behave. These algorithms attempt
to solve optimization problems by simulating human cognition, learning, and decision-
making processes. Some of the human-based techniques include Forensic-Based Investiga-
tion Optimization (FBIO) [45], Political Optimizer (PO) [46], and Heap-Based Optimizer
(HBO) [47]. These human-based meta-heuristic optimization algorithms are inspired by
human intelligence and behavior with global search and fast convergence abilities to some
degree. They can be widely used in continuous, discrete, and combinatorial optimization,
and have achieved good results in solving complex problems.

2.2. Improved GWO and Its Application

The GWO algorithm is a meta-heuristic optimization algorithm based on group be-
havior inspired by the social behavior of gray wolves. This algorithm has been widely
used and researched to solve various optimization problems. Since the GWO algorithm
was proposed, it has been used in many fields and achieved remarkable results. The GWO
algorithm is simple and easy to implement and adjust. The algorithm can find the global
optimal solution in the search space by combining random search and the social behavior
strategy. The GWO algorithm has been widely used in continuous, discrete, and combinato-
rial optimization problems. Researchers have made many improvements to and extensions
of the GWO algorithm to improve its performance and adaptability. For example, intro-
ducing methods such as adaptive parameter control, chaotic search strategies, local search
mechanisms, and multi-group structures enhances the convergence and searchability of
the algorithm. The GWO algorithm has become an effective tool for solving optimization
problems and has received extensive attention in both theoretical research and practical
applications.

•Mechanism Innovation

To ensure a precise approximation to the global optimum, an algorithm named mGWO
is proposed. The exploration and exploitation capabilities are balanced by adjusting the
operator to improve the search accuracy for the global optimal solution [29]. Furthermore,
to solve the premature convergence and local stagnation problems, a gray wolf optimizer
(DSGWO) based on diversity-enhanced strategies, such as group competition mechanisms
and exploration–exploitation balance mechanisms, was proposed to improve the perfor-
mance of the GWO [48]. A collaboration-based hybrid optimizer called chHGWOSCA was
introduced to balance exploration and mining capabilities. This optimizer combines the
gray wolf optimization algorithm and the sine–cosine algorithm (SCA). It improves the
parameter a to enhance global fusion to inspire inspiration and improve the global fusion
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effect [49]. A hybrid GWO–sine cosine algorithm (SCA) (GWOSC) has been proposed [50].
GWO (gray wolf optimization) and the SCA (Sine Cosine Algorithm) are responsible for
different tasks in different update stages to balance exploration and mining capabilities.
Inspired by the gaze-cue behavior of wolves, two novel search strategies have been devel-
oped, including Neighbor Gaze-Cue Learning (NGCL) and Random Gaze-Cue Learning
(RGCL) [51]. In addition, a weighted distance gray wolf optimizer (wdGWO) has been
proposed, where the weighted sum of the best positions is used instead of just simple
positions [52]. An improved algorithm called the exploration-enhanced GWO (EEGWO)
algorithm, which improved exploration capabilities, was developed [53]. In addition, a
nonlinear control parameter strategy is used to control the balance between the exploration
and exploitation capability.

• Practical Application

To optimize the Radio Resource Management (RRM), a fractional GWO-CS optimiza-
tion model integrating the GWO with the cuckoo search (CS) algorithm has been proposed,
which optimizes parameters like the power spectral density (PSD), the transmission power,
and the sensing bandwidth (SB) [54]. GWO has been combined with a gated recurrent
unit (GRU) neural network to compensate for the reduced calibration time and ensure
the fibre optic gyroscope’s (FOG) calibration accuracy [55]. The GWO algorithm com-
bining the Integer Wavelet Transform (IWT) reduces information loss regarding image
steganography [56]. Then, the inverse of IWT and unsigncryption algorithms is utilized
to extract the secret image from the stego image. A functional composition integration
approach has been adopted to develop a hybrid meta-heuristic algorithm called HGWO-
PSO [57]. HGWO-PSO combines the advantage of GWO algorithms and particle swarm
optimization (PSO) and considers Clerc’s parameter setting to improve decision making in
the oil and gas industry. A hybrid GWO and differential evolution algorithm (HGWODE)
is proposed by cooperating with the GWO and DE algorithm to balance exploration and
exploitation [58].

• Feature Selection

A modified Gray Wolf optimizer is proposed by introducing the ReliefF algorithm
and Coupla entropy in the initialization process to improve the quality of the initial popu-
lation [59]. In addition, two new search strategies are adopted into the GWO to enhance
the search more flexibly and avoid local stagnation [58]. The present study proposes a
feature selection model for NIDS, which is based on particle swarm optimization (PSO),
GWO, firefly optimization (FFA), and the genetic algorithm (GA) [60]. It aims to improve
the performance of NIDS and shows promising results in terms of the false positive rate
(FPR). Then, a binary version of a hybrid two-stage multi-objective FS method based on
PSO and GWO is proposed. The first goal is to minimize the classification error rate, and
the second is to reduce the number of selected features. The proposed FS method performs
more efficiently and effectively than other meta-heuristic, statistical, and multi-objective
FS methods [61]. A multi-strategy ensemble GWO (MEGWO) has been proposed. The
proposed MEGWO incorporates three search strategies to update the solutions [62]. The
present study proposes a binary hybrid GWO and Harris Hawks Optimization (HHO) to
form a memetic approach called HBGWOHHO. Then, the continuous search space into
a binary one to satisfy the feature selection based on the sigmoid function [63]. A binary
method is developed into a two-phase multi-objective FS approach, based on PSO and
GWO, which is applied to feature selection [64].

• Optimization of the Artificial Neural Network (ANN)

The GWO optimizes the weights of the networks to reduce the error. The GWO-ANN
model is developed to improve the accuracy, which compares PSO, multiple linear regres-
sion (MLR), and nonlinear regression (NLR) models [65]. Two machine learning techniques
have been adopted, i.e., ANN and GWO, to predict the level of road crash severity [66].
The proposed approach is a novel hybrid machine learning model that combines an ANN
and the augmented gray wolf optimizer (AGWO). Based on the experimental findings, the
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suggested ANN-AGWO can be utilized as a high-performance tool. The fuzzy C-means
clustering algorithm (FCM) has been used to cluster historical electricity consumption data.
At the same time, the FCM-GWO-BP neural network model is proposed to predict the
energy consumption [67]. An improved GWO based on Levy flight has been proposed
to help GWO jump out of local stagnation. Iit can be applied to train backpropagation
(BP) [68].

• Algorithm Optimization of the MLP

An MLP has been used with a genetic algorithm (MLP-GA) to estimate the detection
efficiency using metrics [24]. An electrical conductivity (EC) model was constructed based
on the hybrid machine learning model of MLP-GWO. The hybrid MLP-GWO model has
potential implications in precision agriculture [69]. GWO-MLP, PSO-MLP, and SSA-MLP
have been proposed to be trained on different objective functions [70]. Two classes of
algorithms, including bio-inspired and gradient-based algorithms, have been adopted to
train the MLP for pattern classification [71]. An artificial immune network (opt-aiNet), PSO,
and an evolutionary algorithm (EA) were used to train MLP networks. In addition, the
standard backpropagation with momentum (BPM), a quasi-Newton method (DFP), and
the modified scaled-conjugate gradient (SCGM) were used to train MLP networks [72]. The
PSO algorithm was adopted to optimize the feedforward ANN. This method was designed
to predict the maximum power point of a photovoltaic array, training feedforward neural
networks (FNNs) with GSA, PSO, and GSA to alleviate local stagnation and accelerate
convergence [73].

3. Method
3.1. Multi-Layer Perception

Multi-Layer perceptron (MLP) is also known as an ANN. It is a feed-forward structured
artificial neural network that maps a set of input vectors to a group of output vectors, which
can be seen in Figure 4. In addition to the input and output layers, MLP has multiple
hidden layers in the middle. MLP is an extension of the perceptron, which overcomes the
weakness that the perceptron cannot recognize linearly inseparable data. The simplest
MLP has only one hidden layer, and a three-layer structure. MLP is fully connected with
the input, hidden, and output layers, which have a hidden layer that can learn an arbitrary
non-linear function of the input (with an infinite number of hidden nodes). MLP networks
consist of multiple layers of neurons related to each other through directed connections,
forming a directed graph-like structure. Each node fully connects with the next layer of
nodes. Each node is a neuron with a non-linear activation function except for the input
node. The MLP network is trained to improve its performance in supervised learning using
the backpropagation algorithm.

An MLP is composed of multi-layer directional connected neurons [74], it has non-
linear, high parallelism, anti-noise, fault-tolerance, and high generalization abilities to
learn [75], and it has been widely used in many practical problems, such as nonlinear
discriminants. If an MLP is used for regression, it can approximate the nonlinear input
function. Furthermore, any function with continuous inputs and outputs can be approxi-
mated by an MLP. Novel optimization algorithms are suitable for training neural networks.
These algorithms are based on sequential operator splitting techniques for specific related
dynamical systems [76]. MLP training aims to find an optimal set of weights and bias
parameters that minimize the mean squared error (MSE) value, which is essential for the
optimization process [77]. In other words, an efficient MLP can be constructed to minimize
a given error criterion by continuously adjusting and updating the weights and biases
parameters.

The relationship of the MLP network layer can be expressed as i→ j→ k, where i acts
as a subscript to the upper neuron or as an input node. j acts as a subscript to the current
layer of neurons or to the hidden layer of neurons. k serves as a subscript to the next layer
of neurons or the output layer of neurons.
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Figure 4. Architecture of a multi-Layer perceptron.

The weighted sum h can be computed by Equation (1).

hj =
m

∑
i=0

wijxj (1)

where wij represents the weight of each neuron in the previous layer to the current neuron,
and wjk represents the weight of the current neuron and the next layer of neurons, that is,
the weight of the neuron k. hj represents the sum of all input weights for the current node.

The output value of a hidden layer neuron is computed by Equation (2).

aj = g(hj) = g(
M

∑
i=0

)wijxij (2)

where aj represents the output value of a hidden layer neuron. g(hj) represents an activation
function, w is the weight, and x is the input. aj = xjk, i.e., the output value of the current
neuron is equal to the input value of the next neuron. It can be computed by Equation (3).

y = ak = g(hk) = g
M

∑
i=0

wjkxij (3)
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where y denotes the value of the output layer, which is the final result. hk represents the
sum of the input weights of neurons in the output layer.

Each layer has an activation function. The sigmoid function is expressed by Equation (4).

g(h) = σ(h) =
1

1 + e−h (4)

where the derivative of the sigmoid function can be computed by Equation (5).

σ′(x) = σ[1− σ(x)] (5)

To u the output layer weight wjk, the gradient descent method can be used for the loss
function, which can be expressed by Equation (6). wjk can be obtained by Equation (7).

wjk ← wjk − η
∂E

∂wjk
(6)

wjk = wjk − ησo(k)ai (7)

where wjk is the output value of the previous layer, that is, the input value of the output
layer xi. The hidden layer term can be updated by Equation (8).

∂h(j) = g′(hj)(
N

∑
k=1

σo(k)wjk) (8)

The hidden layer weights vj (wij) can be updated by Equation (9).

vj = vj − η aj(1− aj)(
N

∑
k=1

σo(k) wjk) ai (9)

where aj is the output value of the current neuron, aj = g(hj). aj is the input value of the
neuron in the current layer (the output value of the previous layer). When there are hidden
layers with multiple layers, the weight can be computed by Equation (10).

vj = vj − ηaj(1− aj)(
N

∑
k=q

σh(k)wjk) ai (10)

The final output can be computed by Equation (11).

p = ∑ aij wij = hj (11)

3.2. Gray Wolf Optimizer
3.2.1. Principle of Motion

The gray wolf optimizer (GWO) is a new swarm-based algorithm that simulates the
behavior and leadership roles in a sub-society of a pack of wolves and is inspired by the
social behavior of gray wolves, such as the hierarchy and hunting mechanisms [26]. There
are four types of wolves in a wolf pack: α wolf makes every decision and is responsible for
the survival of all members of the pack; β wolves, with a social status in the pack after α
wolf; δ wolves, which are responsible for caring among pups or all packs; and ω wolves,
with the lowest social status in the pack. Gray wolves encircling their prey and marching
during the hunting process are modeled using the above relationship. The basic GWO
includes the following three main processes.

• To track and approach prey.
• To harass, chase, and surround prey until the prey stops moving.
• To attack the prey.
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According to the division of the above levels, α wolves have absolute control over
β, δ, and ω wolves; β wolves have absolute control over δ and ω wolves. δ wolves have
absolute control over ω wolves. They play a key role in the main hunting process. Many ω
wolves are usually in the best position to attack their prey. The whole optimization process
can be divided into two stages:

The first stage is to surround the prey in response to its surrounding mechanisms
(Equation (12))

D = |C× Xp(t)− X(t)| (12)

X(t + 1) = Xp(t)− A× D (13)

where t is the current number of iterations. xp(t) is the position of the prey (equivalent to α,
β, δ, ω wolves). r1 and r2 are random values in the range of [0, 1]. Furthermore, coefficient
vectors

−→
A and

−→
C are computed by Equations (14) and (15).

−→
A = 2−→a ×−→r1 −−→a (14)

−→
C = 2×−→r2 (15)

where
−→
A and

−→
C are condition vectors.

−→
X represents the position vector of the wolf.

Furthermore,
−→
A is a random value in the range −2−→a and 2−→a . The iterative process

randomly selects r1 and r2 in the normal range of 0 to 1. The component of −→a decreases
linearly from 2 to 0 by Equation (16).

−→a = 2− l ∗ 2
MaxIter

(16)

where l is the current iteration and MaxIter is the max iterations.
In the search process, the position migration of the α, β, δ wolves is calculated accord-

ing to Equations (17)–(19).
−→
D = |−→C1 ×

−→
Xa −

−→
X | (17)

−→
Dβ = |−→C2 ×

−→
Xβ −

−→
X | (18)

−→
Dδ = |−→C3 ×

−→
Xδ| (19)

The second stage: The α wolf dominates the whole process, while the β and δ wolves
are also involved. When hunting, they lead ω wolves to update their position, and other
wolves move randomly when looking for prey. Equations (20)–(24) measure the location
of the prey and search around the prey until they finally find it. During this process, they
always maintain a high level of coordination and cooperation to ensure the successful
capture of the prey.

Dδ = |Cδ × Xδ − Xi| (20)

X1 = Xα − Aα × (Dα) (21)

X2 = Xβ − Aβ × (Dβ) (22)

X3 = Xδ − Aδ × (Dδ) (23)

X(t + 1) =
x1 + x2 + x3

3
(24)
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The final position is anywhere inside the circle. The primary goal of the ω wolf is to
update their position according to α, β, and δ wolves.

3.2.2. Insufficiency of the Algorithm

The GWO differs from other optimization algorithms in that it draws inspiration
from the social and predation behaviors of gray wolves and simulates the cooperation
and competition mechanisms of gray wolf groups. It employs specific search strategies for
information exchange and knowledge sharing through direct communication. In contrast,
other optimization algorithms may have different sources of inspiration, search strategies,
and communication methods. In addition, the parameter settings of the GWO are relatively
simple and one only needs to determine the initial population size and the upper and
lower limits of the search range. However, the GWO also has some shortcomings. First
of all, it is sensitive to the selection of the initial solution, and the quality of the initial
solution may affect the final optimization performance of the algorithm. Second, the
convergence speed of GWO may be fast in some cases, but it may also be unstable, leading
to a locally optimal solution. In addition, for high-dimensional problems, GWO faces
challenges because the gray wolf behavior simulation may need to be adapted to searches
in high-dimensional spaces. Although the GWO has unique characteristics and advantages,
its shortcomings must also be considered. In practical applications, selecting a suitable
optimization algorithm according to specific problems and requirements is necessary.

3.3. The Proposed Enhanced Gray Wolf Optimizer Algorithm (EGWO)

Although the GWO takes advantage of the parameters to strike a balance between
exploration and exploitation, it still needs to solve the problem of suboptimal solution
stagnation and premature convergence, leading to the algorithm’s slow convergence. In the
GWO algorithm, α, β, and δ wolves guide ω wolves to attack prey, where it is assumed that
α wolves are in the best position for the prey position. During the search, α, β, and δ wolves
are selected from the population, while the remaining wolves are treated as ω wolves and
can be relocated to improve algorithm performance. However, this mechanism has some
defects, quickly leading to premature convergence and local stagnation of the algorithm.
This paper proposes an improved version of the GWO algorithm named enhanced gray
wolf optimization algorithm (EGWO) to solve the above problem. Although the GWO takes
advantage of parameters to strike a balance between exploration and exploitation, it still
needs to solve the problem of suboptimal solution stagnation and premature convergence,
leading to the algorithm’s slow progress.

First, to improve the parameter a, change the parameter a from a linear change to a
non-linear change, to achieve a balance between exploration and exploitation. Parameter a
is calculated by Equation (25).

a = 2× e−(2×
t

max−iter ) (25)

3.3.1. Chaotic Disturbance

Chaotic disturbance can effectively ensure the global diversity of the algorithm and en-
hance its exploration ability. Iterative mapping is added to the algorithm. Iterative mapping
refers to approaching a certain target by repeatedly applying the mapping function until
certain conditions are met, or a certain convergence is achieved. We can add adaptability
and optimization capabilities to the algorithm by introducing iterative mapping to handle
complex problems better. According to Figure 5, as the number of iterations increases or
decreases, it also follows an irregular change. This change can effectively update the size
and direction of wolf steps, avoiding falling into local optima during migration. The chaotic
coefficient is calculated using Equations (26) and (27).

k(t + 1) = sin(
0.7× π

k(t)
) (26)
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G(t) =
(k(t) + 1)× 100

2
(27)

where k(t) is the parameter under the t-th iteration and the G(t) is the chaos mapping
parameter.
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Figure 5. The chaotic map update with iteration number.

3.3.2. Candidate Migration Mechanism

In the GWO algorithm, there is a situation where the optimal solution is lost, and the
accuracy of the optimal solution is not guaranteed. A candidate mechanism is introduced
computing by Equations (28) and (29). During the candidate mechanism, the center points
of the three wolves are added to construct a candidate tribe pool based on the three wolves
and the center positions of the the three wolves. The above mechanism can ensure that the
optimal solution is not lost while avoiding local stagnation, promoting the possibility of
local stagnation avoidance during the update process.

Cand =
(Xα + Xβ + Xδ)

3
(28)

CandPool = [Xα, Xβ, Xδ, Cand] (29)

where Cand is the position of the three wolves, CandPool is the candidate pool with the
α, β, and δ wolves and Cand wolf. α, β, and δ wolves play a crucial role in the wolf pack
migration. Equations (30)–(35) can update the position migration.

Dα = |a× Xα − Xi| × (G(t)× (rand− 0.5)
10

) (30)

X1 = CandPoolr,j − A1 × Dα (31)

Dβ = |a× Xβ − Xi| × (G(t)× (rand− 0.5)
10

) (32)

X2 = CandPoolr,j − A1 × Dβ (33)

Dδ = |a× Xδ − Xi| × (G(t)× (rand− 0.5)
10

) (34)

X3 = CandPoolr,j − A1 × Dδ (35)
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where CandPoolr,j is the random wolf from the candidate pool. G(t) is the mapped pa-
rameter based on the chaotic map. The direction parameter (G(t) × (rand− 0.5)/10) can
determine the update direction and step length.

3.3.3. Attacking Mechanism

As the iteration updates, the attack mechanism also changes accordingly. Different
attack methods can enhance the diversity of wolf packs, and two other attack methods can
effectively improve the algorithm’s exploration ability. When the update phase is less (1/2
× maxiteration), select Equation (36) as the attacking method, and when the update phase
is more (1/2 × maxiteration), the attacking method can be computed by Equation (37).

Wi,j = W1 × X1 + W2 × X2 + W3 × X3 (36)

Xi,j =
X1 + X2 + X3

3
(37)

where F is the total fitness based on the three wolves by Equation (38), w1, w2, and w3 are
the weights computed by Equation (39), and Xi,j is the attacking position.

F = Fα + Fβ + Fδ (38)

W1 =
Fα

F
; W2 =

Fβ

F
; W3 =

Fδ

F
(39)

where Fα, Fβ, and Fδ are the fitness of the α, β, and δ wolves.
Based on the above mechanism, we propose a new algorithm named EGWO. In

the original GWO algorithm, α wolf is the starting point for random initialization and
weights, which can converge to ω wolf but also tend to fall into local optimal solutions.
By introducing the new mechanism, the ability of wolves in global and local search is
demonstrated. To summarize, the mechanism advantages can be expressed as follows:

Firstly, the non-linear change in parameter a can balance the exploration and exploita-
tion capability.

Secondly, the chaotic disturbance mechanism can manage the step direction and length,
which contributes to search diversity.

Thirdly, the candidate migration mechanism updates the position of three wolves
to promote the search to jump out of local stagnation, ensure the accuracy of the global
optimal solution, and strengthen the global convergence ability.

Fourth, introducing an attacking mechanism can effectively strengthen the exploration
capability and ensure a balance with the exploration capability.

3.4. Computational Complexity of EGWO Algorithm

The computational complexity of the EGWO algorithm is described through two
aspects: time complexity and space complexity. The above aspects are important factors in
evaluating the performance of an algorithm.

(1) Time complexity
The number of particles (N), the number of iterations (t), and the cost of function

evaluation (c) are the important factors affecting the time complexity. We must fully
integrate their effects to obtain an accurate time complexity evaluation. It can be seen that
the time complexity of the EGWO is equal to the GWO, which is maintained constant by
Equations (40) and (41).

O(GWO) = O(tNc) (40)

O(EGWO) = O(tNc) (41)

(2) Space complexity
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For space complexity, only the initial stage, i.e., the entire search space, is considered.
Then, the space complexity of the EGWO is O(n).

4. Combing EGWO with Multi-Layer Perceptron (EGWO-MLP)
4.1. EGWO-MLP Optimization Model

The training process is divided into four steps: preprocessing, learning, evaluation, and
prediction. The first step is preprocessing. Firstly, the data are preprocessed and handled
for better use in subsequent modeling and analysis. Secondly, the data are divided into
training data and testing data. The second step is the learning process. The optimization
algorithm continuously optimizes MLP to avoid local stagnation in the modeling process.
The third step is evaluating the obtained model using evaluation criteria such as MSE. The
final step is to predict the results and the final experimental results. The identification
process can be seen in Figure 6.

Labels

Raw
Data

Training Dataset

Test Dataset

Learning
Algorithm

Labels

Final model New Data

Labels

Preprocessing Learning Evaluation Prediction

Figure 6. Training the whole identification model process.

The purpose of training a network via the proposed EGWO algorithm is to determine
the weights and biases. The obtained weights and biases compute the expected network’s
output value when the network presents different inputs. The EGWO-MLP identification
model aims to identify plant disease types. Hidden layer structure features and dynamic
weight parameter adjustment make it more accurate in identifying the disease types. The
EGWO-MLP identification model structure consists of input, hidden, and output layers.
The process includes normalization processing, input determination, output, hidden units,
training parameter settings, network model creation, activation function calls, etc. The
output is the identification result. If the output of the test samples satisfies the training
sample’s expectation, the learning ends. The overall process is depicted in Figure 7, which
can be summarized in five steps.

Step 1: Initialization stage of wolf pack. N wolves can be generated by the proposed
EGWO algorithm.

Step 2: Weights and biases mapping phase. The solution (position) of the generated
wolves via the EGWO algorithm is allocated as weights and biases.

Step 3: Update location phase. α, β, and δ wolves are computed by Equations (30)–(35).
Step 4: Evaluation phase. Evaluate the performance of EGWO algorithm in training

the MLP network using MSE standards.
Step 5: Iterative update phase. The EGWO algorithm continuously updates the weight

and bias terms of the MLP network until the termination condition is reached.
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Figure 7. The process of the EGWO to train MLP.

4.2. Encoding Mechanism

The weights and biases of the MLP are obtained by the proposed EGWO algorithm,
which is the best position (α wolf). The parameter (α wolf) can train the MLP network based
on continuous updating and iterating. The position can be mapped as θ = Iw, hw, hb, Ob,
where Iw means the weights of the input nodes and hw are the weights of the hidden nodes.
Furthermore, hb represents the biases of the hidden layer and Ob are the biases of the output
layer. The wolf can be encoded as the weights and biases shown in Figure 8.
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Figure 8. Mapping an EGWO solution to the MLP network.

4.3. Evaluation Criteria

The mean square error (MSE) is the loss function commonly used in regression tasks.
The statistical parameter is the value of the sum of squared errors at the corresponding
points of the predicted data and the original data. The difference between the actual and
expected values is the criterion for evaluating the training algorithm. The MSE is widely
used in tasks such as linear and multiple linear regression. In deep learning, the MSE
is also used to measure the performance of neural networks in regression tasks and as a
loss function for optimization. When using the MSE as a loss function for optimization,
optimization algorithms such as gradient descent are usually used to minimize the value of
the MSE and thus improve the model’s performance. The smaller the difference, the better
the algorithm trained and the closer the expected value is to the actual value. The MSE is a
standard metric for evaluating MLPs; it is widely used and calculated by Equation (42).

MSE =
m

∑
i=1

(ok
i − dk

i )
2 (42)

where m is the number of outputs and dk
i and ok

i are the expected and actual outputs for
ith inputs using k-th training samples. The MLP performance is evaluated by the average
MSE of all training samples to be effective on the entire set of training samples, t. MSE is
the average MSE calculated by Equation (43).
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MSE =
s

∑
k=1

∑m
i=1( ok

u − dk
i )

2

s
(43)

Training an MLP model requires considering the effects of several variables and
functions, and in the EGWO algorithm, the MSE is calculated by Equation (44). This
equation involves the number of training samples s and requires consideration of several
factors, including the network structure and parameter tuning. In order to obtain better
training results, we need to reasonably adjust and optimize these factors to minimize the
MSE and improve the generalization ability of the model.

minimize : F(
−→
V ) = MSE (44)

In addition to using the MSE to measure model performance, the classification accuracy
can also be used to evaluate model performance. For categorical datasets, during model
training, we need to plot the sample data by Equation (45) and classify them according to
different categories. The accuracy metric’s advantage is that it provides a more intuitive
picture of the model’s classification ability and helps us better understand its performance
and optimization direction. Therefore, when training and optimizing the model, we need
to consider both metrics together for a more comprehensive evaluation result.

Accuracy rate =
Number o f correctly classi f ied objects

Number o f objects in the dataset
(45)

4.4. Selection of Activation Function

This paper selects the activation function of training MLP as the Sigmoid function.
It has an exponential function shape, closest to biological neurons in a physical sense,
and is a standard S-type function in biology, also known as an S-type growth curve in
Figure 9. In addition, the output of (0, 1) can also be expressed as a probability or used for
normalization of the input. The Sigmoid function is a commonly used function in machine
learning [21], and it is the most widely used type of activation function, which is expressed
in Equation (46).

Sigmoid =
1

1 + e−z (46)
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Figure 9. Sigmoid function S-shaped growth curve image.

The reasons why the Sigmoid function is widely used are summarized as follows:

• Its derivative reduces decay and dilution errors, signal problems, oscillation problems,
and asymmetrical input problems. When this function is used to solve problems, it
can be used for category classification and is suitable for prediction [78].

• The segmented linear recursive approximation method calculates the Sigmoid function
and its derivatives in artificial neurons. This method helps the neuron to estimate the
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Sigmoid function and its derivatives more accurately during the learning process so
that the neuron can better process the input data and output the correct results [79].

5. Experimental Preparation
5.1. Experimental Setting

• Experimental environment. The experiment codes are executed in Matlab R2015b
under the Windows 10 operating system, all simulations were run on a computer with
an Intel (R) Core(TM) i5-9300 CPU @ 2.40 GHz, and its memory is 8G. Thirty runs for
each working access the predictive performances. The population is set to 30, and the
max iteration is 500 for the IEEE CEC 2014 benchmark functions and 100 iterations for
the UCI dataset to verify the EGWO and EGWO-MLP.

• Data processing. In order to eliminate the dimensional impact between indicators,
data are standardized to achieve comparability between data indicators. After the
original data are standardized, all indicators are on the same order of magnitude so
that comprehensive processing can occur. The experiment in this paper will process
the data to the range of [0, 1], which uses the method of Min-Max normalization.
Min-Max normalization can be computed by Equation (47).

x′ =
x− xmin

xmax − xmin
(47)

where xmax and xmin are the max and min value of the x current data values, respec-
tively. x′ is the standardized value.

5.2. Comparison Algorithm Selection

The EGWO algorithm is compared with other MLP algorithms, and the algorithm’s
ability for disease identification is verified. All parameters of the comparative algorithms
are set as shown in Table 1.

Table 1. The initial parameter settings for the corresponding algorithms.

Algorithms Parameters Values

GWO variants

WdGWO Null Null
IGWO Null Null
GNHGWO Null Null

Traditional and popular algorithms

PSO Coefficient of the cognitive component 2
Coefficient of the social component 2

DE Scale factor primary (F) 0.6
Crossover rate (Cr) 0.8

BA

Loudness (A) 0.5
Pulse rate (a) 0.5
Frequency minimum 0
Frequency maximum 2

TSA ST 0.1
The number of seeds (ns) [0.1 × N, 0.25 × N]

SCA a 2
r1 Linearly decreased from a to 0

BOA
p 0.8
power exponent 0.1
sensory modality 0.01

JAYA Null Null

Traditional and popular algorithms

SWO
TR 0.3
Cr 0.02
Minimum population size 20

ZOA Null Null
COA Null Null
BOA Null Null
OOA Null Null
CO search agents in a group 2
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5.2.1. GWO Variant

The variant algorithm refers to making improvements or modifications based on
the original algorithm to achieve a better performance. By comparing different variant
algorithms, we can obtain more choice and diversity to find the most suitable algorithm for
a specific problem. Therefore, GWO variants are selected for performance comparison, and
their performance can be evaluated more comprehensively by comparing different variant
algorithms.

• Improved gray wolf optimization (IGWO) introduces an adaptive weight mechanism,
which can dynamically adjust an individual’s weight according to its fitness value so
that individuals with a higher fitness have more significant influence [80]. Through
this mechanism, the IGWO algorithm can more effectively explore the search space and
speed up the convergence. It has many applications for solving complex optimization
problems, parameter optimization, feature selection, etc.

• Greedy non-hierarchical gray wolf optimizer (G-NHGWO) introduces a greedy strat-
egy to increase the locality of the search [81]. In addition, the method also adopts a
non-hierarchical optimization strategy, which avoids the use of fixed weight factors.
G-NHGWO can search for the best solution more efficiently in practical problems and
provide more accurate and reliable optimization results.

• Weighted distance gray wolf optimizer (WdGWO) introduces the concept of a weighted
distance, which measures how close an individual wolf is to the current global best
solution [52]. The WdGWO algorithm exploits the notion of social hierarchy among
gray wolves to guide the search for promising regions of the solution space.

5.2.2. Traditional Algorithms

Traditional optimization algorithms have been widely used in research and have good
performance and effects in many problem areas. Traditional optimization algorithms have
a high interpretability and reliability.

• Particle swarm optimization (PSO) has a more vital ability to explore the solution set
space for non-convex optimization problems. It is relatively simple, and the calculation
process is separated from the problem model. As a population-based meta-heuristic
algorithm, PSO is applicable to distributed computing and can effectively improve
the computing power. Its speed (update) mechanism, inertia, and other factors can be
well optimized for parameter optimization in ANNs [38]

• Differential evolution (DE) is a heuristic random search algorithm based on popula-
tion differences. The differential evolution algorithm has the advantages of simple
principles, few controlled parameters, and strong robustness [82].

• The Bat Algorithm (BA) is an optimization algorithm for simulating bat swarm behav-
ior, which has multiple advantages such as parallelism, an adaptive search strategy,
diversity maintenance, a relatively simple implementation, powerful global search
capability, and adaptability. Its adaptability can adjust the search strategy according
to the characteristics of the problem and improve the robustness and global search
ability. Randomness and exploration operations are introduced to maintain population
diversity, avoid falling into local optimal solutions, and provide more comprehensive
search space coverage [83].

• The Tree-seed Algorithm (TSA) has a simpler structure, a higher search accuracy, and
a stronger robustness than some traditional intelligent optimization algorithms [84].

• The Sine-Cosine optimization algorithm (SCA) is a random optimization algorithm
that is highly flexible, simple in principle, and easy to implement. It can be easily
applied to optimization problems in different fields [85].

• The Butterfly Optimization Algorithm (BOA) solves global optimization problems
by mimicking the food searching and mating behavior of butterflies [86]. The design
framework of the algorithm is mainly based on the foraging strategy of butterflies
looking for nectar or mating partners, in which butterflies use their sense of smell to
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determine the target location. The BOA algorithm draws on this foraging behavior
and combines the characteristics of optimization algorithms to provide an effective
solution for complex global optimization problems.

5.2.3. Recent Algorithms

Over time, new algorithms emerge, often with more advanced techniques and better
performance. Using recently emerged algorithms as benchmarks for comparative exper-
iments can provide more accurate and unbiased evaluation criteria. By comparing with
the latest algorithm, the advantages and disadvantages of the proposed algorithm can be
evaluated more objectively.

• The Spider Wasp Optimizer (SWO) is inspired by the hunting, nesting, and mating be-
havior of female spider wasps in nature [87]. Furthermore, it shows promising results
in solving various optimization problems with different exploration and development
requirements through various unique update strategies.

• The Zebra Optimization Algorithm (ZOA) is a heuristic optimization algorithm that
simulates the behavior of zebra swarms and is used to solve optimization prob-
lems [88]. The ZOA algorithm searches for the optimal solution in the solution space
by imitating the foraging and migration strategies of the zebra population. The core
idea of the ZOA is to regard the candidate solution of the problem as an individual
zebra and search by simulating the foraging and migration behavior of zebra.

• The Reptile Search Algorithm (RSA) is inspired by the hunting behavior of crocodiles [89].
The implementation of the algorithm includes two key steps: encirclement and hunt-
ing. This makes the RSA algorithm adaptable to different optimization problems and
have better exploration and exploitation capabilities.

• The Brown-bear Optimization Algorithm (BOA) is inspired by the communication
patterns of pedal scent marking and sniffing behavior of brown bears, and utilizes
the communication behavior characteristics of brown bears and provides an effective
solution by simulating their strategies in finding food and marking territory [90].

• The Osprey Optimization Algorithm (OOA) mimics the behavior of ospreys in nature
and is mainly inspired by an osprey’s strategy when fishing at sea [91]. Ospreys detect
the location of their prey, hunt it down, and bring it to a suitable place to enjoy it.
OOA algorithms can efficiently solve various optimization problems and balance
exploration and exploitation during the search process.

• The Cheetah Optimizer (CO) is proposed by simulating cheetahs’ hunting behavior
and related strategies. The cheetah optimizer can effectively solve various optimization
problems and adapt to complex environments [92].

5.3. Standard Test Set
5.3.1. IEEE CEC 2014 Benchmark Functions

The IEEE CEC 2014 benchmark functions are a benchmark test set for evaluating
the performance of optimization algorithms [93] provided by the 2014 IEEE Congress
on Evolutionary Computation (CEC) competition, which contains a total of 30 standard
continuous optimization problems shown in Tables 2–5, covering many different types of
functions. The IEEE CEC 2014 benchmark functions are designed to evaluate optimization
algorithms’ global search abilities, convergence speeds, accuracies, and robustness. It is
used to compare the performance of different algorithms and improve and optimize their
optimization algorithms. The IEEE CEC 2014 benchmark functions have become one of
the standard benchmarks for evaluating the performance of optimization algorithms. It
provides a fair and reliable platform for researchers to compare and verify the capabilities
and effects of optimization algorithms.
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Table 2. The unimodal benchmark functions of IEEE CEC 2014 benchmark functions.

Name of the Functions Expression

Rotated High Conditioned Elliptic Function F1(x) = f1(M(x− o1)) + 100
Rotated Bent Cigar Function F2(x) = f2(M(x− o2)) + 200
Rotated Discus Function F3(x) = f3(M(x− o3)) + 300

Table 3. The multimodal benchmark functions of IEEE CEC 2014 benchmark functions.

Name of the Functions Expression

Shifted and Rotated Rosenbrock’s Function F4(x) = f4(M(
2.048(x− o4)

100
) + 1) + 400

Shifted and Rotated Ackley’s Function F5(x) = f5(M(x− o5)) + 500

Shifted and Rotated Weierstrass Function F6(x) = f6(M(
0.5(x− o6)

100
)) + 600

Shifted and Rotated Griewank’s Function F7(x) = f7(M(
600(x− o7)

100
)) + 700

Shifted Rastrigin’s Function F8(x) = f8(M(
5.12(x− o8)

100
)) + 800

Shifted and Rotated Rastrigin’s Function F9(x) = f8(M(
5.12(x− o9)

100
)) + 900

Shifted Schwefel’s Function F10(x) = f9(M(
1000(x− o10)

100
)) + 1000

Shifted and Rotated Schwefel’s Function F11(x) = f9(M(
1000(x− o11)

100
)) + 1100

Shifted and Rotated Katsuura Function F12(x) = f10(M(
5(x− o12)

100
)) + 1200

Shifted and Rotated HappyCat Function F13(x) = f11(M(
5(x− o13)

100
)) + 1300

Shifted and Rotated HGBat Function F14(x) = f12(M(
5(x− o14)

100
)) + 1400

Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s
Function

F15(x) = f13(M(
5(x− o15)

100
) + 1) + 1500

Shifted and Rotated Expanded Scaffer’s F6 Function F16(x) = f14(M((x− o16))1) + 1600

Table 4. The hybrid benchmark functions of IEEE CEC 2014 benchmark functions.

Name of the Functions Expression

F17 = f9(M1Z1) + f8(M2Z2) + f3(M3Z3) + 1700 p = [0.3, 0.3, 0.4]
F18 = f2(M1Z1) + f8(M2Z2) + f3(M3Z3) + 1800 p = [0.3, 0.3, 0.4]
F19 = f7(M1Z1) + f8(M2Z2) + f3(M3Z3) + f8(M4Z4) + 1900 p = [0.2, 0.2, 0.3, 0.3]
F20 = f12(M1Z1) + f3(M2Z2) + f13(M3Z3) + f8(M4Z4) + 2000 p = [0.2, 0.2, 0.3, 0.3]
F21 = f14(M1Z1) + f12(M2Z2) + f4(M3Z3) + f9(M4Z4) + f1(M5Z5) + 2100 p = [0.1, 0.2, 0.2, 0.2, 0.3]
F22 = f10(M1Z1) + f11(M2Z2) + f13(M3Z3) + f9(M4Z4) + f5(M5Z5) + 2200 p = [0.1, 0.2, 0.2, 0.2, 0.3]
Notes:
Z1 = [ys1 , ys1 . . . , ysn1 ]
Z2 = [ysn1+1 , ysn1+2 . . . , ysn1+n2 ]
ZN = [ys

∑N−1
i=1 n1+1

, ys
∑N−1

i=1 n1+2
. . . , ys5D ]

y = x− oi , S = randperm(1 : D), percentageo f gi(x)
n1 = [p1D], n2 = [p2D],. . . , nN−1 = [pN−1D], nN = D−∑N−1

i=1 n + i

Table 5. The composite benchmark functions of IEEE CEC 2014 benchmark functions.

Name of the Functions Expression

F23 = w1 ∗ F′4(x) + w2 ∗ [1e−6F′1(x) + 100] + w3 ∗ [1e−26F′2(x) + 200]
+w4 ∗ [1e−6F′3(x) + 300] + w5 ∗ [1e−6F′1(x) + 400] + 2300 σ = [10, 20, 30, 40, 50]
F24 = w1 ∗ F′10(x) + w2 ∗ [F′9(x) + 100] + w3 ∗ [F′14(x) + 200] + 2400 σ = [20, 20, 20]
F25 = w1 ∗ 0.25F′11(x) +w2 ∗ [F′9(x) + 100] +w3 ∗ [1e−7F′1(x) + 200] + 2500 σ = [10, 30, 50]
F26 = w1 ∗ 0.25F′11(x) + w2 ∗ [F′13(x) + 100] + w3 ∗ [1e−7F′1(x) + 200]
+w4 ∗ [2.5F′6(x) + 300] + w5 ∗ [1e−6F′13(x) + 400] + 2700 σ = [10, 10, 10, 10, 10]
F27 = w1 ∗ 10F′14(x) + w2 ∗ [10F′9(x) + 100] + w3 ∗ [2.5F′11(x) + 200]
+w4 ∗ [25F′16(x) + 300] + w5 ∗ [1e−6F′1(x) + 400] + 2700 σ = [10, 10, 10, 20, 20]
F28 = w1 ∗ 2.5F′15(x) + w2 ∗ [10F′9(x) + 100] + w3 ∗ [2.5F′11(x) + 200]
+w4 ∗ [5e−4F′16(x) + 300] + w5 ∗ [1e−6F′1(x) + 400] + 2800 σ = [10, 20, 30, 40, 50]
F29 = w1 ∗ F′17(x) + w2 ∗ [F′18(x) + 100] + w3 ∗ [F′19(x) + 200] + 2900 σ = [10, 30, 50]
F30 = w1 ∗ F′20(x) + w2 ∗ [F′21(x) + 100] + w3 ∗ [F′22(x) + 200] + 3000 σ = [10, 30, 50]
Notes:

wi =
1√

∑D
j=1(xj − oij)

exp(−
∑D

j=1(xi − o2
ij)

2Dσ2
i

)
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5.3.2. University of California, Irvine Dataset (UCI Dataset)

• XOR dataset
The XOR dataset is a classic binary classification problem widely used in machine

learning and neural networks [21]. This dataset contains three input features, eight training
and testing samples, and one output. The simplicity and nonlinear separability of the
XOR dataset make it a standard benchmark for evaluating and validating classification
algorithms. It can help researchers and practitioners test and compare the classification
capabilities of different algorithms, especially models such as deep learning and neural
networks, when dealing with nonlinear problems.

• Balloon dataset
The Balloon dataset is a small dataset for classification problems and has many applica-

tions in machine learning and data mining. This dataset contains four features, 16 training
and testing samples, and covers two categories [21]. Using the Balloon dataset, researchers
can build and test the performance of various classification algorithms, including decision
trees, support vector machines, neural networks, and more. The small size of this dataset
makes it useful for quickly validating algorithms and debugging classification models.
At the same time, the Balloon dataset can also help beginners understand and master
fundamental classification problems and algorithms.

• Tic-Tac-Toe dataset
The Tic-Tac-Toe dataset is a commonly used classification dataset for solving the

classification problems of the game of tic-tac-toe [21]. It contains nine features and two
categories, where the number of training samples is 637 and the number of testing samples
is 300. Using the Tic-Tac-Toe dataset, researchers can build and evaluate the performance
of various classification algorithms, such as decision trees, logistic regression, support
vector machines, etc. This dataset is moderate in size and can be used to quickly verify the
accuracy and reliability of the algorithm and provide players with a reference for the next
best move position. At the same time, the Tic-Tac-Toe dataset can also be used for teaching
purposes to help beginners understand and master the basic concepts and methods of
classification problems.

• Heart dataset
The Heart dataset is a commonly used medical dataset for predicting whether a patient

has heart disease [21]. This dataset contains 22 features and two categories, the number
of training samples is 80, and the number of test samples is 187. Using the Heart dataset,
researchers can better understand and predict the occurrence and risk factors of heart
disease and provide clinicians with a basis for auxiliary decision making. In addition, the
Heart dataset can also be used for teaching purposes to help students learn and master the
basic concepts and techniques of cardiac classification.

6. Analysis and Discussion of Experimental Results
6.1. Analysis and Discussion of Results on IEEE CEC 2014 Benchmark Functions

• Comparison of EGWO with GWO variants
In order to reflect on the advantages of the EGWO optimization algorithm, this part

selects the variants of the GWO algorithm, such as GNHGWO, IGWO, and WdGWO. It
can be seen from the experimental results in Table 6 that EGWO and GWO have the same
average ranking and total ranking and still have certain advantages compared with the
other three algorithms. Although EGWO and GWO have the same ranking, it can be
seen from Figure 10 that EGWO has a faster convergence speed than the GWO algorithm.
Meanwhile, the Friedman ANOVA test and the Wilcoxon rank sum test are selected, and
the experimental results shown in Table 7 demonstrate that it is significantly different from
the other three variants of GNHGWO, IGWO, and WdGWO.
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Figure 10. Convergence curve of EGWO and its variant algorithms.
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Table 6. Results of the EGWO and GWO variants.

EGWO GWO GNHGWO IGWO WdGWO EGWO GWO GNHGWO IGWO WdGWO

Mean Rank

8.851× 108 8.567× 108 2.317× 1010 2.441× 1010 4.103× 109 2 1 5 3 4
7.809× 1010 9.219× 1010 6.318× 1011 6.867× 1011 2.144× 1011 1 2 5 3 4
3.033× 105 3.283× 105 1.748× 106 7.235× 106 8.165× 108 1 2 5 3 4
9.873× 103 1.114× 104 2.906× 105 3.237× 105 3.796× 104 1 2 5 3 4
5.214× 102 5.214× 102 5.215× 102 5.215× 102 5.214× 102 5 1 2 3 4
7.269× 102 7.040× 102 7.778× 102 7.793× 102 7.589× 102 2 1 5 3 4
1.482× 103 1.625× 103 6.385× 103 6.697× 103 2.467× 103 1 2 5 3 4
1.728× 103 1.560× 103 2.858× 103 2.917× 103 2.142× 103 2 1 5 3 4
1.867× 103 1.697× 103 3.398× 103 3.489× 103 2.501× 103 2 1 5 3 4
2.176× 104 2.010× 104 3.641× 104 3.647× 104 3.207× 104 2 1 5 3 4
2.433× 104 2.475× 104 3.663× 104 3.669× 104 3.398× 104 1 2 5 3 4
1.205× 103 1.205× 103 1.207× 103 1.207× 103 1.205× 103 1 2 5 3 4
1.305× 103 1.305× 103 1.314× 103 1.315× 103 1.307× 103 1 2 5 3 4
1.603× 103 1.650× 103 3.114× 103 3.259× 103 1.936× 103 1 2 5 3 4
2.360× 105 2.605× 105 6.914× 108 9.421× 108 3.300× 107 1 2 5 3 4
1.647× 103 1.647× 103 1.649× 103 1.649× 103 1.648× 103 1 2 5 3 4
1.168× 108 1.056× 108 3.910× 109 4.650× 109 3.916× 108 2 1 5 3 4
2.473× 109 2.968× 109 8.400× 1010 9.090× 1010 2.449× 109 5 1 2 3 4
2.691× 103 2.627× 103 2.520× 104 2.911× 104 2.599× 103 5 2 1 3 4
2.477× 105 2.972× 105 5.578× 107 1.200× 108 1.777× 106 1 2 5 3 4
4.545× 107 4.609× 107 1.658× 109 2.561× 109 1.442× 108 1 2 5 3 4
5.753× 103 5.904× 103 2.631× 106 3.533× 106 8.447× 103 1 2 5 3 4
3.275× 103 3.124× 103 1.153× 104 1.349× 104 3.586× 103 2 1 5 3 4
2.927× 103 2.601× 103 4.412× 103 4.524× 103 3.547× 103 2 1 5 3 4
2.898× 103 2.751× 103 4.319× 103 4.495× 103 3.239× 103 2 1 5 3 4
2.816× 103 2.811× 103 4.263× 103 4.593× 103 2.843× 103 2 1 5 3 4
6.265× 103 5.845× 103 1.025× 104 1.144× 104 6.932× 103 2 1 5 3 4
1.633× 104 4.930× 103 4.357× 104 4.455× 104 1.121× 104 2 5 1 3 4
2.203× 108 3.142× 103 9.100× 109 9.814× 109 1.954× 108 2 5 1 3 4
9.028× 106 6.053× 103 5.515× 108 7.087× 108 4.797× 106 2 5 1 3 4

Average Ranking 1.87 1.87 4.27 3 4
Total Ranking 1 1 4 2 3

Table 7. Statistical analysis results on EGWO and GWO variants.

Friedman ANOVA Test Wilcoxon Rank Sum Test

SS df MS Chi-sq p p α = 0.05 α = 0.1

EGWO vs.

GWO 4374 29 150.828 56.44 0.0017 0.797098 No No
GNHGWO 4404 29 151.862 56.83 0.0015 1.73× 10−6 Yes Yes

IGWO 4409 29 152.034 56.89 0.0015 1.73× 10−6 Yes Yes
WdGWO 4472 29 154.207 57.7 0.0012 0.00532 Yes Yes

• Comparison of the GWO with traditional algorithms
Regarding the applicability and interpretability of the EGWO algorithm, this part

selects more traditional and popular algorithms, such as GA, BOA, SCA, TSA, and JAYA
algorithms. It can be seen from the results in Table 8 that EGWO can achieve the first
average ranking and overall ranking. In order to ensure the accuracy of the experimental
results, the Friedman ANOVA test and the Wilcoxon rank sum test have verified that
EGWO can clearly be distinguished from and compared to other algorithms in Table 9. In
addition, the convergence curves of EGWO and GA, BOA, SCA, TSA, and JAYA algorithms,
as shown in Figure 11, reflect that the EGWO algorithm can quickly converge and avoid
local stagnation.
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Figure 11. Convergence curve of EGWO and other traditional algorithms.
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Table 8. Results of the EGWO and traditional algorithms.

EGWO GA BOA SCA TSA JAYA EGWO GA BOA SCA TSA JAYA

Mean Ranking

8.851× 108 1.678× 1010 9.329× 109 5.084× 109 2.340× 109 1.352× 1010 1 5 4 3 6 2
7.809× 1010 3.997× 1011 3.007× 1011 2.301× 1011 5.258× 1010 4.587× 1011 5 1 4 3 2 6
3.033× 105 2.367× 107 3.262× 105 3.991× 105 3.462× 105 9.263× 105 1 3 5 4 6 2
9.873× 103 1.724× 105 1.039× 105 5.127× 104 8.750× 103 1.496× 105 5 1 4 3 6 2
5.214× 102 5.216× 102 5.214× 102 5.214× 102 5.214× 102 5.214× 102 5 4 1 6 3 2
7.269× 102 7.763× 102 7.559× 102 7.607× 102 7.436× 102 7.666× 102 1 5 3 4 6 2
1.482× 103 4.632× 103 3.807× 103 2.992× 103 1.182× 103 4.417× 103 5 1 4 3 6 2
1.728× 103 2.498× 103 2.165× 103 2.171× 103 1.886× 103 2.555× 103 1 5 3 4 2 6
1.867× 103 2.761× 103 2.405× 103 2.415× 103 2.094× 103 3.048× 103 1 5 3 4 2 6
2.176× 104 3.669× 103 3.346× 103 3.196× 103 2.989× 103 3.058× 104 1 5 6 4 3 2
2.433× 103 3.637× 103 3.315× 103 3.348× 103 3.235× 103 3.391× 103 1 5 3 4 6 2
1.205× 103 1.207× 103 1.205× 103 1.205× 103 1.205× 103 1.205× 103 5 1 4 6 3 2
1.305× 103 1.311× 103 1.310× 103 1.308× 103 1.303× 103 1.310× 103 5 1 4 3 6 2
1.603× 103 2.574× 103 2.335× 103 2.041× 103 1.534× 103 2.327× 103 5 1 4 6 3 2
2.360× 105 1.378× 108 2.682× 107 1.075× 107 6.103× 105 2.256× 105 1 5 4 3 2 6
1.647× 103 1.649× 103 1.647× 103 1.648× 103 1.647× 103 1.648× 103 1 5 3 4 6 2
1.168× 108 3.530× 109 1.830× 109 6.445× 108 2.170× 108 1.150× 109 1 5 4 6 3 2
2.473× 109 6.333× 1010 4.128× 1010 1.405× 1010 3.24× 103 1.916× 1010 5 1 4 6 3 2
2.691× 103 1.966× 104 1.238× 104 4.594× 103 2.154× 103 8.061× 103 5 1 4 6 3 2
2.477× 105 7.514× 107 1.450× 106 8.578× 105 2.741× 105 6.518× 106 1 5 4 3 6 2
4.545× 107 1.657× 109 5.645× 108 2.578× 108 9.170× 107 4.268× 108 1 5 4 6 3 2
5.753× 103 1.790× 106 4.034× 105 9.476× 103 7.145× 103 3.350× 104 1 5 4 6 3 2
3.275× 103 6.788× 103 2.500× 103 4.224× 103 2.758× 103 5.710× 103 3 5 1 4 6 2
2.927× 103 3.816× 103 2.600× 103 3.166× 103 2.994× 103 3.997× 103 3 1 5 4 2 6
2.898× 103 3.288× 103 2.700× 103 3.093× 103 3.052× 103 3.566× 103 3 1 5 4 2 6
2.816× 103 3.161× 103 2.800× 103 3.053× 103 2.993× 103 3.076× 103 3 1 5 4 6 2
6.265× 103 1.333× 104 8.104× 103 7.421× 103 6.397× 103 8.443× 103 1 5 4 3 6 2
1.633× 104 4.926× 104 2.393× 104 2.564× 104 2.103× 104 2.277× 104 1 5 6 3 4 2
2.203× 108 1.092× 1010 3.100× 103 1.837× 109 2.631× 107 1.966× 109 3 5 1 4 6 2
9.028× 106 8.873× 108 3.200× 103 6.262× 107 2.547× 106 1.517× 108 3 5 1 4 6 2

Average Ranking 2.60 3.43 3.70 4.23 4.23 2.80
Total Ranking 1 3 4 5 5 2

Table 9. Statistical analysis results of EGWO and traditional algorithms.

Friedman ANOVA Test Wilcoxon Rank Sum Test

SS df MS Chi-sq p p α = 0.05 α = 0.1

EGWO vs.

GA 4416 29 152.276 56.98 0.0014 1.73× 10−6 Yes Yes
BOA 4197 29 144.724 54.15 0.0031 0.002279 Yes Yes
SCA 4463 29 153.897 57.59 0.0012 3.79× 10−6 Yes Yes
TSA 4373 29 150.793 56.43 0.0017 0.336552 No No
JAYA 4432 29 152.828 57.19 0.0014 3.79× 106 Yes Yes

• Comparison of GWO with recent algorithms
In order to ensure the novelty and performance superiority of the proposed EGWO

algorithm, proposed algorithms from the past three years were selected for comparison,
such as ZOA, RSA, SWO, BOA, CO, and OOA algorithms. It can be seen from Table 10
that the EGWO algorithm can achieve the best experimental results and ranks first. The
Friedman ANOVA test and Wilcoxon rank sum test shown in Table 11 also prove that the
EGWO algorithm is superior to the six recently proposed algorithms. Figure 12 shows that
EGWO can obtain the fastest convergence speed and smoothly approach the global optimal
solution.
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Figure 12. Convergence curve of EGWO and other recent algorithms.
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Table 10. Results of the EGWO and recent algorithms.

EGWO ZOA RSA SWO BOA CO OOA EGWO ZOA RSA SWO BOA CO OOA

Mean Rank

8.851× 108 9.924× 108 7.443× 109 6.266× 109 4.213× 109 8.570× 109 1.055× 1010 1 2 5 4 3 6 7
7.809× 1010 1.507× 1011 2.803× 1011 2.912× 1011 2.288× 1011 3.154× 1011 3.064× 1011 1 2 5 3 4 7 6
3.033× 105 2.516× 105 3.070× 105 4.625× 105 3.044× 105 7.333× 105 3.361× 105 2 1 5 3 7 4 6
9.873× 103 2.142× 104 8.052× 104 8.772× 104 5.441× 104 8.940× 104 1.061× 105 1 2 5 3 4 6 7
5.214× 102 5.212× 102 5.214× 102 5.215× 102 5.213× 102 5.215× 102 5.214× 102 2 5 1 3 7 4 6
7.269× 102 7.410× 102 7.574× 102 7.623× 102 7.441× 102 7.657× 102 7.614× 102 1 2 5 3 7 4 6
1.482× 103 2.212× 103 3.554× 103 3.591× 103 3.108× 103 3.671× 103 3.815× 103 1 2 5 3 4 6 7
1.728× 103 1.653× 103 2.254× 103 2.259× 103 2.046× 103 2.308× 103 2.160× 103 2 1 5 7 3 4 6
1.867× 103 1.854× 103 2.372× 103 2.478× 103 2.259× 103 2.725× 103 2.342× 103 2 1 5 7 3 4 6
2.176× 104 2.127× 104 3.095× 104 3.247× 104 2.894× 104 3.137× 104 3.068× 104 2 1 5 7 3 6 4
2.433× 104 2.289× 104 3.154× 104 3.439× 104 2.874× 104 3.461× 104 3.226× 104 2 1 5 3 7 4 6
1.205× 103 1.203× 103 1.205× 103 1.206× 103 1.205× 103 1.206× 103 1.204× 103 2 7 1 3 5 4 6
1.305× 103 1.306× 103 1.309× 103 1.309× 103 1.308× 103 1.309× 103 1.310× 103 1 2 5 3 4 6 7
1.603× 103 1.833× 103 2.236× 103 2.257× 103 2.053× 103 2.285× 103 2.325× 103 1 2 5 3 4 6 7
2.360× 103 1.138× 103 1.439× 103 2.538× 103 7.816× 103 8.170× 103 2.492× 103 1 2 5 3 7 4 6
1.647× 103 1.645× 103 1.647× 103 1.648× 103 1.647× 103 1.648× 103 1.647× 103 2 1 3 5 7 4 6
1.168× 108 1.742× 108 1.208× 109 1.069× 109 5.084× 108 1.156× 108 1.970× 108 1 2 5 4 6 3 7
2.473× 109 7.379× 1010 3.391× 1010 3.017× 1010 2.147× 1010 2.261× 1010 4.214× 1010 1 2 5 6 4 3 7
2.691× 103 3.117× 103 8.969× 103 7.495× 103 5.115× 103 6.173× 103 1.135× 104 1 2 5 6 4 3 7
2.477× 105 2.264× 105 8.816× 105 2.414× 106 6.972× 105 9.080× 106 1.492× 106 2 1 5 3 7 4 6
4.545× 107 6.209× 107 3.956× 108 3.389× 108 1.526× 108 5.455× 108 3.935× 108 1 2 5 4 7 3 6
5.753× 103 7.559× 103 1.104× 105 5.840× 104 1.469× 104 3.293× 104 1.850× 105 1 2 5 6 4 3 7
3.275× 103 2.500× 103 2.500× 103 3.166× 103 2.500× 103 5.278× 103 2.500× 103 2 3 5 7 4 1 6
2.927× 103 2.600× 103 2.600× 103 2.744× 103 2.600× 103 3.579× 103 2.600× 103 2 3 5 7 4 1 6
2.898× 103 2.700× 103 2.700× 103 2.751× 103 2.700× 103 3.501× 103 2.700× 103 2 3 5 7 4 1 6
2.816× 103 2.800× 103 2.800× 103 2.810× 103 2.797× 103 3.407× 103 2.800× 103 5 2 3 7 4 1 6
6.265× 103 7.654× 103 7.556× 103 7.935× 103 3.193× 103 7.507× 103 2.900× 103 7 5 1 6 3 2 4
1.633× 104 2.883× 104 2.382× 104 3.364× 104 4.169× 103 3.102× 104 3.000× 103 7 5 1 3 2 6 4
2.203× 108 2.710× 108 1.935× 107 1.631× 109 2.142× 108 2.929× 109 3.100× 103 7 3 5 1 2 4 6
9.028× 106 2.292× 107 4.422× 107 1.353× 108 3.200× 103 9.792× 107 3.200× 103 5 7 1 2 3 6 4

Averagr Ranking 2.27 2.53 4.20 4.40 4.57 4 6.03
Total Ranking 1 2 4 5 6 3 7

Table 11. Statistical analysis results on EGWO and recent algorithms.

Friedman ANOVA Test Wilcoxon Rank Sum Test

SS df MS Chi-sq p p α = 0.05 α = 0.1

EGWO vs.

ZOA 4454 29 153.586 57.47 0.0013 0.047156 Yes Yes
RSA 4397 29 151.621 56.74 0.0015 0.000413 Yes Yes
SWO 4416 29 152.276 56.98 0.0014 2.84× 10−5 Yes Yes
BOA 4351 29 150.034 56.14 0.0018 0.022778 Yes Yes
CO 4435 29 152.931 57.23 0.0013 1.73× 10−6 Yes Yes

OOA 4208 29 145.103 54.3 0.003 0.015788 Yes Yes

Through the above three types of experiments, compared with GWO variants and
traditional and popular algorithms proposed in recent years, the experimental results show
that the algorithm can achieve the best global optimal solution, and statistical tests also
verify the effectiveness of the algorithm’s performance and efficiency. The introduction
of the mechanism promotes the algorithm to prevent the loss of the optimal solution
when the particles migrate and avoid the local optimum simultaneously. The perturbation
mechanism ensures the diversity of searches during the three wolves’ migration process
and improves the exploration performance. The candidate solution mechanism can ensure
the ability of exploitation to achieve a balance between exploration and exploitation. The
mutual assistance of various mechanisms can strengthen the ability of the EGWO algorithm
to find the global optimal solution when solving single-mode, multi-mode, and complex
function problems and ensure the exploration and exploitation capabilities of the EGWO
algorithm.
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6.2. Analysis and Discussion of Results on UCI Dataset

The Tic-Tac-Toe dataset includes nine input features and two categories. According
to the results in Table 12, the EGWO-MLP algorithm achieved the highest classification
accuracy on this dataset. For the best mean square error (MSE) and standard deviation
(Std.), EGWO-MLP ranks first. The Heart dataset includes 22 features and two categories,
and GWO-MLP performs the best, followed by EGWO-MLP, but it still outperforms other
comparison algorithms. The XOR dataset contains three input features and one output. By
observing the MSE and Rate values in Table 12, it can be seen that the EGWO algorithm
achieves the highest classification accuracy and the smallest MSE value on the XOR dataset
and Balloon dataset, which contains four input features and two categories. According
to the results in Table 12, in terms of the classification rate, the EGWO algorithm has a
similar performance to GWO and DE when compared with other algorithms but it is higher
than other algorithms. At the same time, EGWO also has a specific stability in terms of
the average mean square error (MSE) and Std. The training of three datasets shows that
the EGWO algorithm has certain advantages in training multi-layer perceptrons and can
more stably find the global optimal solution. The introduction of the mechanism prompts
EGWO to avoid local optimum and enhances the exploration ability while ensuring the
exploitation ability.

Table 12. Training results of EGWO-MLP and other algorithms on the UCI dataset.

Tic-Tac-Toe Dataset

EGWO-MLP GWO-MLP DE-MLP TSA-MLP PSO-MLP BA-MLP GA-MLP SCA-MLP
Rate 97.643% 93.790% 94.091% 97.310% 87.830% 94.704% 64.725% 93.531%
MSE 0.005 0.001 0.013 0.013 0.017 0.017 0.028 0.015
Std. 2.551 8.245 8.792 5.404 16.561 9.703 33.350 11.274

Heart Dataset

EGWO-MLP GWO-MLP DE-MLP TSA-MLP PSO-MLP BA-MLP GA-MLP SCA-MLP
Rate 85.292% 89.042% 79.167% 71.417% 59.833% 57.000% 44.750% 70.042%
MSE 0.103 0.076 0.157 0.180 0.272 0.286 0.323 0.206
Std. 33.188 3.074 3.586 3.796 9.042 9.311 8.423 3.543

XOR Dataset

EGWO-MLP GWO-MLP DE-MLP TSA-MLP PSO-MLP BA-MLP GA-MLP SCA-MLP
Rate 95.417% 93.750% 52.500% 35.417% 31.667% 88.333% 31.667% 47.500%
MSE 0.005 0.010 0.045 0.065 0.191 0.011 0.191 0.090
Std. 8.980 12.607 18.971 17.084 16.973 24.330 16.973 15.186

Balloon Dataset

EGWO-MLP GWO-MLP DE-MLP TSA-MLP PSO-MLP BA-MLP GA-MLP SCA-MLP
Rate 100% 100 % 100% 44.333% 43.333% 59.000 % 41.167% 97.333%
MSE 3.880× 10−10 6.277× 10−9 1.07× 10−6 0.184 0.197 0.119 0.210 0.001
Std. 0 0 0 12.087 13.792 16.578 14.779 7.397

6.3. Advantages and Disadvantages

Through the two different tests mentioned above, the exploration and exploration
capabilities of the EGWO algorithm were verified, and its advantages can be summarized
as follows:

• The EGWO algorithm can quickly find the global optimal solution in solving the
single-mode simple function problem but can ensure the accuracy of the optimal
solution.

• The EGWO-MLP model has apparent advantages in solving multi-classification prob-
lems, such as a fast convergence and a strong stability, ensuring a high classification
rate.

Although EGWO can have the above advantages, there are still certain shortcomings:

• In combinatorial function problems, local stagnation occurs when searching for the
global optimal solution.
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• The performance of the EGWO-MLP model in solving single classification problems is
not very significant.

7. EGWO-MLP Identification Model

This study investigates the optimization performance of agricultural disease identifi-
cation using the EGWO algorithm. EGWO trains the MLP to build disease identification
models by updating the weights and biases to optimize them continuously. The perfor-
mance of MLP is improved, and an improvement in the classification rate and a reduction
in the error rate are realized.

7.1. Soybean (Large) Dataset

This paper uses the soybean (Large) dataset from the University of California (UCI)
Machine Learning Repository dataset, a machine learning database. It is a commonly used
standard test dataset. The soybean (Large) dataset has 599 datasets, and this number is still
increasing. The soybean (Large) dataset with the 35 attributes shown in Table 13 was used
to judge the type and disease of crops and test the model’s accuracy. The data source is
shown in the Table 13’s footer. Furthermore, the data were divided into a test and training
set at 70% and 30%, respectively.

Table 13. The attribution of the soybean (Large) dataset.

Attribution Means

1 date April, May, June, July, August, September, October, unknown.
2 plant-stand normal, lt-normal, unknown.
3 precip lt-norm, norm, gt-norm, unknown.
4 temp lt-norm, norm, gt-norm, unknown.
5 hail yes, no, unknown.
6 crop-hist diff-lst-year, same-lst-yr, same-lst-two-yrs, same-lst-sev-yrs, unknown.
7 area-damaged scattered, low-areas, upper-areas, whole-field, unknown.
8 severity minor, pot-severe, severe, unknown.
9 seed-tmt none, fungicide, other, unknown.
10 germination 90–100%, 80–89%, lt–80%, unknown.
11 plant-growth norm, abnorm, unknown.
12 leaves norm, abnorm.
13 leafspots-halo absent, yellow-halos, no-yellow-halos, unknown.
14 leafspots-marg w-s-marg, no-w-s-marg, dna, unknown.
15 leafspot-size lt-1/8, gt-1/8, dna, unknown.
16 leaf-shread absent, present, unknown.
17 leaf-malf absent, present, unknown.
18 leaf-mild absent, upper-surf, lower-surf, unknown.
19 stem norm, abnorm, unknown.
20 lodging yes, no, unknown.
21 stem-cankers absent, below-soil, above-soil, above-sec-nde, unknown.
22 canker-lesion dna, brown, dk-brown-blk, tan, unknown.
23 fruiting-bodies absent, present, unknown.
24 external decay absent, firm-and-dry, watery, unknown.
25 mycelium absent, present, unknown.
26 int-discolor none, brown, black, unknown.
27 sclerotia absent, present, unknown.
28 fruit-pods norm, diseased, few-present, dna, unknown.
29 fruit spots absent, colored, brown-w/blk-specks, distort, dna, unknown.
30 seed norm, abnorm, unknown.
31 mold-growth absent, present, unknown.
32 seed-discolor absent, present, unknown.
33 seed-size norm, lt-norm, unknown.
34 shriveling absent, present, unknown.
35 roots norm, rotted, galls-cysts, unknown.

7.2. Identification Model (EGWO-MLP) Parameter Setting

The EGWO-MLP identification model consists of an input, a hidden, and an output
layer. The input layer of EGWO-MLP selects 35 attributes from the UCI soybean (Large)
dataset, including the date and germination as input nodes. The hidden layer is set to
(2× numbero f inputs + 1) nodes. In the identification model in this paper, the 35 influenc-
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ing factors use soybean as the input of the model, with one hidden layer with a hidden
node. Finally, 19 nodes are used as the output of the model.

7.3. Experimental Analysis

To verify the accuracy of the proposed EGWO-MLP model in identifying soybean
disease, some models were accumulated for comparison, such as PSOGWO-MLP, DE-MLP,
TSA-MLP, PSO-MLP, BA-MLP, GA-MLP, and SCA-MLP. The final classification and error
rates are the criteria to evaluate the performance of the EGWO-MLP model.

It can be seen in Table 14 that the final classification rate of EGWO-MLP is the highest.
The EGWO-MLP model can identify diseases more accurately than other methods. This
demonstrates that the EGWO algorithm has a strong exploration ability and the ability to
reduce local optima. Regarding MSE, the value obtained by EGWO-MLP ranks first. It can
be proven that the EGWO algorithm has a robust searchability. The Std. value of EGWO is
the smallest, so it can be obtained that the EGWO-MLP model is the most stable and can
be effectively applied to the problem of disease identification. In conclusion, the EGWO
algorithm can enhance the classification rate and performance of the soybean disease model.
The training process of multilayer perceptron leads to EGWO having a strong exploration
ability, avoiding local stagnation, and effectively updating the weights and biases of MLP
to improve the classification rate.

Table 14. Results of soybean disease identification compared with other algorithms

EGWO-MLP PSOGWO-MLP DE-MLP TSA-MLP PSO-MLP BA-MLP GA-MLP SCA-MLP

Rate 98.763% 77.204% 68.548% 91.505% 51.935% 22.957% 39.677% 64.677%
Std. 3.108 15.818 21.933 10.020 27.993 30.217 42.994 23.717

MSE 12.627 80.225 100.142 36.019 118.036 104.711 40.241 125.489
Std. 2.397 38.901 13.384 3.173 38.263 41.688 20.044 22.566

The EGWO-MLP model has certain advantages in disease identification and is superior
to PSOGWO-MLP, DE-MLP,TSA-MLP, PSO-MLP, BA-MLP,GA-MLP, and SCA-MLP, as
shown in Figure 13. The EGWO-MLP model can obtain a high classification rate and
strong robustness. The error rate proves that EGWO has a robust global search ability,
effectively balances exploration and exploitation, avoids local stagnation, and improves the
convergence speed.
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Figure 13. Box diagram of comparative experimental results.

8. Conclusions

It is difficult for existing models to predict actual crop diseases accurately. Therefore,
this paper proposes a disease recognition model based on algorithms and MLP. GWO
is a swarm intelligence optimization algorithm widely used in many fields, but some
shortcomings remain. We proposed the EGWO algorithm based on chaotic disturbance,
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candidate mechanisms, and attacking mechanisms. In addition, EGWO is used to optimize
the weight and bias items of MLP to construct the EGWO-MLP model.

In order to test the effectiveness of the proposed EGWO algorithm, the IEEE CEC 2014
benchmark functions were compared with the variants of the GWO algorithm, traditional
and popular algorithms, and algorithms proposed in recent years. The experimental
results show that the EGWO algorithm has certain advantages and stability. In addition,
the proposed EGWO-MLP model was verified with four standard classification datasets
(XOR, Balloon, Heart, and Tic-Tac-Toe datasets). The experimental results prove that the
performance of EGWO-MLP is better than other algorithms, including GWO TSA, PSO, BA,
GA, and SCA. Wilcoxon rank sum tests and Friedman ANOVA tests, two statistical tests,
proved that at 95% and 90% confidence levels, the EGWO algorithm and other algorithms
have apparent advantages.

Meanwhile, the Soybean dataset was selected to verify the effectiveness of disease
identification. Compared with PSOGWO-MLP, DE-MLP, TSA-MLP, PSO-MLP, BA-MLP,
GA-MLP, and SCA-MLP, EGWO-MLP has a certain degree of accuracy, and it can effectively
manage and control crop diseases when they occur.

However, some limitations affect the prediction accuracy, such as the number and
attributes of the UCI data referenced by the existing data. After that, a neural network
(CNN) was chosen to predict crop diseases based on the dataset. At the same time, we can
also select more effective swarm intelligence technologies, optimize and adjust the neural
network structure, adjust the parameters, and improve the recognition accuracy.
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