
Citation: Cheng, C.-S.; Chen, P.-W.;

Hsieh, Y.-C.; Wu, Y.-T. Multivariate

Process Control Chart Pattern

Classification Using Multi-Channel

Deep Convolutional Neural

Networks. Mathematics 2023, 11, 3291.

https://doi.org/10.3390/

math11153291

Academic Editors: Stelios Psarakis

and Jie Wen

Received: 14 June 2023

Revised: 11 July 2023

Accepted: 25 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multivariate Process Control Chart Pattern Classification Using
Multi-Channel Deep Convolutional Neural Networks
Chuen-Sheng Cheng * , Pei-Wen Chen , Yu-Chin Hsieh and Yu-Tang Wu

Department of Industrial Engineering and Management, Yuan Ze University, No. 135, Yuan-Tung Road,
Chung-Li District, Taoyuan City 32003, Taiwan; ieiris@saturn.yzu.edu.tw (P.-W.C.);
s1105411@mail.yzu.edu.tw (Y.-C.H.); s1105405@mail.yzu.edu.tw (Y.-T.W.)
* Correspondence: ieccheng@saturn.yzu.edu.tw; Tel.: +886-3-4638800 (ext. 2505)

Abstract: Statistical process control (SPC) charts are commonly used to monitor quality characteristics
in manufacturing processes. When monitoring two or more related quality characteristics simultane-
ously, multivariate T2 control charts are often employed. Like univariate control charts, control chart
pattern recognition (CCPR) plays a crucial role in multivariate SPC. The presence of non-random
patterns in T2 control charts indicates that a process is influenced by one or more assignable causes
and that corrective actions should be taken. In this study, we developed a deep learning-based classifi-
cation model for recognizing control chart patterns in multivariate processes. To address the problem
of the insufficient representation of one-dimensional (1D) data, we explore the advantages of using
two-dimensional (2D) image data obtained from a threshold-free recurrence plot. A multi-channel
deep convolutional neural network (MCDCNN) model was developed to incorporate both 1D and
2D representations of control chart data. This model was tested on multivariate processes with
different covariance matrices and compared with other traditional algorithms. Moreover, the effects
of imbalanced datasets and dataset size on classification performance were analyzed. Simulation
studies revealed that the developed MCDCNN model outperforms other techniques in identifying
multivariate non-random patterns. For the most significant one, our proposed MCDCNN method
achieved a 10% improvement over traditional methods. The overall results suggest that the developed
MCDCNN model can be beneficial for intelligent SPC.

Keywords: statistical process control; multivariate control chart pattern; MCDCNN; recurrence plot

MSC: 37M10

1. Introduction

Shewhart control charts are the most widely used tools in statistical process control
(SPC). The primary objective of a control chart is to determine whether a process is per-
forming as expected or if there are any non-random patterns resulting from assignable
causes. Among the various types of control charts, the commonly used univariate control
charts are designed to monitor and control a single process variable or characteristic over
time. They are typically used to monitor and control various aspects of the process, such as
means, standard deviations, fraction nonconforming, and defect rates.

With advancements in data acquisition techniques, it has become common practice
to monitor multiple correlated characteristics simultaneously. A widely adopted tool for
monitoring and controlling multivariate processes is the Hotelling T2 chart, which focuses
on tracking the mean vector of the processes [1].

The Hotelling T2 chart is briefly introduced as follows. Boldface lowercase letters
indicate vectors, and boldface uppercase letters represent matrices in this context. The chart
is based on the assumption that p correlated characteristics are measured simultaneously,
following a multivariate normal distribution with a mean vector µ0 and a covariance
matrix Σ.

Mathematics 2023, 11, 3291. https://doi.org/10.3390/math11153291 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11153291
https://doi.org/10.3390/math11153291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3024-5167
https://orcid.org/0000-0001-7169-284X
https://doi.org/10.3390/math11153291
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11153291?type=check_update&version=2

Mathematics 2023, 11, 3291 2 of 26

Suppose that the p × 1 random vectors x1, x2, . . . , xt, each of which represents the
quality characteristics to be monitored, are observed over time. These vectors represent
sample mean vectors from a sample of size n. The well-known χ2 control chart is based on
a measure of distance to the target mean vector (µ0) of the process. The statistic used in the
χ2 chart for the kth sample can be expressed as follows:

χ2
k = n(xk − µ0)

′Σ−1(xk − µ0) (1)

The upper limit of the control chart is UCL = χ2
α,p where χ2

α,p is the upper 100α

percentage point of the χ2 distribution with p degrees of freedom. When monitoring the
mean vector µ0 by using the χ2 chart, it is assumed that the covariance matrix remains
constant as Σ. When the in-control mean vector and covariance matrix are unknown, they
are often replaced by the sample estimators x and S, respectively. The test statistic for the
kth sample can be expressed as follows:

T2
k = n

(
xk − x

)′S−1(xk − x
)

(2)

The control procedure mentioned above is commonly referred to as the Hotelling T2

multivariate control chart [1].
When implementing control charts, a process is considered out of control if any plotted

points fall outside the control limits or exhibit a discernible non-random pattern [1]. In
industrial processes, various non-random patterns may emerge, signaling out-of-control
conditions such as trends, sudden shifts, mixtures, cycles, and systematic variations. A
comprehensive description of these non-random patterns can be found in the Western
Electric Handbook [2].

Non-random control chart patterns can provide useful insights regarding areas for
potential process improvements. It is widely recognized that particular non-random
patterns on a control chart are often linked to specific sets of assignable causes [2]. The
early detection and diagnosis of control chart patterns is critical. Researchers generally
agree that recognizing non-random patterns can assist the detection of out-of-control
processes in a timely manner [3–5], which can narrow down the list of potential assignable
causes that must be investigated, ultimately reducing the time and effort required for
diagnostic searches.

Control chart pattern recognition (CCPR) is a significant challenge in SPC. It relies
heavily on the expertise and experience of analysts to detect non-random patterns, which
introduces a greater risk of human error in decision-making. Many supplementary tests
(known as zone tests or run tests) have been proposed to detect whether assignable cause
variation exists and to determine whether a process requires further investigation [2,6].
The main disadvantage of these tests is that, although they can detect abnormalities that
represent out-of-control conditions, they do not reveal which non-random pattern may
have occurred. Consequently, the non-random pattern and assignable cause do not have a
one-to-one correspondence [4]. Several patterns might be associated with a specific test.
Furthermore, performing supplementary tests might increase the risk of false alarms [1].
The aforementioned reasons therefore highlight the need for the development of machine
learning (ML)-based control chart pattern recognition.

Studies on CCPR have primarily focused on univariate charts; limited attention
has been given to multivariate control chart patterns. Similar to univariate charts, mul-
tivariate control charts are designed to identify general shifts instead of non-random
patterns. Therefore, the conventional T2 chart is inadequate for identifying patterns in
multivariate processes.

Mason et al. [7] have noted that multivariate control charts might exhibit non-random
patterns and have proposed several visual methods to identify these patterns on the T2

chart. A trend can be characterized as a continuous movement of T2 values in one direction.
Distinct groupings of T2 values signify a sudden shift. When T2 values cluster above the
zero line, this indicates a mixture pattern. The presence of repeated U shapes occurring

Mathematics 2023, 11, 3291 3 of 26

with short periods represents a cycle. Their research findings emphasize that CCPR is a
crucial task in multivariate process control. Figure 1 presents some examples of patterns
that might occur in a multivariate process.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 26

chart. A trend can be characterized as a continuous movement of 𝑇ଶ values in one direc-
tion. Distinct groupings of 𝑇ଶ values signify a sudden shift. When 𝑇ଶ values cluster
above the zero line, this indicates a mixture pattern. The presence of repeated U shapes
occurring with short periods represents a cycle. Their research findings emphasize that
CCPR is a crucial task in multivariate process control. Figure 1 presents some examples of
patterns that might occur in a multivariate process.

Figure 1. Typical patterns shown on 𝑇ଶ control chart.

When applying CCPR, the following two methods can be used: (1) the online real-
time method, which involves continuous classification of data within a window, and (2)
the activation of the pattern classification model when an abnormality is detected in the
process by the judgment mechanism, such as the use of supplementary rules [2,6]. Notable
studies related to the first approach include those conducted by Hwarng and Hubele [3]
and Cheng [4], while representative studies of the second approach are the works of Pham
and Wani [5] and Hassan et al. [8]. Previous studies often assumed that the shift pattern
occurs near the middle of the window [5,8] or at some fixed positions [9], while other
patterns appear from the first point in the window. These assumptions limit the diversity
of data in the training dataset and affect the accuracy of classification in practical applica-
tions.

Hachicha and Ghorbel [10] conducted a review of more than 120 papers on CCPR
and stated that past researchers had trained models in a static mode but had applied them
in a dynamic manner. They emphasized the need for future work to address the issue of
pattern misalignment in time, which had not been adequately considered in prior studies.
The problem of misalignment is illustrated in Figure 2, in which the observed pattern is
not temporally aligned with the learned pattern. In this figure, the dotted box represents
an analysis window, and misalignment is evident. This misalignment can result in the
pattern observed in the analysis window being marginally different from the pattern in
the training dataset, thereby leading to incorrect classification.

Figure 2. Example of temporal pattern misalignment.

Figure 1. Typical patterns shown on T2 control chart.

When applying CCPR, the following two methods can be used: (1) the online real-time
method, which involves continuous classification of data within a window, and (2) the
activation of the pattern classification model when an abnormality is detected in the process
by the judgment mechanism, such as the use of supplementary rules [2,6]. Notable studies
related to the first approach include those conducted by Hwarng and Hubele [3] and
Cheng [4], while representative studies of the second approach are the works of Pham and
Wani [5] and Hassan et al. [8]. Previous studies often assumed that the shift pattern occurs
near the middle of the window [5,8] or at some fixed positions [9], while other patterns
appear from the first point in the window. These assumptions limit the diversity of data in
the training dataset and affect the accuracy of classification in practical applications.

Hachicha and Ghorbel [10] conducted a review of more than 120 papers on CCPR
and stated that past researchers had trained models in a static mode but had applied them
in a dynamic manner. They emphasized the need for future work to address the issue of
pattern misalignment in time, which had not been adequately considered in prior studies.
The problem of misalignment is illustrated in Figure 2, in which the observed pattern is not
temporally aligned with the learned pattern. In this figure, the dotted box represents an
analysis window, and misalignment is evident. This misalignment can result in the pattern
observed in the analysis window being marginally different from the pattern in the training
dataset, thereby leading to incorrect classification.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 26

chart. A trend can be characterized as a continuous movement of 𝑇ଶ values in one direc-
tion. Distinct groupings of 𝑇ଶ values signify a sudden shift. When 𝑇ଶ values cluster
above the zero line, this indicates a mixture pattern. The presence of repeated U shapes
occurring with short periods represents a cycle. Their research findings emphasize that
CCPR is a crucial task in multivariate process control. Figure 1 presents some examples of
patterns that might occur in a multivariate process.

Figure 1. Typical patterns shown on 𝑇ଶ control chart.

When applying CCPR, the following two methods can be used: (1) the online real-
time method, which involves continuous classification of data within a window, and (2)
the activation of the pattern classification model when an abnormality is detected in the
process by the judgment mechanism, such as the use of supplementary rules [2,6]. Notable
studies related to the first approach include those conducted by Hwarng and Hubele [3]
and Cheng [4], while representative studies of the second approach are the works of Pham
and Wani [5] and Hassan et al. [8]. Previous studies often assumed that the shift pattern
occurs near the middle of the window [5,8] or at some fixed positions [9], while other
patterns appear from the first point in the window. These assumptions limit the diversity
of data in the training dataset and affect the accuracy of classification in practical applica-
tions.

Hachicha and Ghorbel [10] conducted a review of more than 120 papers on CCPR
and stated that past researchers had trained models in a static mode but had applied them
in a dynamic manner. They emphasized the need for future work to address the issue of
pattern misalignment in time, which had not been adequately considered in prior studies.
The problem of misalignment is illustrated in Figure 2, in which the observed pattern is
not temporally aligned with the learned pattern. In this figure, the dotted box represents
an analysis window, and misalignment is evident. This misalignment can result in the
pattern observed in the analysis window being marginally different from the pattern in
the training dataset, thereby leading to incorrect classification.

Figure 2. Example of temporal pattern misalignment. Figure 2. Example of temporal pattern misalignment.

In the feature-based approach to CCPR, the pattern locations in the analysis window
are typically assumed to be consistent between the training and testing datasets when
developing discriminative features. This assumption oversimplifies the CCPR task and
might lead to an overestimation of the classification accuracy rate. The same problem can
also arise in models that use raw data as inputs.

Mathematics 2023, 11, 3291 4 of 26

Based on the review results of previous studies, we have observed that there are still
research gaps in current studies. To meet the requirements of practical applications, it is cru-
cial to consider the diversity and dynamic changes of non-random patterns. Classification
models should be capable of extracting diverse features from different types of data.

Additionally, the difficulty of data collection in practical applications needs to be
considered. The sample sizes of various non-random patterns may not be equal during the
data collection phase, which can lead to an imbalanced dataset. Therefore, it is necessary to
evaluate the performance of a classification model under the condition of unequal sample
sizes in each class.

This study proposes the use of a multi-channel deep convolutional neural network
(MCDCNN) architecture [11–13] that combines one-dimensional (1D) raw data and two-
dimensional (2D) texture image data to create feature diversity. The purpose is to reduce
the sensitivity of the classification model to the misalignments of the pattern in time
while improving the accuracy of the classification model. A threshold-free recurrence
plot (RP) [14] was constructed to obtain a 2D representation. Additionally, a new pattern
generator was proposed to generate a highly diverse dataset. This diversity aims to enhance
the classification model’s robustness in dealing with the dynamic nature of non-random
patterns. The effectiveness of the proposed approach was investigated by applying it to
multivariate processes with diverse covariance matrices and varying numbers of quality
characteristics.

The rest of this paper is organized as follows. Section 2 provides information about
related work on ML-based CCPR. Section 3 describes the proposed methods, including the
RP plot, data generation method, and MCDCNN model for multivariate CCPR. Section 4
describes the experimental settings, simulated datasets, performance metrics and presents
the experimental results. Finally, Section 5 summarizes the findings of this study and
provides suggestions for future research.

2. Related Work

This section presents a literature review on topics relevant to the present study, includ-
ing the identification and classification of control chart patterns and the use of 2D texture
image transformation methods for analyzing time series data.

In recent years, numerous studies have investigated the usefulness of ML techniques
for the identification of non-random patterns on a control chart. The primary goal is to
enhance classification accuracy and provide a complementary tool to traditional control
charts [15]. The adoption of ML-based classification models aims to emulate the analysis
methods used by engineers. With the emergence of the industrial internet of things and
artificial intelligence, collecting process data and utilizing intelligent decision-making
models for analysis has become more feasible. Consequently, the demand for intelligent
detection and diagnosis systems has increased over time [16].

Hachicha and Ghorbel [10] conducted an extensive analysis of existing research on the
identification of control chart patterns. The approaches used for classification include rule-
based methods [17,18], decision tree (DT) [5,19], artificial neural network (ANN) [4,20,21],
and support vector machine (SVM) [22,23]. Previous studies have utilized either raw data
as input vectors for the classification models [4,20] or hand-crafted features [5,9,19,24,25].

Previous studies have primarily focused on identifying single patterns. However,
researchers have begun to investigate data that exhibit multiple basic pattern features,
which are referred to as concurrent patterns [21,23,26,27]. The occurrence of concurrent
patterns suggests that the manufacturing process is simultaneously influenced by several
assignable causes. In a recent study, García et al. [28] conducted a comprehensive review of
the research on concurrent patterns.

Although some researchers have employed ML techniques for multivariate process
control, their focus has primarily been on identifying process mean shifts [29–33] or diagnos-
ing sources of variability [34]. Some studies have used ML methods to develop approaches
for detecting changes in multivariate process variance [35]. However, none of the men-

Mathematics 2023, 11, 3291 5 of 26

tioned studies were designed specifically to identify non-random patterns in multivariate
processes. Few studies have explored non-random patterns in multivariate processes.
Cheng and Cheng [36] developed a multivariate non-random pattern classification model
using artificial neural networks (ANN) and support vector regression (SVR). However, their
consideration of covariance matrices was limited to those with equi-correlation. Moreover,
they assumed that all patterns except for the shift pattern begin at the first point within
the window. While this assumption has been commonly used in previous research, it is
impractical and may restrict the model’s generalizability.

Beshah and Muluneh [37] proposed a neural network-based approach to classify
multivariate control chart patterns. They developed a classifier by using univariate data
and assumed that the autocorrelation of multivariate data can be removed using a time
series analysis method. After the autocorrelation was removed, a set of T2 statistics was
generated, and the standardized T2 statistics were employed as the input vector for the
developed classifier. It appears that the authors presumed that their classifier built using
univariate data could be applied to classify the standardized T2 statistics.

CCPR has been addressed with conventional ML techniques, such as SVM, multilayer
perceptron neural networks and decision trees. However, the prevailing approach has
shifted towards deep learning methods, with a particular focus on convolutional neural
networks (CNNs) [15,38–44]. The reason for adopting the CNN approach in CCPR is the
ability of deep learning models to learn discriminative features directly from the data.

Zan et al. [15] investigated six patterns using a window size of 32. This research
examined five different periods for cycles to overcome the restrictive assumptions made in
previous studies. The non-random patterns consistently began at the first point within the
window in both the training and test datasets.

In [38], a window size of 32 was utilized. The shift pattern was assumed to occur
between points 11 and 21 within the window. For other non-random patterns present in
both the training and test datasets, the starting position of patterns was consistently fixed
at the first point of the window.

In [39], Miao and Yang utilized a CNN network but first transformed the one-dimensional
data into statistical characteristics and shape features, which were subsequently employed
as inputs for the CNN. In their research, non-random patterns consistently appeared at the
first position within the window. The positions where these patterns appeared remained
fixed in both the training and test datasets.

In [40], the shift pattern appeared in three different positions within the window,
whereas the other non-random patterns consistently appeared at a fixed position (the first
point) within the window. These positions where non-random patterns emerged remained
unchanged across both the training and test datasets.

Yu et al. [41] proposed the use of a stacked denoising autoencoder (SDAE) method
to develop a classification system for process patterns. This research considered normal
pattern and seven types of abnormal patterns resulting from changes in the process mean
and standard deviation. The window size used in this study was 64, and the occurrence
of abnormal patterns was approximately in the middle of the window. Importantly, these
positions were kept consistent in both the training and test datasets.

Fuqua and Razzaghi [42] proposed a method called the cost-sensitive convolutional
neural network to establish a classification system for non-random patterns in control
charts. This research considered the impact of imbalanced datasets on classification results.
They addressed both binary classification and multi-class classification problems. For
binary classification, they treated normal data and a specific type of non-random data as a
combination to construct a specific model. For multi-class classification, they considered
normal pattern and multiple types of non-random patterns in the dataset. Since this study
dealt with imbalanced data classification, they employed performance metrics such as
accuracy rate, recall, precision, and F-score. Although the results of this study showed that
the performance of the cost-sensitive convolutional neural network method outperformed
that of other deep learning algorithms in building classification models, it should be

Mathematics 2023, 11, 3291 6 of 26

noted that the comparisons were limited to specific combinations of non-random pattern
parameters, and that the performance of their method across all non-random pattern
parameter combinations could not be determined.

Zan et al. [43] employed the bidirectional long short-term memory network (Bi-LSTM)
algorithm to develop a classification system for non-random patterns in control charts.
They utilized a window size of 25, while the dataset consisted of a normal pattern and
eight different non-random patterns. While considering multiple occurrence positions for
certain types of non-random patterns, they maintained consistent position settings across
both the training and test datasets.

Cheng et al. [44] utilized CNN to establish a classification model for non-random
patterns in control charts. What sets this research apart from previous studies is the
consideration of the pattern misalignment issue mentioned by Hachicha and Ghorbel [10].
This study allowed non-random patterns to appear at multiple positions within the window.
Their research results demonstrate that CNN possesses the characteristic of translation
invariance, enabling it to tolerate slight pattern misalignment issues.

The deep learning-based time series classification methods can be divided into 1D [45]
and 2D schemes [46,47]. In the 1D scheme, raw data are used as the inputs and directly fed
into the CNN model. The CNN model learns and extracts relevant features from the raw
data to perform classification tasks. On the other hand, in the 2D scheme, the time series
data are transformed into 2D forms before being fed into the subsequent CNN network.
This transformation process converts the time series into an image-like representation. In
comparison with the 1D scheme, the 2D scheme can potentially yield better classification
accuracy, but at the expense of a more complex transformation process and increased
network complexity.

Wang and Oates [46] proposed two methods for converting 1D time series data into 2D
images, the two methods are the Gramian Angular Field (GAF) and the Markov Transition
Field (MTF). After converting 1D data into 2D images, they employed a CNN to construct
a time series data classifier. They compared the performances of different classification
models on 12 datasets from UCR, and their findings indicate that higher classification
accuracy was achieved when combining GAF and MTF images into a single image as the
input for a CNN than when using GAF or MTF images alone.

Wang and Oates [48] divided GAF into two encoding methods: the Gramian Angular
Summation Field (GASF) and the Gramian Angular Difference Field (GADF), used to
convert time series data into 2D image data. GASF, GADF and MTF images were used as
inputs for the three channels of a CNN. They compared their method to other algorithms
using 20 datasets from UCR. Their research results showed that their proposed method
outperforms most existing methods.

Martínez-Arellano et al. [49] presented a novel approach based on signal imaging
and deep learning for tool wear classification. In their method, the GASF was used to
automatically encode raw signals into images.

The recurrence plot proposed by Eckmann et al. [50] is also a common method for
encoding 1D time series data into 2D images. Hatami et al. [47] proposed converting 1D
time series data into 2D texture images using the RP method, and the application of CNN to
establish a classification system. Their research results show that this method can improve
the classification accuracy of time series data. They found that representing time series
data with texture images can obtain different feature types not available in 1D time series
data. They compared different methods using 20 datasets in UCR. The results show that
the RPCNN method they proposed outperforms GAF-MTF.

Although the RP method is frequently used to analyze time series data, RP represen-
tations are rarely utilized to obtain features in previous studies on CCPR. While the RP
method has been applied to a specific control chart pattern dataset in some studies [47,51],
extensive feasibility studies have not been conducted. Chen and Shi [51] have indicated
that the major disadvantage of RP representations is the loss of directional information for

Mathematics 2023, 11, 3291 7 of 26

non-random patterns, particularly trend and shift patterns. Therefore, it is expected that a
combination of 1D time series and 2D image encoding may be more effective.

Table 1 summarizes the key information of some recent relevant works. These recent
works are not included in the survey study conducted by Hachicha and Ghorbel [10]. In the
rightmost column of Table 1, the “fixed” label indicates that the shift pattern appears in the
middle position of the window, while other non-random patterns appear in the first position
of the window. Unless otherwise stated, the training dataset and the test dataset adopt the
same position setting. The aforementioned configuration has been commonly used in the
majority of previous studies. Analyzing Table 1 reveals that there are some research gaps in
the existing studies when applying the CCPR model in practical applications. From Table 1,
it can be observed that most of the previous studies assumed fixed positions of non-random
patterns within the window, without considering the issue of pattern misalignment.

Table 1. Summary of relevant works.

Study Control
Chart Type

Classification
Algorithms Input WS * PN ** Performance

Metrics
Balanced

Data

Pattern
Occurring
Positions

[15] Univariate CNN 1D 25 6 Accuracy Yes Fixed.
[36] Multivariate ANN/SVM 1D 32 5 Accuracy Yes Fixed.
[37] Multivariate ANN 1D 30 7 Accuracy Yes Fixed.

[38] Univariate/Concurrent CNN 1D 32 16

Accuracy,
Recall,

Precision,
and F-score

Yes

Fixed. Shift
patterns

have
multiple

positions.
[39] Univariate/Concurrent CNN Features 40 14 Accuracy Yes Fixed.

[40] Univariate CNN 1D 32 8 Accuracy Yes

Fixed. Shift
patterns

have three
positions.

[41] Univariate

Stacked
Denoising

Autoencoder
(SDAE)

1D 64 8 Accuracy Yes

The
occurrence

of abnormal
patterns was

approxi-
mately in the

middle of
the window.

[42] Univariate CNN 1D 20–50 2–7

Accuracy,
Recall,

Precision,
and F-score

No Fixed.

[43] Univariate Bi-LSTM 1D 25 9 Accuracy Yes Fixed

[44] Univariate CNN 1D 32 7 Accuracy Yes

All
non-random

patterns
have

multiple
positions.

[47] Univariate CNN 2D 36 6 Accuracy Yes

Fixed. Shift
patterns

have
multiple

positions.

[51] Univariate CNN 2D 36 6 Accuracy Yes

Fixed. Shift
patterns

have
multiple

positions.

* Window size; ** pattern number.

Because CCPR studies assume that only a portion of the observations is analyzed at a
time, the position of non-random patterns appearing in the analysis window (or moving
window) becomes a crucial factor affecting the correct classification. In previous studies,
the position of non-random patterns occurrences was often oversimplified.

Mathematics 2023, 11, 3291 8 of 26

If the position of non-random patterns appearing in the window is fixed at the first
point, it would make the patterns easier to distinguish, but it would also lead to an
optimistic overestimation of classification accuracy. Additionally, in most studies, the
position of non-random patterns in the window is set the same during both the training and
testing phases, which further contributes to an overestimation of classification performance.

To meet the requirements of practical applications, it is necessary to consider a more
diverse range of occurrence positions for non-random patterns in both the training and
test datasets. Additionally, the diversity in the dataset needs to be increased. This also
implies that the classification model should be capable of learning more diverse features
from the data.

3. Methodology

This section outlines the two primary steps of the methodology, namely, the 2D image
encoding using recurrence plot and the classification using MCDCNN. Additionally, to
facilitate comparison, a brief overview of traditional classifiers is also presented.

3.1. Recurrence Plot

The recurrence plot is a technique created to visualize time series data [50]. The first
step in obtaining the recurrence plot is to reconstruct the phase space of the time series.
Given the original time series data as x = (x1, x2, . . . , xN), and N as the length of the
time series, the phase space after reconstruction can be expressed as:

→
x i = (xi, xi+τ , . . . , xi+(m−1)τ), i = 1, 2, . . . , N − (m− 1)τ (3)

where m is the embedded dimensions, and τ is the delay time. The subsequent
→
x i is referred

to as the ith state in the phase space, and is also known as trajectory. Each subsequence
corresponds to a point in the phase space trajectory.

Rij = Θ (ε− ‖→x i −
→
x j‖) i, j = 1, 2, · · · , M (4)

where M = N − (m− 1)τ, ε is a threshold distance, ‖ is the Euclidean norm. Here Θ(x)
is a Heaviside step function that returns unity for positive argument and has value 0 for
negative argument. In this approach, if two extracted trajectories

→
x i and

→
x j are sufficiently

close to each other, the value of Rij is set to 1; otherwise, it is set to 0. RP Plot is a graphical
representation of the matrix R. The total number of states M, determines the size of the
recurrence plot. Equation (4) generates an M×M image. Depending on whether or not a
threshold was selected, the resulting image could be binary or grayscale. Because of the
predefined distance, Equation (4) is regarded as binary. To extract additional information
from the RP images, the un-threshold technique [14,52] is utilized in this study. The R
matrix can be defined as follows:

Rij = ‖
→
x i −

→
x j‖ i, j = 1, 2, · · · , M (5)

A detailed procedure for creating an unthresholded image from time series data is
presented in Figure 3. We adhere to the procedure outlined in the work of Hatami et al. [47].

Mathematics 2023, 11, 3291 9 of 26

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 26

If the position of non-random patterns appearing in the window is fixed at the first
point, it would make the patterns easier to distinguish, but it would also lead to an opti-
mistic overestimation of classification accuracy. Additionally, in most studies, the position
of non-random patterns in the window is set the same during both the training and testing
phases, which further contributes to an overestimation of classification performance.

To meet the requirements of practical applications, it is necessary to consider a more
diverse range of occurrence positions for non-random patterns in both the training and
test datasets. Additionally, the diversity in the dataset needs to be increased. This also
implies that the classification model should be capable of learning more diverse features
from the data.

3. Methodology
This section outlines the two primary steps of the methodology, namely, the 2D im-

age encoding using recurrence plot and the classification using MCDCNN. Additionally,
to facilitate comparison, a brief overview of traditional classifiers is also presented.

3.1. Recurrence Plot
The recurrence plot is a technique created to visualize time series data [50]. The first

step in obtaining the recurrence plot is to reconstruct the phase space of the time series.
Given the original time series data as 𝐱 = (𝑥ଵ, 𝑥ଶ, … , 𝑥ே), and 𝑁 as the length of the time
series, the phase space after reconstruction can be expressed as: 𝑥⃗௜ = (𝑥௜ , 𝑥௜ାఛ, … , 𝑥௜ା(௠ିଵ)ఛ), 𝑖 = 1, 2,…,𝑁 − (𝑚− 1)𝜏 (3)

where 𝑚 is the embedded dimensions, and 𝜏 is the delay time. The subsequent 𝑥⃗௜ is re-
ferred to as the 𝑖௧௛ state in the phase space, and is also known as trajectory. Each subse-
quence corresponds to a point in the phase space trajectory. 𝑅௜௝ = Θ൫𝜀 − ฮ𝑥⃗௜ − 𝑥⃗௝ฮ൯ 𝑖, 𝑗 = 1, 2,∙∙∙,𝑀 (4)

where 𝑀 = 𝑁 − (𝑚 − 1)𝜏 , 𝜀 is a threshold distance, ‖∙‖ is the Euclidean norm. Here Θ(𝑥) is a Heaviside step function that returns unity for positive argument and has value
0 for negative argument. In this approach, if two extracted trajectories 𝑥⃗௜ and 𝑥⃗௝ are suf-
ficiently close to each other, the value of 𝑅௜௝ is set to 1; otherwise, it is set to 0. RP Plot is
a graphical representation of the matrix R. The total number of states 𝑀, determines the
size of the recurrence plot. Equation (4) generates an 𝑀 × 𝑀 image. Depending on
whether or not a threshold was selected, the resulting image could be binary or grayscale.
Because of the predefined distance, Equation (4) is regarded as binary. To extract addi-
tional information from the RP images, the un-threshold technique [14,52] is utilized in
this study. The 𝐑 matrix can be defined as follows: 𝑅௜௝ = ฮ𝑥⃗௜ − 𝑥⃗௝ฮ 𝑖, 𝑗 = 1, 2,∙∙∙,𝑀 (5)

A detailed procedure for creating an unthresholded image from time series data is
presented in Figure 3. We adhere to the procedure outlined in the work of Hatami et al.
[47].

Figure 3. The steps of coding time series data using recurrence plot: (a) a time series x with length
N = 16; (b) the 2D phase space trajectory is constructed from x by the time delay embedding (τ = 1),
states in the phase space are shown with bold dots:

→
x 1: (x1, x2),

→
x 2: (x2, x3),. . .,

→
x 15: (x15, x16).

(c) the recurrence plot R is a 16× 16 square matrix with Rij= dist (
→
x i,

→
x j), i, j = 1, 2, . . . , 16.

Figure 4 illustrates a time series along with its unthresholded and thresholded recur-
rence plots. Figure 4a presents the raw data, while Figure 4b displays the unthresholded RP.
Figure 4c illustrates the thresholded RP with a black point percentage of 20. In the context
of recurrence plots, the black point percentage denotes the threshold that determines the
intensity of the points plotted in the recurrence matrix. This percentage directly influences
the contrast and clarity of the recurrence plot. A higher black point percentage will yield
darker and more discernible black points, facilitating the identification of recurring patterns.
Conversely, a lower black point percentage will generate lighter black points, potentially
making it more challenging to discern recurrent structures.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 26

Figure 3. The steps of coding time series data using recurrence plot: (a) a time series 𝐱 with length 𝑁 = 16; (b) the 2D phase space trajectory is constructed from 𝐱 by the time delay embedding (τ =
1), states in the phase space are shown with bold dots: 𝑥⃗ଵ: (𝑥ଵ, 𝑥ଶ), 𝑥⃗ଶ: (𝑥ଶ, 𝑥ଷ),…, 𝑥⃗ଵହ: (𝑥ଵହ, 𝑥ଵ଺). (c)
the recurrence plot 𝐑 is a 16 × 16 square matrix with 𝑅௜௝=dist(𝑥⃗௜ , 𝑥⃗௝), 𝑖, 𝑗=1, 2, … , 16.

Figure 4 illustrates a time series along with its unthresholded and thresholded recur-
rence plots. Figure 4a presents the raw data, while Figure 4b displays the unthresholded
RP. Figure 4c illustrates the thresholded RP with a black point percentage of 20. In the
context of recurrence plots, the black point percentage denotes the threshold that deter-
mines the intensity of the points plotted in the recurrence matrix. This percentage directly
influences the contrast and clarity of the recurrence plot. A higher black point percentage
will yield darker and more discernible black points, facilitating the identification of recur-
ring patterns. Conversely, a lower black point percentage will generate lighter black
points, potentially making it more challenging to discern recurrent structures.

Figure 4. Example of unthresholded and thresholded recurrence plots with 𝑚 = 1: (a) a time series
of length 𝑁 = 32; (b) the unthresholded RP; (c) the thresholded RP with a black point percentage of
20.

3.2. Multi-Channel Deep Convolutional Neural Network
This section begins with a concise overview of the principles and the main operations

of CNN. Following this, we provide a detailed description of the architecture of the multi-
channel CNN model that we proposed in this study for classifying patterns on multivari-
ate 𝑇ଶ control charts.

CNNs have been widely used in the field of computer vision [53–55]. However, re-
cent studies have shown that CNNs can also be applied to time series classification tasks
[45,56], known as one-dimensional convolutional neural networks (1D CNNs).

In CNN architecture, there are three main layers: the convolution layer, the pooling
layer, and one or more fully connected layers. Among these, the convolution layer plays
a crucial role as it performs feature extraction through a combination of linear and non-
linear operations, involving convolution operations and activation functions.

The convolution layer, activation layer, and pooling layer are commonly grouped
together as the convolution block. In CNN networks, these blocks are utilized to extract
features, while fully connected layers are employed for the classification task. This inte-
grated approach enables the creation of an end-to-end classifier that reduces the need for
traditional feature engineering.

In the convolution block, the 1D convolution layer is utilized to extract feature maps.
Different numbers of 1D convolution filters of the same size are applied in each layer, with
deeper convolution blocks having more convolutional filters. The distance between two
consecutive filter positions is referred to as the stride, which is commonly set to 1. To
prevent the loss of spatial dimensions, zero padding is typically employed during the
convolution operation. When applying a convolution layer, the hyperparameters that
need to be determined include the filter size and the number of filters.

The output of the convolution operation is then passed through a nonlinear activa-
tion function. Commonly used activation functions include the identity, sigmoid, hyper-
bolic tangent, and rectified linear unit (ReLU) functions. The pooling layer performs a

Figure 4. Example of unthresholded and thresholded recurrence plots with m = 1: (a) a time series
of length N = 32; (b) the unthresholded RP; (c) the thresholded RP with a black point percentage
of 20.

3.2. Multi-Channel Deep Convolutional Neural Network

This section begins with a concise overview of the principles and the main operations
of CNN. Following this, we provide a detailed description of the architecture of the multi-
channel CNN model that we proposed in this study for classifying patterns on multivariate
T2 control charts.

CNNs have been widely used in the field of computer vision [53–55]. However, recent
studies have shown that CNNs can also be applied to time series classification tasks [45,56],
known as one-dimensional convolutional neural networks (1D CNNs).

In CNN architecture, there are three main layers: the convolution layer, the pooling
layer, and one or more fully connected layers. Among these, the convolution layer plays a
crucial role as it performs feature extraction through a combination of linear and nonlinear
operations, involving convolution operations and activation functions.

The convolution layer, activation layer, and pooling layer are commonly grouped
together as the convolution block. In CNN networks, these blocks are utilized to extract
features, while fully connected layers are employed for the classification task. This inte-
grated approach enables the creation of an end-to-end classifier that reduces the need for
traditional feature engineering.

In the convolution block, the 1D convolution layer is utilized to extract feature maps.
Different numbers of 1D convolution filters of the same size are applied in each layer,

Mathematics 2023, 11, 3291 10 of 26

with deeper convolution blocks having more convolutional filters. The distance between
two consecutive filter positions is referred to as the stride, which is commonly set to 1.
To prevent the loss of spatial dimensions, zero padding is typically employed during the
convolution operation. When applying a convolution layer, the hyperparameters that need
to be determined include the filter size and the number of filters.

The output of the convolution operation is then passed through a nonlinear activation
function. Commonly used activation functions include the identity, sigmoid, hyperbolic
tangent, and rectified linear unit (ReLU) functions. The pooling layer performs a nonlinear
form of downsampling. There are different types of pooling, with the most commonly used
type being max pooling, which has a size of 1 × 2 and a stride of 2. The pooling layer helps
reduce the dimensionality of the feature map, resulting in translation invariance for small
offsets and deformations.

The output feature map of the final convolutional or pooling layer is typically flattened,
resulting in a 1D vector that is connected to one or more fully connected layers. The
number of neurons in these layers is commonly determined through experimentation. In
classification tasks, the last layer of the network is composed of a number of neurons equal
to the number of classes, with the softmax function being the preferred choice for activation.
This function normalizes the output values from the last fully connected layer, producing
class probabilities ranging between 0 and 1, with all values summing up to 1. The resulting
probabilities represent the likelihood of each class, and the maximum probability value
corresponds to the predicted class label.

During the training process, the network determines the weights of the filters and
the fully connected layers to decrease the discrepancy between the actual class label of a
sample in the training set and the network’s predicted value. The most critical elements of
training are the loss function and the optimization algorithm.

Gradient descent is a widely used optimization algorithm that is used to iteratively
update the learnable parameters (such as the weights of the filter and the weights of the
fully connected layer) within a network in order to minimize loss. Some of the most
common optimization algorithms include stochastic gradient descent (SGD), root mean
square prop (RMSprop), and adaptive moment estimation (Adam) [57]. For multi-class
classification tasks, categorical cross-entropy loss function is commonly used.

MCDCNN is an extension of the traditional CNN that can process input data with
multiple channels [11–13]. The primary idea behind the MCDDNN model is to combine
the features extracted from various channels. Each channel can focus on a particular aspect
of the input data, enabling the network to learn more diverse and meaningful features. The
channels can be considered as different views of the input, allowing the model to extract
complementary information. For instance, in the context of images, different channels could
represent different color channels (e.g., red, green, and blue) or additional information.
This approach allows the model to utilize more comprehensive information and attain
improved classification accuracy.

The architecture of an MCDCNN is similar to a standard CNN, but the input data have
multiple channels instead of a single channel. Each convolutional layer in an MCDCNN
operates on all input channels independently and computes separate feature maps. These
feature maps are then combined through concatenation before being passed to the fully
connected layer in the network. This study utilizes two channels: the first channel processes
1D raw time series data, while the second channel handles time series images encoded
through the RP transform. The model architecture used in the experiments is depicted in
Figure 5.

Mathematics 2023, 11, 3291 11 of 26

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 26

nonlinear form of downsampling. There are different types of pooling, with the most com-
monly used type being max pooling, which has a size of 1 × 2 and a stride of 2. The pooling
layer helps reduce the dimensionality of the feature map, resulting in translation invari-
ance for small offsets and deformations.

The output feature map of the final convolutional or pooling layer is typically flat-
tened, resulting in a 1D vector that is connected to one or more fully connected layers. The
number of neurons in these layers is commonly determined through experimentation. In
classification tasks, the last layer of the network is composed of a number of neurons equal
to the number of classes, with the softmax function being the preferred choice for activa-
tion. This function normalizes the output values from the last fully connected layer, pro-
ducing class probabilities ranging between 0 and 1, with all values summing up to 1. The
resulting probabilities represent the likelihood of each class, and the maximum probabil-
ity value corresponds to the predicted class label.

During the training process, the network determines the weights of the filters and
the fully connected layers to decrease the discrepancy between the actual class label of a
sample in the training set and the network’s predicted value. The most critical elements
of training are the loss function and the optimization algorithm.

Gradient descent is a widely used optimization algorithm that is used to iteratively
update the learnable parameters (such as the weights of the filter and the weights of the
fully connected layer) within a network in order to minimize loss. Some of the most com-
mon optimization algorithms include stochastic gradient descent (SGD), root mean square
prop (RMSprop), and adaptive moment estimation (Adam) [57]. For multi-class classifi-
cation tasks, categorical cross-entropy loss function is commonly used.

MCDCNN is an extension of the traditional CNN that can process input data with
multiple channels [11–13]. The primary idea behind the MCDDNN model is to combine
the features extracted from various channels. Each channel can focus on a particular as-
pect of the input data, enabling the network to learn more diverse and meaningful fea-
tures. The channels can be considered as different views of the input, allowing the model
to extract complementary information. For instance, in the context of images, different
channels could represent different color channels (e.g., red, green, and blue) or additional
information. This approach allows the model to utilize more comprehensive information
and attain improved classification accuracy.

The architecture of an MCDCNN is similar to a standard CNN, but the input data
have multiple channels instead of a single channel. Each convolutional layer in an
MCDCNN operates on all input channels independently and computes separate feature
maps. These feature maps are then combined through concatenation before being passed
to the fully connected layer in the network. This study utilizes two channels: the first chan-
nel processes 1D raw time series data, while the second channel handles time series im-
ages encoded through the RP transform. The model architecture used in the experiments
is depicted in Figure 5.

Figure 5. The architecture of the MCDCNN model used in the experiments. Figure 5. The architecture of the MCDCNN model used in the experiments.

3.3. Traditional Machine Learning Algorithms

In order to conduct a thorough comparison, we have selected three commonly used
machine learning algorithms suitable for analyzing time series data as our baseline mod-
els. These algorithms include support vector machine (SVM), random forest (RF), and
time series forest (TSF). The following subsections offer a concise summary of each of
these algorithms.

3.3.1. Support Vector Machine

SVM is a supervised learning technique that can be applied to both regression and
classification problems [58]. The SVM algorithms used for classification and regression are
commonly referred to as support vector classification (SVC) and support vector regression
(SVR), respectively. This section introduces the underlying principles of SVC. SVC is based
on the margin maximization principle. It performs structural risk minimization, which
improves the complexity of the classifier with the aim of achieving excellent generalization
performance. This technique uses various kernel functions to project nonlinear separable
samples onto a separate higher dimensional space.

The SVC algorithm performs classification by creating an optimal hyperplane that
divides the data into categories in a higher dimensional space. SVC was initially designed
for binary classification. It can be extended to handle multi-class classification tasks
through the use of the one-vs-one or one-vs-rest (OVR) method [59]. OVR is a heuristic
technique that transforms a multi-class dataset into multiple binary classification problems.
In the one-vs-one strategy, each pair of classes is split into a separate binary classification
problem. To achieve optimal classification performance, it is crucial to appropriately select
the parameters of the SVC classifier, such as the kernel width γ and the regularization
constant C.

3.3.2. Random Forest

Breiman [60] proposed the RF algorithm as a machine learning method that can
address classification and regression problems by utilizing ensemble learning, which
combines multiple classifiers to solve complex problems. The RF algorithm generates
multiple decision trees by using bootstrap samples from a training dataset, while also
employing a random feature selection technique. In this technique, a subset of available
features is randomly chosen as the splitting variable in each node of the decision tree. The
RF algorithm aggregates the outputs of all generated trees to produce a final prediction.
Majority voting is used for classification tasks, while averaging is used for regression, to
achieve the final prediction.

To optimize the performance of random forest models, it is crucial to select appropriate
values for several hyperparameters. One important parameter is the number of features
randomly chosen to split each node. Breiman [60] has recommended setting this value to
one-third of the total number of predictors for regression and the square root of the number

Mathematics 2023, 11, 3291 12 of 26

of features for classification. Another significant hyperparameter is the number of trees
in the ensemble. Generally, the number of trees is increased until the model performance
stabilizes. The final key hyperparameter is the maximum depth of the decision trees used
in the ensemble. While a deeper tree may improve accuracy, it can also increase the risk
of overfitting.

3.3.3. Time Series Forest

Deng et al. [61] introduced the TSF algorithm for classifying time series data. Unlike
other algorithms that consider the entire time series, TSF focuses on intervals, or sub-series.
To train an individual tree, the algorithm selects

√
m random intervals, where m is the

length of the time series. The mean, standard deviation, and slope of each interval are
calculated and used as features, resulting in 3

√
m features for each tree. This interval

representation of the time series is used for classification, with the final result being based
on a majority vote of all the trees in the forest. The two important parameters of the
algorithm are the number of trees in the forest and the minimum length of the intervals.

3.4. Generation of Datasets in Multivariate Processes

To build effective classification models, machine learning requires a large amount of
training data. In practice, gathering non-random patterns is expensive. This is because the
production process is mostly in a normal state and non-random data is rare. If non-random
patterns can be represented mathematically, the simulation method is commonly used to
generate the necessary dataset [4,62].

In the remainder of this section, we provide a description of the generation of simulated
data. A p-dimensional multivariate normal process can be simulated by generating pseudo-
random variates from a multivariate normal distribution whose mean vector is µ and
covariance matrix Σ is a p× p matrix. For simplicity, it is assumed without loss of generality
that the in-control process mean vector is µ0 = (0, 0, · · · , 0)′ = 0. It is also assumed that the
in-control covariance matrix Σ0 is known. A normal (or random) pattern will be generated
by a general form expressed as follows:

xt = µ+ nt (6)

where xt is the p quality characteristics observed at time t, µ = µ0 represents a known
process mean of the data series when the process is in control, nt is the random noise at
time t. When a non-pattern occurs, a second component, dt, is introduced to the process
mean of the variable associated with an assignable cause. The quantity dt denotes a
special disturbance at time t. By manipulating the value of dt, a non-pattern can then be
simulated. For example, when the first and third variables have non-random patterns
(which can be of the same type or different types), then the mean vector will be represented
as µ = (dt, 0, dt, 0, . . . , 0)′. In this study, four common non-random patterns on T2 control
charts were considered, namely, trends, sudden shifts, mixtures and cycles [7].

This study utilizes the formulas proposed by Cheng et al. [44] to generate the four
aforementioned types of dt. What sets it apart from previous studies [5,9] is that the
formulas they proposed includes an additional parameter t0, which is used to control the
starting point of non-random patterns within the window.

In this study, the simulation was implemented using NumPy library for Python [63].
The specific function employed was “random.multivariate_normal()”. For simplicity, all
variables were scaled such that each process variable has a mean of zero and a variance
of one. With this approach, the covariance matrix is referred to as the correlation form [1];
that is, the main diagonal elements are all one and the off-diagonal elements represent the
pairwise correlation (ρ) between the process variables. Each off-diagonal element ranges
from −1 and +1, inclusive.

Figure 6 illustrates the data variations that occur on the multivariate T2 control chart
when individual variables exhibit non-random patterns. This example includes three
variables, and the correlation coefficient between each pair of variables is 0.7. Figure 6a

Mathematics 2023, 11, 3291 13 of 26

represents the data with a trend in Variable 1, Figure 6b represents the normal data for
Variable 2, Figure 6c represents the data with a trend in Variable 3, and Figure 6d illustrates
the data variations observed on the T2 control chart.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 26

a majority vote of all the trees in the forest. The two important parameters of the algorithm
are the number of trees in the forest and the minimum length of the intervals.

3.4. Generation of Datasets in Multivariate Processes
To build effective classification models, machine learning requires a large amount of

training data. In practice, gathering non-random patterns is expensive. This is because the
production process is mostly in a normal state and non-random data is rare. If non-ran-
dom patterns can be represented mathematically, the simulation method is commonly
used to generate the necessary dataset [4,62].

In the remainder of this section, we provide a description of the generation of simu-
lated data. A 𝑝-dimensional multivariate normal process can be simulated by generating
pseudo-random variates from a multivariate normal distribution whose mean vector is 𝛍
and covariance matrix 𝚺 is a 𝑝 × 𝑝 matrix. For simplicity, it is assumed without loss of
generality that the in-control process mean vector is 𝛍଴= (0,0,⋯ ,0)ᇱ= 𝟎. It is also assumed
that the in-control covariance matrix 𝚺𝟎 is known. A normal (or random) pattern will be
generated by a general form expressed as follows: 𝐱௧ = 𝛍 + 𝐧௧ (6)

where 𝐱௧ is the 𝑝 quality characteristics observed at time 𝑡, 𝛍 = 𝛍଴ represents a known
process mean of the data series when the process is in control, 𝐧௧ is the random noise at
time 𝑡. When a non-pattern occurs, a second component, 𝑑௧, is introduced to the process
mean of the variable associated with an assignable cause. The quantity 𝑑௧ denotes a spe-
cial disturbance at time 𝑡. By manipulating the value of 𝑑௧, a non-pattern can then be
simulated. For example, when the first and third variables have non-random patterns
(which can be of the same type or different types), then the mean vector will be repre-
sented as 𝛍 = (𝑑௧, 0,𝑑௧ , 0, … ,0)ᇱ. In this study, four common non-random patterns on 𝑇ଶ
control charts were considered, namely, trends, sudden shifts, mixtures and cycles [7].

This study utilizes the formulas proposed by Cheng et al. [44] to generate the four
aforementioned types of 𝑑௧. What sets it apart from previous studies [5,9] is that the for-
mulas they proposed includes an additional parameter 𝑡଴, which is used to control the
starting point of non-random patterns within the window.

In this study, the simulation was implemented using NumPy library for Python [63].
The specific function employed was “random.multivariate_normal()”. For simplicity, all
variables were scaled such that each process variable has a mean of zero and a variance
of one. With this approach, the covariance matrix is referred to as the correlation form [1];
that is, the main diagonal elements are all one and the off-diagonal elements represent the
pairwise correlation (𝜌) between the process variables. Each off-diagonal element ranges
from −1 and +1, inclusive.

Figure 6 illustrates the data variations that occur on the multivariate 𝑇ଶ control chart
when individual variables exhibit non-random patterns. This example includes three var-
iables, and the correlation coefficient between each pair of variables is 0.7. Figure 6a rep-
resents the data with a trend in Variable 1, Figure 6b represents the normal data for Vari-
able 2, Figure 6c represents the data with a trend in Variable 3, and Figure 6d illustrates
the data variations observed on the 𝑇ଶ control chart.

Figure 6. Data variations on the multivariate T2 control chart caused by non-random patterns in
individual variables. (a) A trend in variable 1; (b) random variation in variable 2; (c) a trend in
variable 3; (d) a trend on T2 control chart.

4. Discussion
4.1. Experimental Settings

This section presents the comprehensive experiments conducted to confirm the ef-
fectiveness and benefits of MCDCNN. Additionally, we evaluate the performance of our
approach by comparing it with several classification models.

The first two experiments aim to assess the performance of MCDCNN and other
classification models on diverse datasets with varying covariance matrices. The second
experiment also evaluates the capability of various classification models in the presence of
multiple sources of assignable causes in the process. The third experiment is designed to
investigate the impact of dataset size on classification performance. The fourth experiment
examines how imbalanced datasets affect classification performance. Finally, the fifth
experiment uses a covariance matrix estimated from real-world data to illustrate the
effectiveness of the MCDCNN model. Through these experiments, it will be demonstrated
that the innovative approach of combining 1D raw data with 2D image data and using them
as inputs for MCDCNN will help it to learn more diverse dynamic features of non-random
pattern data. It exhibits robustness against misalignment in time of non-random patterns
and offers solutions to the challenges encountered in practical applications.

The remaining part of this section outlines the different experimental setups used in
this study, which include (1) the input vectors utilized for various classification algorithms;
(2) the dataset size and parameters for each pattern type; (3) the performance metrics
used; (4) the settings of the CNN architecture; (5) the method used for determining the
hyperparameters of the various algorithms; and (6) the software libraries employed by the
various algorithms.

In the present application, selecting an appropriate window size is a crucial step. To
achieve efficient calculations, it is desirable to reduce the window size as rapid computation
is essential for process control. However, preliminary studies indicate that a window that
is too small may result in a higher type I error due to insufficient data representation.
Conversely, a large window size may require a longer computation time. After experimen-
tation, a window size of 32 was chosen for this study. As a result, 32 T2 statistics were
computed as components of the input vector for CNN-based models. The 2D RP image
size for MCDCNN was set to 32 × 32.

The total number of samples in the training, validation, and test sets was 3000, 1000,
and 3000, respectively. The validation dataset provides an unbiased evaluation of a model
fit on the training dataset while tuning the model’s hyperparameters. Table 2 shows the
parameters for each pattern considered in this study. The parameters are stated in units of
standard deviation.

Mathematics 2023, 11, 3291 14 of 26

Table 2. Parameters used for simulating control chart patterns.

Pattern Type Parameters

Normal In-control data
Trend gradient θ ∈ {0.10, 0.125, 0.15}
Sudden shift shift magnitude δ ∈ {1.5, 2.0, 3.0}
Mixture offset ∆ ∈ {2.0, 2.5, 3.0}, Pr1 = 0.5; Pr2 = 0.15
Cyclic pattern amplitude κ ∈ {1.5, 2.0, 3.0}; period Ω ∈ {8, 16}

Despite the existence of several other performance measures, all the models were
compared based on their classification accuracy in this study because it has been a widely
used measure in the research of CCPR [10]. Conventional average run lengths (ARLs) are
insufficient in describing the performance characteristics of a CCPR approach. The CCPR
approach is designed to classify multiple patterns simultaneously, rather than addressing
a general out-of-control situation. In order to have a direct comparison with other work,
we select classification accuracy as the performance measure. Classification accuracy is a
simple and useful metric on balanced classification problems, where the distribution of
samples in the training dataset across the classes is equal. When dealing with imbalanced
datasets, accuracy is no longer an adequate measure, since it does not distinguish between
the numbers of correctly classified instances of different classes, leading to incorrect con-
clusions. In imbalanced classification scenarios, the F1 score is a commonly used metric
that combines precision and recall to provide a more comprehensive understanding of a
model’s performance [64].

Precision measures the proportion of correctly predicted positive instances among all
instances that are predicted as positive. It is calculated as:

precision =
TP

TP + FP
(7)

where TP is the number of true positives (correctly predicted positive instances) and FP is
the number of false positives (incorrectly predicted positive instances).

Recall measures the proportion of correctly predicted positive instances among all
positive instances. It is calculated as:

recall =
TP

TP + FN
(8)

where FN is the number of false negatives (positive instances that were not correctly
predicted as positive).

F1 score is the harmonic mean of precision and recall, and provides a single score that
balances both metrics. It is calculated as:

F1 score =
2× precision× recall

precision + recall
(9)

When evaluating multi-class classification models, we can calculate these metrics for
each class separately, and then calculate a macro or micro average of these metrics across
all classes.

The micro-average recall, precision, and F1 score are computed as follows:

micro-average recall =
total number of TP

total number of TP + total number of FN
(10)

micro-average precision =
total number of TP

total number of TP + total number of FP
(11)

micro-average F1 score =
2×micro-average precision×micro-average recall

micro-average precision + micro-average recall
(12)

Mathematics 2023, 11, 3291 15 of 26

The micro-average metrics treat all instances equally and provide a more representative
evaluation of the overall performance of the model. These metrics are particularly useful
when the dataset is imbalanced. On the other hand, the macro-average approach calculates
the metrics for each class separately and then averages them, which can introduce bias
towards classes with more instances. In the current application, the performance evaluation
is based on the micro-average method. This decision is made because we need to treat
every non-random pattern alarm equally.

Except for SVC, the performance of the other models was based on ten runs because
these algorithms were not deterministic. All of the experiments were executed on a machine
with an Intel Core i7-8700 3.20 GHz CPU and 32.0 GB RAM.

The 1D CNN and MCDCNN were implemented in Keras [57] with the TensorFlow
backend. The RF and SVC algorithms were implemented in Python using scikit-learn
v1.1.3 [59]. The TSF algorithm was implemented in sktime—a scikit-learn compatible
Python library for machine learning with time series [65].

It is well known that the hyperparameters of the machine learning algorithms have a
great impact on the experimental results. In this study, we chose hyperparameters after a
series of experiments. For RF model, the number of features used for each decision split
was set to the square root of the number of input features, i.e., the window size 32. We did
not restrict the maximum depth of each tree. The number of trees was evaluated over a
range of values. We increased the tree number until no further improvement was seen.

For SVC, the best combination of C and γ is often selected by a grid search with
exponentially growing sequences of C and γ. In this study we fixed the kernel function as
a radial basis function (RBF).

Choosing the appropriate hyperparameters for CNN networks can be challenging.
In this study, the focus was on determining the size and number of filters, as well as the
number of neurons in the fully connected layer for the network architecture. Regarding
the training process, the batch size was the main parameter determined. The proposed
architecture consists of two to three convolution layers and one fully connected layer. ReLU
activation function was applied to all layers except for the output layer, which used the
SoftMax layer. To mitigate overfitting, the dropout technique was employed, with the
dropout rate set to different values.

The grid search method was employed to determine the size and number of filters
while keeping the training parameters fixed. The filter size was chosen from {3, 5, 7, 9}, and
the number of filters in each layer was selected from {16, 32, 64, 128}.

For the CNN-based models, training was performed by minimizing the categorical
cross-entropy using Adam algorithm. The batch sizes have an impact on the classification
performance. We experimented with different batch sizes to see how they would affect the
classification results. The batch sizes were chosen from {16, 32, 64, 128, 256} based on their
performance on the validation set.

The CNN-based models were trained up to 50 epochs with a learning rate of 10−4. To
avoid overfitting, an early stopping procedure was employed; specifically, the loss value of
the validation set was monitored in each epoch and the training procedure was halted if
training yielded no improvements within the previous three epochs.

In order to address the temporal misalignment issue raised by Hachicha and Ghorbel [10],
this study removed the limitations on the starting point that were present in previous
research. For ease of presentation, let T1 = {1, 2, 3, 4, 5, 6} and T2 = {2, 3, 4, . . . , 9, 10}.
T1 and T2 are used to define the possible values of t0. Through the configuration of the
t0 parameter, we will be able to demonstrate that the innovative approach of combining
1D raw data and 2D image data in MCDCNN can effectively address the problem of
misalignment in time for non-random patterns.

4.2. Results
4.2.1. Experiment 1

Consider a multivariate process with in-control covariance matrix Σ1 expressed as:

Mathematics 2023, 11, 3291 16 of 26

Σ1 =

 1 −0.4 −0.7
−0.4 1 0.8
−0.7 0.8 1

 (13)

This symmetric, positive definite matrix Σ1 is randomly generated using the “make_spd_
matrix” function of the scikit-learn package [59]. The first variable in this matrix is the
source of assignable cause and is negatively correlated with the other variables.

Here are the descriptions of the optimal hyperparameter settings for each model. For
RF, the n_estimator parameter was set to 800. An RBF kernel was employed in the SVC,
and the optimal performance was attained by setting the values of C and γ to 8 and 2−5,
respectively. TSF was configured with 400 trees and a minimum interval length of 8.

The MCDCNN architecture comprises two channels. In channel 1, 1D raw data
are utilized as inputs, while channel 2 employs 2D RP images as inputs. Each channel
within MCDCNN consists of an equal number of convolutional layers and parameters
but possesses independent weights. Initially, the model learns features from each channel
separately. Subsequently, the information from all channels is merged into a comprehensive
feature representation in the final layer. Finally, the learned features are passed through a
fully connected hidden layer for classification purposes. The architectures for 1D CNN and
MCDCNN are presented in Tables 3 and 4, respectively. The batch size for both models
was set to 128.

Table 3. 1D CNN architecture.

Layer Structure

1 Conv1D (32, 5)
2 Maxpooling1D (2)
3 Conv1D (64, 3)
4 Maxpooling1D (2)
5 Dropout (0.3)
6 Conv1D (128, 3)
7 Maxpooling1D (2)
8 Dropout (0.3)
9 Fully connected (64)
10 Dropout (0.3)
11 Softmax (5)

Note: Conv1D (filter number, filter size). Maxpooling1D (pooling size).

Table 4. MCDCNN architecture.

Channel 1 Channel 2

Layer Structure Structure

1 Conv1D (32, 5) Conv2D (32× 32, 5)
2 Maxpooling1D (2) Maxpooling2D (2× 2)
3 Conv1D (64, 3) Dropout (0.1)
4 Maxpooling1D (2) Conv2D (64× 64, 3)
5 Dropout (0.3) Maxpooling2D (2× 2)
6 Conv1D (128, 3) Dropout (0.3)
7 Maxpooling1D (2) Conv2D (128× 128, 3)
8 Dropout (0.3) Maxpooling2D (2× 2)
9 − Dropout (0.3)
10 Fully connected (64)
11 Dropout (0.3)
12 Softmax (5)

Note: Conv1D (filter number, filter size); Conv2D (filter number, filter size). Maxpooling1D (pooling size);
Maxpooling2D (pooling size).

Table 5 presents a comparison of means and standard deviations for various models
with t0 ∈ T1. The average accuracies of RF, TSF, SVC, and 1D CNN are 94.15%, 91.86%,

Mathematics 2023, 11, 3291 17 of 26

95.57%, and 95.83%, respectively. Notably, our proposed MCDCNN model achieves the
highest accuracy among all the models, which is 97.24%

Table 5. Results of experiment 1, t0 ∈ T1 for the training and testing processes.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN

Maximum 94.27 92.13 96.03 97.40
Minimum 94.00 91.50 95.60 96.93
Average 94.15 91.86 95.57 95.83 97.24
StdDev 0.12 0.18 0.14 0.16

To investigate the effect of t0 on the classification performance, we conducted an
experiment with t0 ∈ T1 for the training dataset and t0 ∈ T2 for the test dataset. The
following are the best hyperparameter settings based on the experimental results. The
parameter n_estimator of RF was set to 700. The best performance of SVC was achieved
when it was used with an RBF kernel with the parameters C and γ set to 16.0 and 2−6,
respectively. The number of trees was set to 400 for TSF, and the minimum length of
interval was set to 8. For 1D CNN and MCDCNN, the same architectures as presented in
Tables 4 and 5 were adopted without further tuning. The batch size for both CNN-based
models was set to 128.

The obtained results are shown in Table 6. Again, MCDCNN achieves significantly
better results than other models. Comparing the results of Tables 5 and 6, it can be observed
that, as the change of t0 increases, the classification accuracy drops sharply. However, the
proposed CNN is less affected by the variation of t0. The MCDCNN model, based on 1D
raw data and 2D images, can achieve an average accuracy of 96.67%, reflecting the potential
of CNN using 1D and 2D features.

Table 6. Results of experiment 1, t0 ∈ T1 for the training process and t0 ∈ T2 for the testing process.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN

Maximum 87.30 91.53 94.83 96.94
Minimum 87.03 90.89 94.25 96.47
Average 87.08 91.28 92.11 94.52 96.67
StdDev 0.18 0.18 0.19 0.18

The classification accuracy of the models considered in this experiment shows the
same trend as the previously discussed experiment. It is worth noting that TSF provides
stable results even when t0 varies. This may be attributed to its nature of extracting features
from random intervals. Therefore, the TSF algorithm is less affected by changes in t0.

To further analyze and compare the classification accuracy of different classification
models, a confusion matrix is utilized to display the classification accuracy of various
models for different patterns. The diagonal elements of the confusion matrix represent the
number of cases where the predicted label matches the true label, while the off-diagonal
elements correspond to cases that are misclassified by the classifier.

Figure 7 illustrates the confusion matrices obtained from the test dataset’s classification
outcomes for the SVC, 1D CNN, and MCDCNN algorithms when t0 ∈ T1 was used for
both training and testing phases. In general, the MCDCNN algorithm performs better than
the other two models, except for the cycle. On the other hand, Figure 8 shows the confusion
matrices for t0 ∈ T1 during the training process and t0 ∈ T2 during the testing process. The
results indicate that the MCDCNN algorithm outperforms all other classification models
for all patterns.

Mathematics 2023, 11, 3291 18 of 26

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 26

The obtained results are shown in Table 6. Again, MCDCNN achieves significantly
better results than other models. Comparing the results of Tables 5 and 6, it can be ob-
served that, as the change of 𝑡଴ increases, the classification accuracy drops sharply. How-
ever, the proposed CNN is less affected by the variation of 𝑡଴. The MCDCNN model,
based on 1D raw data and 2D images, can achieve an average accuracy of 96.67%, reflect-
ing the potential of CNN using 1D and 2D features.

The classification accuracy of the models considered in this experiment shows the
same trend as the previously discussed experiment. It is worth noting that TSF provides
stable results even when 𝑡଴ varies. This may be attributed to its nature of extracting fea-
tures from random intervals. Therefore, the TSF algorithm is less affected by changes in 𝑡଴.

Table 5. Results of experiment 1, 𝑡଴ ∈ T1 for the training and testing processes.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN
Maximum 94.27 92.13 96.03 97.40
Minimum 94.00 91.50 95.60 96.93
Average 94.15 91.86 95.57 95.83 97.24
StdDev 0.12 0.18 0.14 0.16

Table 6. Results of experiment 1, 𝑡଴ ∈ T1 for the training process and 𝑡଴ ∈ T2 for the testing pro-
cess.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN
Maximum 87.30 91.53 94.83 96.94
Minimum 87.03 90.89 94.25 96.47
Average 87.08 91.28 92.11 94.52 96.67
StdDev 0.18 0.18 0.19 0.18

To further analyze and compare the classification accuracy of different classification
models, a confusion matrix is utilized to display the classification accuracy of various
models for different patterns. The diagonal elements of the confusion matrix represent the
number of cases where the predicted label matches the true label, while the off-diagonal
elements correspond to cases that are misclassified by the classifier.

Figure 7 illustrates the confusion matrices obtained from the test dataset’s classifica-
tion outcomes for the SVC, 1D CNN, and MCDCNN algorithms when 𝑡଴ ∈ T1 was used
for both training and testing phases. In general, the MCDCNN algorithm performs better
than the other two models, except for the cycle. On the other hand, Figure 8 shows the
confusion matrices for 𝑡଴ ∈ T1 during the training process and 𝑡଴ ∈ T2 during the test-
ing process. The results indicate that the MCDCNN algorithm outperforms all other clas-
sification models for all patterns.

Figure 7. Confusion matrices for different classification models when 𝑡଴ ∈ T1 for the training and
testing processes.
Figure 7. Confusion matrices for different classification models when t0 ∈ T1 for the training and
testing processes.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 26

Figure 8. Confusion matrices for different classification models when 𝑡଴ ∈ T1 during the training
process and 𝑡଴ ∈ T2 during the testing process.

4.2.2. Experiment 2
This experiment considers a covariance matrix estimated from real world data [66],

which has been studied in [67,68]. This example concerns the testing of ballistic missiles,
where four (𝑝 = 4) related thrust measurements are recorded for each test firing. The co-
variance matrix was estimated from 40 measurements, and its representation in a correla-
tional form (𝚺ଶ) is as follows:

𝚺ଶ = ൦ 1 0.730 0.719 0.5360.730 1 0.788 0.6730.719 0.788 1 0.7590.536 0.673 0.759 1 ൪ (14)

In this matrix, all variables are positively correlated with other variables. It is as-
sumed that the first variable in this matrix denotes the source of the assignable cause.

According to the experimental results, the following are the best system settings. The
number of trees in the RF model was set to 400. For TSF, the number of trees was set to
900. The minimum interval length was set to 8. The parameters 𝐶 and 𝛾 for SVC were
set to 8.0 and 2ିସ, respectively. Both 1D CNN and MCDCNN employed the same archi-
tectures as those listed in Tables 3 and 4, respectively, without undergoing any additional
tuning. Each CNN-based model used a batch size of 512 during the training phase.

Table 7 presents the classification results of various models where 𝑡଴ ∈ T1 during
the training and testing processes. As shown in Table 7, the MCDCNN model achieves
much better performance than all the other models in terms of testing accuracy. The
MCDCNN model outperforms SVC significantly with an accuracy of 97.26% compared
with 95.20%.

To better illustrate the advantages of the CNN-based models, we consider the case
where 𝑡଴ ∈ T1 for the training process and 𝑡଴ ∈ T2 for the testing process. The following
are the best hyperparameter settings based on the experimental results. For the RF model,
the number of trees was set to 600. For TSF, the number of trees was set to 800, and the
minimum length of the interval was set to 8. For SVC, the parameters 𝐶 and 𝛾 were set
to 32.0 and 2ି଺, respectively. A batch size of 512 was utilized for training each CNN-based
model. The test results of the five competing models are presented in Table 8. As shown
in Table 8, the performance of the classification model deteriorates when 𝑡଴ varies. When
the values of 𝑡଴ in the training dataset differ from those in the test dataset, the classifica-
tion accuracies of RF and SVC show a sharp decline. The CNN-based models, on the other
hand, are less affected by variations in 𝑡଴. Again, the MCDCNN model outperforms all
the other models, as demonstrated in Table 8. From Table 8, it can be seen that the
MCDCNN model has achieved the highest accuracy of 96.81%. The average accuracy of
the 1D CNN is 93.39%. These results indicate that the MCDCNN model significantly im-
proves the classification accuracy of 1D CNN. The SVC model achieves an accuracy rate
of 91.47%. When compared with the SVC model, the 1D CNN model outperforms the SVC
model. The TSF model has an accuracy of 91.59%, which is comparable to the SVC model.

Figure 8. Confusion matrices for different classification models when t0 ∈ T1 during the training
process and t0 ∈ T2 during the testing process.

4.2.2. Experiment 2

This experiment considers a covariance matrix estimated from real world data [66],
which has been studied in [67,68]. This example concerns the testing of ballistic mis-
siles, where four (p = 4) related thrust measurements are recorded for each test firing.
The covariance matrix was estimated from 40 measurements, and its representation in a
correlational form (Σ2) is as follows:

Σ2 =


1 0.730 0.719 0.536

0.730 1 0.788 0.673
0.719 0.788 1 0.759
0.536 0.673 0.759 1

 (14)

In this matrix, all variables are positively correlated with other variables. It is assumed
that the first variable in this matrix denotes the source of the assignable cause.

According to the experimental results, the following are the best system settings. The
number of trees in the RF model was set to 400. For TSF, the number of trees was set to 900.
The minimum interval length was set to 8. The parameters C and γ for SVC were set to
8.0 and 2−4, respectively. Both 1D CNN and MCDCNN employed the same architectures
as those listed in Tables 3 and 4, respectively, without undergoing any additional tuning.
Each CNN-based model used a batch size of 512 during the training phase.

Table 7 presents the classification results of various models where t0 ∈ T1 during the
training and testing processes. As shown in Table 7, the MCDCNN model achieves much
better performance than all the other models in terms of testing accuracy. The MCDCNN
model outperforms SVC significantly with an accuracy of 97.26% compared with 95.20%.

Mathematics 2023, 11, 3291 19 of 26

Table 7. Results of experiment 2, the first variable represents the source of the assignable cause,
t0 ∈ T1 for the training and testing processes.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN

Maximum 92.57 92.50 96.40 97.57
Minimum 92.03 91.93 95.87 97.07
Average 92.26 92.14 95.20 96.05 97.26
StdDev 0.16 0.15 0.17 0.16

To better illustrate the advantages of the CNN-based models, we consider the case
where t0 ∈ T1 for the training process and t0 ∈ T2 for the testing process. The following
are the best hyperparameter settings based on the experimental results. For the RF model,
the number of trees was set to 600. For TSF, the number of trees was set to 800, and the
minimum length of the interval was set to 8. For SVC, the parameters C and γ were set to
32.0 and 2−6, respectively. A batch size of 512 was utilized for training each CNN-based
model. The test results of the five competing models are presented in Table 8. As shown in
Table 8, the performance of the classification model deteriorates when t0 varies. When the
values of t0 in the training dataset differ from those in the test dataset, the classification
accuracies of RF and SVC show a sharp decline. The CNN-based models, on the other
hand, are less affected by variations in t0. Again, the MCDCNN model outperforms all the
other models, as demonstrated in Table 8. From Table 8, it can be seen that the MCDCNN
model has achieved the highest accuracy of 96.81%. The average accuracy of the 1D CNN
is 93.39%. These results indicate that the MCDCNN model significantly improves the
classification accuracy of 1D CNN. The SVC model achieves an accuracy rate of 91.47%.
When compared with the SVC model, the 1D CNN model outperforms the SVC model.
The TSF model has an accuracy of 91.59%, which is comparable to the SVC model. It
is also worth noting that TSF produces consistent results even when t0 varies. The RF
model exhibits the lowest classification accuracy among the five models, with an accuracy
of 88.14%.

Table 8. Results of experiment 2, the first variable represents the source of the assignable cause,
t0 ∈ T1 for the training process and t0 ∈ T2 for the testing process.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN

Maximum 88.47 90.31 93.67 97.03
Minimum 87.92 89.96 93.14 96.53
Average 88.14 90.20 91.47 93.39 96.81
StdDev 0.21 0.12 0.20 0.16

It is possible that multiple variables may change simultaneously. Therefore, we further
considered the case where the first and third variables are sources of non-random variation.
According to the experimental results, the following are the best system settings. The
number of trees in the RF model was set to 500. For TSF, the number of trees was set to 900,
and the minimum interval length was set to 8. The parameters C and γ for SVC were
set to 1.0 and 2−5, respectively. Both 1D CNN and MCDCNN utilized the architectures
outlined in Tables 4 and 5, respectively, without undergoing any additional tuning. Each
CNN-based model used a batch size of 256 during the training phase. Table 9 presents the
classification results of various models for t0 ∈ T1 during the training and testing phases.

Table 10 displays the results for the case where t0 ∈ T1 for the training process and
t0 ∈ T2 for the testing process. The optimal hyperparameter settings, as determined by
the experimental results, are as follows. For the RF model, the number of trees was set
to 400. The number of trees was set to 600 for TSF. The minimum length of interval was
set to 8. For SVC, the parameters C and γ were set to 4.0 and 2−4, respectively. The 1D
CNN and MCDCNN employed identical architectures as those listed in Tables 3 and 4,
respectively, without any further tuning. A batch size of 256 was utilized for training each
CNN-based model.

Mathematics 2023, 11, 3291 20 of 26

Table 9. Results of experiment 2, the first and third variables represent the sources of the assignable
cause, t0 ∈ T1 for the training and testing processes.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN

Maximum 97.20 96.37 98.63 99.20
Minimum 96.83 95.93 98.40 98.97
Average 96.96 96.15 97.60 98.49 99.09
StdDev 0.11 0.14 0.08 0.08

Table 10. Results of experiment 2, the first and third variables represent the sources of the assignable
cause, t0 ∈ T1 for the training process and t0 ∈ T2 for the testing process.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN

Maximum 95.13 96.17 98.13 99.07
Minimum 94.53 95.80 97.70 98.47
Average 94.77 95.96 96.10 97.93 98.70
StdDev 0.16 0.15 0.14 0.23

Comparing Tables 7 and 8 with Tables 9 and 10 reveals a significant change in the
performance of the classifier when two positively correlated variables are changed simulta-
neously. This is primarily due to the fact that, when such variables change together, the
value of T2 increases compared with a situation in which only one variable is changed.
This results in a more prominent and apparent change in the pattern. Figure 9 presents a
visual representation of the changes in the T2 statistics of shift pattern and cycle under two
different conditions, which effectively illustrates the phenomenon mentioned earlier.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 26

Table 10. Results of experiment 2, the first and third variables represent the sources of the assignable
cause, 𝑡଴ ∈ T1 for the training process and 𝑡଴ ∈ T2 for the testing process.

Statistics\Algorithm RF TSF SVC 1D CNN MCDCNN
Maximum 95.13 96.17 98.13 99.07
Minimum 94.53 95.80 97.70 98.47
Average 94.77 95.96 96.10 97.93 98.70
StdDev 0.16 0.15 0.14 0.23

Comparing Tables 7 and 8 with Tables 9 and 10 reveals a significant change in the
performance of the classifier when two positively correlated variables are changed simul-
taneously. This is primarily due to the fact that, when such variables change together, the
value of 𝑇ଶ increases compared with a situation in which only one variable is changed.
This results in a more prominent and apparent change in the pattern. Figure 9 presents a
visual representation of the changes in the 𝑇ଶ statistics of shift pattern and cycle under
two different conditions, which effectively illustrates the phenomenon mentioned earlier.

Figure 9. The variation of 𝑇ଶ statistics when multiple variables changed at the same time.

4.2.3. Experiment 3
The impact of dataset size on CNN classification performance is widely recognized.

This experiment aimed to examine the impact of dataset size on classification performance
using the covariance matrix 𝚺ଶ. We trained all the algorithms using six different sizes of
training dataset (1500, 3000, 4500, 6000, 7500, and 9000), referred to as DS଴.ହ, DSଵ.଴, DSଵ.ହ, DSଶ.଴, DSଶ.ହ, and DSଷ.଴. The subscript denotes the multiple of the original
dataset size.

The following are the optimal hyperparameter settings for each model. For the RF
model, the number of trees was set to 600. For TSF, the number of trees was set to 0. The
minimum length of interval was set to 8. As for SVC, the parameters 𝐶 and 𝛾 were set to
1.0 and 2ିସ, respectively. The architectures presented in Tables 3 and 4 were utilized for
both 1D CNN and MCDCNN, without any additional adjustments. Throughout the train-
ing process of each CNN-based model, a batch size of 256 was employed.

Figure 10a displays the impact of the training dataset size on the classification accu-
racy under the condition that 𝑡଴ ∈ T1 is used for both training and testing phases. The
horizontal axis represents the size of the training dataset, and as it increases, all five ma-
chine learning models exhibit improved performance. Figure 10a illustrates that, regard-
less of the method employed, the classification accuracy rate does not improve signifi-
cantly when the dataset size goes beyond DSଵ.ହ. The MCDCNN method demonstrates the
best classification performance, while TSF performs the worst. Figure 10b depicts the ef-
fect of the training dataset size on the classification accuracy when 𝑡଴ ∈ T1 is used for the
training process and 𝑡଴ ∈ T2 is used for the testing process.

Figure 9. The variation of T2 statistics when multiple variables changed at the same time.

4.2.3. Experiment 3

The impact of dataset size on CNN classification performance is widely recognized.
This experiment aimed to examine the impact of dataset size on classification perfor-
mance using the covariance matrix Σ2. We trained all the algorithms using six dif-
ferent sizes of training dataset (1500, 3000, 4500, 6000, 7500, and 9000), referred to as
DS0.5, DS1.0, DS1.5, DS2.0, DS2.5, and DS3.0. The subscript denotes the multiple of the origi-
nal dataset size.

The following are the optimal hyperparameter settings for each model. For the RF
model, the number of trees was set to 600. For TSF, the number of trees was set to 0. The
minimum length of interval was set to 8. As for SVC, the parameters C and γ were set
to 1.0 and 2−4, respectively. The architectures presented in Tables 3 and 4 were utilized
for both 1D CNN and MCDCNN, without any additional adjustments. Throughout the
training process of each CNN-based model, a batch size of 256 was employed.

Figure 10a displays the impact of the training dataset size on the classification accuracy
under the condition that t0 ∈ T1 is used for both training and testing phases. The hori-
zontal axis represents the size of the training dataset, and as it increases, all five machine
learning models exhibit improved performance. Figure 10a illustrates that, regardless of the
method employed, the classification accuracy rate does not improve significantly when the

Mathematics 2023, 11, 3291 21 of 26

dataset size goes beyond DS1.5. The MCDCNN method demonstrates the best classification
performance, while TSF performs the worst. Figure 10b depicts the effect of the training
dataset size on the classification accuracy when t0 ∈ T1 is used for the training process and
t0 ∈ T2 is used for the testing process.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 26

Figure 10. The impact of the training dataset size on the classification accuracy. (a) 𝑡଴ ∈ T1 is used
for both training and testing processes; (b) 𝑡଴ ∈ T1 is used for the training process and 𝑡଴ ∈ T2 is
used for the testing process.

4.2.4. Experiment 4
It is widely recognized that imbalanced datasets have a significant impact on the clas-

sification performance of machine learning algorithms. Imbalanced datasets contain une-
qual numbers of instances in each category. In SPC, this may be due to the natural distri-
bution of non-random patterns. For instance, some patterns may be less common than
others, resulting in an imbalanced dataset. The issue with training a model on an imbal-
anced dataset is that the model tends to be biased towards the majority class. While this
study used simulated data, an experiment was designed to explore the influence of im-
balanced datasets in practical applications.

In order to create an imbalanced scenario, the original sample size of the normal pat-
tern was maintained while one of the non-random patterns was reduced to 20% of its
original size, yielding a sample size of 120 with 40 samples per parameter. The remaining
three non-random patterns were assigned random sizes of 40%, 60%, and 80% of their
original sizes. As a result, the ratio of the number of normal pattern data to the total num-
ber of non-random pattern data in this experiment was 1:2.

For both 1D CNN and MCDCNN, the architectures outlined in Tables 3 and 4 were
employed without any modifications. During the training of each CNN-based model, a
batch size of 256 was used. Table 11 presents the results for different settings, with each
setting repeated 10 times to allow each pattern to be randomly assigned at 40%, 60%, and
80%. In imbalanced settings, we computed the recall, precision, and 𝐹ଵ score. In this sce-
nario, we considered the case where 𝑡଴ ∈ T1 for the training process and 𝑡଴ ∈ T2 for the
testing process.

As shown in Table 11, our proposed method outperforms 1D CNN in handling im-
balanced data. The MCDCNN learns the features in 1D raw data and 2D image data, it
produces more accurate models as reflected by the higher 𝐹ଵ scores shown in Table 11.
Further analysis reveals that, when there is a significant imbalance in the amount of data
among different categories, the performance of the category with less data will be heavily
affected, except in the case of the mixture pattern, which is less susceptible to imbalanced
data.

Table 11. Results of experiment 4, 𝑡଴ ∈ T1 for the training process and 𝑡଴ ∈ T2 for the testing pro-
cess.

Pattern\Algorithm 1D CNN MCDCNN
Trend 94.21 (0.41) 96.84 (0.36)
Cycle 93.17 (0.51) 95.76 (1.14)
Shift 95.30 (0.52) 96.83 (0.46)

Mixture 93.20 (0.58) 96.12 (0.53)
The numbers in parentheses represent standard deviations.

Figure 10. The impact of the training dataset size on the classification accuracy. (a) t0 ∈ T1 is used for
both training and testing processes; (b) t0 ∈ T1 is used for the training process and t0 ∈ T2 is used for
the testing process.

4.2.4. Experiment 4

It is widely recognized that imbalanced datasets have a significant impact on the
classification performance of machine learning algorithms. Imbalanced datasets contain
unequal numbers of instances in each category. In SPC, this may be due to the natural
distribution of non-random patterns. For instance, some patterns may be less common
than others, resulting in an imbalanced dataset. The issue with training a model on an
imbalanced dataset is that the model tends to be biased towards the majority class. While
this study used simulated data, an experiment was designed to explore the influence of
imbalanced datasets in practical applications.

In order to create an imbalanced scenario, the original sample size of the normal
pattern was maintained while one of the non-random patterns was reduced to 20% of its
original size, yielding a sample size of 120 with 40 samples per parameter. The remaining
three non-random patterns were assigned random sizes of 40%, 60%, and 80% of their
original sizes. As a result, the ratio of the number of normal pattern data to the total number
of non-random pattern data in this experiment was 1:2.

For both 1D CNN and MCDCNN, the architectures outlined in Tables 3 and 4 were
employed without any modifications. During the training of each CNN-based model, a
batch size of 256 was used. Table 11 presents the results for different settings, with each
setting repeated 10 times to allow each pattern to be randomly assigned at 40%, 60%,
and 80%. In imbalanced settings, we computed the recall, precision, and F1 score. In this
scenario, we considered the case where t0 ∈ T1 for the training process and t0 ∈ T2 for the
testing process.

Table 11. Results of experiment 4, t0 ∈ T1 for the training process and t0 ∈ T2 for the testing process.

Pattern\Algorithm 1D CNN MCDCNN

Trend 94.21 (0.41) 96.84 (0.36)
Cycle 93.17 (0.51) 95.76 (1.14)
Shift 95.30 (0.52) 96.83 (0.46)

Mixture 93.20 (0.58) 96.12 (0.53)
The numbers in parentheses represent standard deviations.

As shown in Table 11, our proposed method outperforms 1D CNN in handling
imbalanced data. The MCDCNN learns the features in 1D raw data and 2D image data,
it produces more accurate models as reflected by the higher F1 scores shown in Table 11.
Further analysis reveals that, when there is a significant imbalance in the amount of
data among different categories, the performance of the category with less data will be

Mathematics 2023, 11, 3291 22 of 26

heavily affected, except in the case of the mixture pattern, which is less susceptible to
imbalanced data.

4.2.5. Experiment 5

To demonstrate and validate the effectiveness of the proposed MCDCNN method
in learning dynamic characteristics of non-random patterns and its application to online
analysis, we employ real-world data obtained from a detergent manufacturing company,
as described in the work of Niaki and Abbasi [68]. The data were obtained from the
sulfonation process, and three correlated parameters, namely color, free oil percentage, and
acidity percentage, are of high importance. The data obtained from 10 days were used to
estimate the mean vector and covariance matrix. The mean vector of these data is

x′ = [67.5 12.0 97.0] (15)

The covariance matrix is

Σ3 =

 1 0.437 −0.490
0.437 1 −0.692
−0.490 −0.692 1

 (16)

The estimated mean vector and covariance matrix were used to generate non-random
data for illustrative purposes.

This experiment uses a moving window approach to demonstrate and compare the
performance of different models through online analysis. The size of the moving window
is set to 32. At each step, the window advances to include a new observation and discard
an old one. This method ensures a constant number of observations within the window.

Figure 11 presents the results of various models in detecting and classifying trend
patterns. For the purpose of explanation and comparison, we made adjustments to the
data, with the non-random pattern starting from the 33rd observation. As seen in Figure 11,
the MCDCNN correctly identifies the non-random pattern as a trend pattern in the 15th
analysis window (composed of observations from the 15th to the 46th data point). The 1D
CNN model, on the other hand, detects the trend pattern in the 18th window. The SVC, TSF,
and RF models detect the trend pattern in the 21st, 20th, and 21st windows, respectively.
It is evident that the MCDCNN model outperforms the 1D CNN model and traditional
machine learning models. These results align with the findings from previous experiments.

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 26

4.2.5. Experiment 5
To demonstrate and validate the effectiveness of the proposed MCDCNN method in

learning dynamic characteristics of non-random patterns and its application to online
analysis, we employ real-world data obtained from a detergent manufacturing company,
as described in the work of Niaki and Abbasi [68]. The data were obtained from the sul-
fonation process, and three correlated parameters, namely color, free oil percentage, and
acidity percentage, are of high importance. The data obtained from 10 days were used to
estimate the mean vector and covariance matrix. The mean vector of these data is 𝐱തᇱ = ሾ67.5 12.0 97.0ሿ (15)

The covariance matrix is

𝚺ଷ = ൥ 1 0.437 −0.4900.437 1 −0.692−0.490 −0.692 1 ൩ (16)

The estimated mean vector and covariance matrix were used to generate non-random
data for illustrative purposes.

This experiment uses a moving window approach to demonstrate and compare the
performance of different models through online analysis. The size of the moving window
is set to 32. At each step, the window advances to include a new observation and discard
an old one. This method ensures a constant number of observations within the window.

Figure 11 presents the results of various models in detecting and classifying trend
patterns. For the purpose of explanation and comparison, we made adjustments to the
data, with the non-random pattern starting from the 33rd observation. As seen in Figure
11, the MCDCNN correctly identifies the non-random pattern as a trend pattern in the
15th analysis window (composed of observations from the 15th to the 46th data point).
The 1D CNN model, on the other hand, detects the trend pattern in the 18th window. The
SVC, TSF, and RF models detect the trend pattern in the 21st, 20th, and 21st windows,
respectively. It is evident that the MCDCNN model outperforms the 1D CNN model and
traditional machine learning models. These results align with the findings from previous
experiments.

Figure 12 displays the results of various models in detecting and classifying the shift
pattern. The MCDCNN, 1D CNN, SVC, TSF, and RF models identify the shift pattern in
the 16th, 22nd, 23rd, 23rd, and 25th windows, respectively. Based on these results, it is
evident that the MCDCNN model is still capable of detecting the shift pattern earlier than
the other models.

Figure 11. The results of various models in detecting and classifying the trend pattern. Figure 11. The results of various models in detecting and classifying the trend pattern.

Figure 12 displays the results of various models in detecting and classifying the shift
pattern. The MCDCNN, 1D CNN, SVC, TSF, and RF models identify the shift pattern in
the 16th, 22nd, 23rd, 23rd, and 25th windows, respectively. Based on these results, it is
evident that the MCDCNN model is still capable of detecting the shift pattern earlier than
the other models.

Mathematics 2023, 11, 3291 23 of 26Mathematics 2023, 11, x FOR PEER REVIEW 23 of 26

Figure 12. The results of various models in detecting and classifying the shift pattern.

The experimental results presented above reveal several important findings. Firstly,
the simulation results indicate that the proposed MCDCNN model performs better than
other methods and achieves the highest accuracy on the test dataset. This suggests that
incorporating both 1D and 2D features of control chart patterns could result in improved
performance, as shown by the comparison between MCDCNN and 1D CNN. Although
the use of 2D texture images may lead to longer computational time, this is unlikely to be
a significant issue in real-world applications, as the data analysis for a window can be
completed within 0.02 s using the aforementioned software and hardware.

Secondly, the results indicate that the CNN-based models and TSF method are less
sensitive to the position of 𝑡଴ than are other methods. Conversely, the RF and SVC mod-
els exhibit a decline in performance if the values of 𝑡଴ in the training dataset differ from
those in the test dataset.

5. Conclusions
This study developed a multi-channel CNN-based approach for CCPR in multivari-

ate processes. We conducted a comparative analysis using various covariance matrices
and demonstrated that the multi-channel CNN approach outperforms other methods.

The novel contribution of this study lies in the integration of 1D raw time series data
and 2D time series imaging data using a multichannel CNN method. To evaluate the per-
formance of various classifiers, we estimated the average classification accuracy and F1
score. Extensive comparisons revealed that the CNN-based models outperform tradi-
tional ML classifiers. The superiority of the MCDCNN implies that learning both 1D and
2D features of control chart patterns may lead to better performance.

This study also addressed the dynamic nature of control chart patterns by examining
various pattern starting points within an analysis window. According to the results, both
1D CNN and the proposed MCDCNN are found to be less affected by misalignment is-
sues. In addition, we considered the issue of imbalanced data, which arises from quanti-
tative differences between various pattern classes. By evaluating the 𝐹ଵ metric, we found
that the proposed MCDCNN outperforms other classification models on imbalanced da-
tasets. Overall, the results suggest that the proposed MCDCNN is a promising tool for
CCPR in multivariate processes. The proposed method can advance intelligent SPC meth-
ods.

The datasets in this study were generated through simulations, which resulted in
several limitations. Consequently, it is crucial to identify key areas for future research.
First, we assumed that the data of each category in the training set has been labelled cor-
rectly. This assumption is not unrealistic, because in practice, the categories can be judged
by experienced human experts. However, future research might consider developing an
appropriate unsupervised learning algorithm that can be used to initially group the col-
lected data before it is reevaluated by human experts to reduce the burden of labor. Ad-
ditional work can also include investigating the impact on classification accuracy when a
small amount of data is misclassified.

Figure 12. The results of various models in detecting and classifying the shift pattern.

The experimental results presented above reveal several important findings. Firstly,
the simulation results indicate that the proposed MCDCNN model performs better than
other methods and achieves the highest accuracy on the test dataset. This suggests that
incorporating both 1D and 2D features of control chart patterns could result in improved
performance, as shown by the comparison between MCDCNN and 1D CNN. Although
the use of 2D texture images may lead to longer computational time, this is unlikely to
be a significant issue in real-world applications, as the data analysis for a window can be
completed within 0.02 s using the aforementioned software and hardware.

Secondly, the results indicate that the CNN-based models and TSF method are less
sensitive to the position of t0 than are other methods. Conversely, the RF and SVC models
exhibit a decline in performance if the values of t0 in the training dataset differ from those
in the test dataset.

5. Conclusions

This study developed a multi-channel CNN-based approach for CCPR in multivariate
processes. We conducted a comparative analysis using various covariance matrices and
demonstrated that the multi-channel CNN approach outperforms other methods.

The novel contribution of this study lies in the integration of 1D raw time series data
and 2D time series imaging data using a multichannel CNN method. To evaluate the
performance of various classifiers, we estimated the average classification accuracy and F1
score. Extensive comparisons revealed that the CNN-based models outperform traditional
ML classifiers. The superiority of the MCDCNN implies that learning both 1D and 2D
features of control chart patterns may lead to better performance.

This study also addressed the dynamic nature of control chart patterns by examining
various pattern starting points within an analysis window. According to the results, both
1D CNN and the proposed MCDCNN are found to be less affected by misalignment issues.
In addition, we considered the issue of imbalanced data, which arises from quantitative
differences between various pattern classes. By evaluating the F1 metric, we found that
the proposed MCDCNN outperforms other classification models on imbalanced datasets.
Overall, the results suggest that the proposed MCDCNN is a promising tool for CCPR in
multivariate processes. The proposed method can advance intelligent SPC methods.

The datasets in this study were generated through simulations, which resulted in
several limitations. Consequently, it is crucial to identify key areas for future research. First,
we assumed that the data of each category in the training set has been labelled correctly.
This assumption is not unrealistic, because in practice, the categories can be judged by
experienced human experts. However, future research might consider developing an ap-
propriate unsupervised learning algorithm that can be used to initially group the collected
data before it is reevaluated by human experts to reduce the burden of labor. Additional
work can also include investigating the impact on classification accuracy when a small
amount of data is misclassified.

Collecting non-random pattern data is extremely costly, and more importantly, the
number of samples for normal patterns is usually much larger than that of non-random

Mathematics 2023, 11, 3291 24 of 26

patterns. This leads to the problem of imbalanced data across different classes. Future
research can explore suitable data augmentation methods for multivariate T2 data, with
the goal of balancing the data across different classes and achieve improved classification
accuracy. Exploring the effectiveness of the proposed method for datasets with a larger
number of variables could be considered as a topic for future research to further demon-
strate its capabilities. Finally, investigating concurrent control chart patterns would also be
an interesting area of study for future research.

Author Contributions: Conceptualization, C.-S.C.; methodology, C.-S.C. and P.-W.C.; software,
C.-S.C., P.-W.C., Y.-C.H. and Y.-T.W.; formal analysis, C.-S.C., P.-W.C., Y.-C.H. and Y.-T.W.; inves-
tigation, C.-S.C. and P.-W.C.; data curation, P.-W.C., Y.-C.H. and Y.-T.W.; writing—original draft
preparation, C.-S.C., P.-W.C., Y.-C.H. and Y.-T.W.; writing—review and editing, C.-S.C., P.-W.C.,
Y.-C.H. and Y.-T.W.; supervision, C.-S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the National Science and Technology Council, R.O.C.
(grant number NSTC 111-2221-E-155-028-).

Data Availability Statement: All data generated in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest regarding the publication of this manuscript.

References
1. Montgomery, D.C. Introduction to Statistical Quality Control, 8th ed.; John Wiley & Sons: New York, NY, USA, 2020.
2. Western Electric. Statistical Quality Control Handbook; Western Electric Company: Indianapolis, IN, USA, 1956.
3. Hwarng, H.B.; Hubele, N.F. Back-propagation pattern recognizers for X control charts: Methodology and performance. Comput.

Ind. Eng. 1993, 24, 219–235. [CrossRef]
4. Cheng, C.S. A neural network approach for the analysis of control chart patterns. Int. J. Prod. Res. 1997, 35, 667–697. [CrossRef]
5. Pham, D.T.; Wani, M.A. Feature-based control chart pattern recognition. Int. J. Prod. Res. 1997, 35, 1875–1890. [CrossRef]
6. Nelson, L.S. The Shewhart control chart—Tests for special causes. J. Qual. Technol. 1984, 16, 237–239. [CrossRef]
7. Mason, R.L.; Chou, Y.M.; Sullivan, J.H.; Stoumbos, Z.G.; Young, J.C. Systematic patterns in T2 charts. J. Qual. Technol. 2003,

35, 47–58. [CrossRef]
8. Hassan, A.; Baksh, M.S.N.; Shaharoun, A.M.; Jamaluddin, H. Improved SPC chart pattern recognition using statistical features.

Int. J. Prod. Res. 2003, 41, 1587–1603. [CrossRef]
9. Gauri, S.K.; Chakraborty, S. Recognition of control chart patterns using improved selection of features. Comput. Ind. Eng. 2009,

56, 1577–1588. [CrossRef]
10. Hachicha, W.; Ghorbel, A. A survey of control chart pattern recognition literature (1991–2010) based on a new conceptual

classification scheme. Comput. Ind. Eng. 2012, 63, 204–222. [CrossRef]
11. Barros, P.; Magg, S.; Weber, C.; Wermter, S. A multichannel convolutional neural network for hand posture recognition. In Artificial

Neural Networks and Machine Learning—ICANN 2014; Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P.,
Magg, S., Palm, G., Villa, A.E.P., Eds.; Springer: Cham, Switzerland, 2014; pp. 403–410.

12. Yang, J.B.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series
for human activity recognition. In Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires,
Argentina, 25–31 July 2015.

13. Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Exploiting multi-channels deep convolutional neural networks for multivariate time
series classification. Front. Comput. Sci. 2016, 10, 96–112. [CrossRef]

14. Sipers, A.; Borm, P.; Peeters, R. On the unique reconstruction of a signal from its unthresholded recurrence plot. Phys. Lett. A
2011, 375, 2309–2321. [CrossRef]

15. Zan, T.; Liu, Z.; Wang, H.; Wang, M.; Gao, X. Control chart pattern recognition using the convolutional neural network. J. Intell.
Manuf. 2020, 31, 703–716. [CrossRef]

16. Reis, M.S.; Gins, G. Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis.
Processes 2017, 5, 35. [CrossRef]

17. Evans, J.R.; Lindsay, W.M. A framework for expert system development in statistical quality control. Comput. Ind. Eng. 1988,
14, 335–343. [CrossRef]

18. Cheng, C.S.; Hubele, N.F. Design of a knowledge-based expert system for statistical process control. Comput. Ind. Eng. 1992,
22, 501–517. [CrossRef]

19. Bag, M.; Gauri, S.K.; Chakraborty, S. An expert system for control chart pattern recognition. Int. J. Adv. Manuf. Syst. 2012,
62, 291–301. [CrossRef]

20. Pham, D.T.; Oztemel, E. Control chart pattern recognition using neural networks. J. Syst. Eng. 1992, 2, 256–262.

https://doi.org/10.1016/0360-8352(93)90010-U
https://doi.org/10.1080/002075497195650
https://doi.org/10.1080/002075497194967
https://doi.org/10.1080/00224065.1984.11978921
https://doi.org/10.1080/00224065.2003.11980190
https://doi.org/10.1080/0020754021000049844
https://doi.org/10.1016/j.cie.2008.10.006
https://doi.org/10.1016/j.cie.2012.03.002
https://doi.org/10.1007/s11704-015-4478-2
https://doi.org/10.1016/j.physleta.2011.04.040
https://doi.org/10.1007/s10845-019-01473-0
https://doi.org/10.3390/pr5030035
https://doi.org/10.1016/0360-8352(88)90011-3
https://doi.org/10.1016/0360-8352(92)90025-F
https://doi.org/10.1007/s00170-011-3799-z

Mathematics 2023, 11, 3291 25 of 26

21. Guh, R.S.; Tannock, J.D.T. Recognition of control chart concurrent patterns using a neural network approach. Int. J. Prod. Res.
1999, 37, 1743–1765. [CrossRef]

22. Ranaee, V.; Ebrahimzadeh, A.; Ghaderi, R. Application of the PSO-SVM model for recognition of control chart patterns. ISA Trans.
2010, 49, 577–586. [CrossRef]

23. Zhang, M.; Yuan, Y.; Wang, R.; Cheng, W. Recognition of mixture control chart patterns based on fusion feature reduction and
fireworks algorithm-optimized MSVM. Pattern Anal. Appl. 2020, 23, 15–26. [CrossRef]

24. Ranaee, V.; Ebrahimzadeh, A. Control chart pattern recognition using neural networks and efficient features: A comparative
study. Pattern Anal. Appl. 2013, 16, 321–332. [CrossRef]

25. Addeh, A.; Khormali, A.; Golilarz, N.A. Control chart pattern recognition using RBF neural network with new training algorithm
and practical features. ISA Trans. 2018, 79, 202–216. [CrossRef] [PubMed]

26. Chen, Z.; Lu, S.; Lam, S. A hybrid system for SPC concurrent pattern recognition. Adv. Eng. Inform. 2007, 21, 303–310. [CrossRef]
27. Yang, W.A.; Zhou, W.; Liao, W.; Gou, Y. Identification and quantification of concurrent control chart patterns using extreme-point

symmetric mode decomposition and extreme learning machines. Neurocomputing 2015, 147, 260–270. [CrossRef]
28. García, E.; Peñabaena-Niebles, R.; Jubiz-Diaz, M.; Perez-Tafur, A. Concurrent control chart pattern recognition: A systematic

review. Mathematics 2022, 10, 934. [CrossRef]
29. Wang, T.Y.; Chen, L.H. Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. J. Intell. Manuf.

2002, 13, 211–221. [CrossRef]
30. Low, C.; Hsu, C.M.; Yu, F.J. Analysis of variations in a multi-variate process using neural networks. Int. J. Adv. Manuf. Technol.

2003, 22, 911–921. [CrossRef]
31. Sun, R.; Tsung, F. A kernel-distance-based multivariate control chart using support vector methods. Int. J. Prod. Res. 2003,

41, 2975–2989. [CrossRef]
32. Chen, L.H.; Wang, T.Y. Artificial neural networks to classify mean shifts from multivariate χ2 chart signals. Comput. Ind. Eng.

2004, 47, 195–205. [CrossRef]
33. Guh, R.S. On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach.

Qual. Reliab. Eng. Int. 2007, 23, 367–385. [CrossRef]
34. Cheng, C.S.; Cheng, H.P. Identifying the source of variance shifts in the multivariate process using neural networks and support

vector machines. Expert Syst. Appl. 2008, 35, 198–206. [CrossRef]
35. Cheng, C.S.; Cheng, H.P. Using neural networks to detect the bivariate process variance shifts pattern. Comput. Ind. Eng. 2011,

60, 269–278. [CrossRef]
36. Cheng, H.P.; Cheng, C.S. A support vector machine for recognizing control chart patterns in multivariate processes. In Proceedings

of the 5th Asian Network for Quality Congress, Incheon, Republic of Korea, 17–18 October 2007.
37. Beshah, B.; Muluneh, A. Control chart pattern recognition of multivariate auto-correlated processes using artificial neural network.

Zede J. 2017, 35, 47–57.
38. Hong, Z.; Li, Y.; Zeng, Z. Convolutional neural network for control chart patterns recognition. In Proceedings of the CSAE 2019:

3rd International Conference on Computer Science and Application Engineering, Sanya, China, 22–24 October 2019.
39. Miao, Z.; Yang, M. Control chart pattern recognition based on convolution neural network. In Smart Innovations in Communication

and Computational Sciences; Advances in Intelligent Systems and Computing (AISC) 670; Panigrahi, B., Trivedi, M., Mishra, K.,
Tiwari, S., Singh, P., Eds.; Springer: Singapore, 2019; pp. 97–104.

40. Xu, J.; Lv, H.; Zhung, Z.; Lu, Z.; Zou, D.; Qin, W. Control chart pattern recognition method based on improved one-dimensional
convolutional neural network. IFAC Pap. 2019, 52, 1537–1542. [CrossRef]

41. Yu, J.; Zheng, X.; Wang, S. A deep autoencoder feature learning method for process pattern recognition. J. Process. Control. 2019,
79, 1–15. [CrossRef]

42. Fuqua, D.; Razzaghi, T. A cost-sensitive convolution neural network learning for control chart pattern recognition. Expert Syst.
Appl. 2020, 150, 113275. [CrossRef]

43. Zan, T.; Liu, Z.; Su, Z.; Wang, M.; Gao, X.; Chen, D. Statistical process control with intelligence based on the deep learning model.
Appl. Sci. 2020, 10, 308. [CrossRef]

44. Cheng, C.S.; Ho, Y.; Chiu, T.C. End-to-end control chart pattern classification using a 1D convolutional neural network and
transfer learning. Processes 2021, 9, 1484. [CrossRef]

45. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

46. Wang, Z.; Oates, T. Encoding time series as images for visual inspection and classification using tiled convolutional neural
networks. In Proceedings of the Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–26 January 2015.

47. Hatami, N.; Gavet, Y.; Debayle, J. Classification of time-series images using deep convolutional neural networks. arXiv
2017, arXiv:1710.00886.

48. Wang, Z.; Oates, T. Imaging time-series to improve classification and imputation. arXiv 2015, arXiv:1506.00327.
49. Martínez-Arellano, G.; Terrazas, G.; Ratchev, S. Tool wear classification using time series imaging and deep learning. Int. J. Adv.

Manuf. Technol. 2019, 104, 3647–3662. [CrossRef]
50. Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 1987, 4, 973–977. [CrossRef]

https://doi.org/10.1080/002075499190987
https://doi.org/10.1016/j.isatra.2010.06.005
https://doi.org/10.1007/s10044-018-0748-6
https://doi.org/10.1007/s10044-011-0246-6
https://doi.org/10.1016/j.isatra.2018.04.020
https://www.ncbi.nlm.nih.gov/pubmed/29735337
https://doi.org/10.1016/j.aei.2007.03.002
https://doi.org/10.1016/j.neucom.2014.06.068
https://doi.org/10.3390/math10060934
https://doi.org/10.1023/A:1015738906895
https://doi.org/10.1007/s00170-003-1631-0
https://doi.org/10.1080/1352816031000075224
https://doi.org/10.1016/j.cie.2004.07.002
https://doi.org/10.1002/qre.796
https://doi.org/10.1016/j.eswa.2007.06.002
https://doi.org/10.1016/j.cie.2010.11.009
https://doi.org/10.1016/j.ifacol.2019.11.418
https://doi.org/10.1016/j.jprocont.2019.05.002
https://doi.org/10.1016/j.eswa.2020.113275
https://doi.org/10.3390/app10010308
https://doi.org/10.3390/pr9091484
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1007/s00170-019-04090-6
https://doi.org/10.1209/0295-5075/4/9/004

Mathematics 2023, 11, 3291 26 of 26

51. Chen, W.; Shi, K. A deep learning framework for time series classification using relative position matrix and convolutional neural
network. Neurocomputing 2019, 359, 384–394. [CrossRef]

52. Faria, F.A.; Almeida, J.; Alberton, B.; Morellato, L.P.C.; Torres, R.S. Fusion of time series representations for plant recognition in
phenology studies. Pattern Recognit. Lett. 2016, 83, 205–214. [CrossRef]

53. Al-Saffar, A.A.M.; Tao, H.; Talab, M.A. Review of deep convolution neural network in image classification. In Proceedings of
the 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Jakarta,
Indonesia, 23–24 October 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017.

54. Aloysius, N.; Geetha, M. A review on deep convolutional neural networks. In Proceedings of the 2017 International Conference
on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, USA, 2017.

55. Ajit, A.; Acharya, K.; Samanta, A. A review of convolutional neural networks. In Proceedings of the 2020 International Conference
on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; Institute of
Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020.

56. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.
Knowl. Discov. 2019, 33, 917–963. [CrossRef]

57. Chollet, F. Others, Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 24 April 2023).
58. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
59. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
60. Breiman, L. Random forests. Mach. Leran. 2001, 45, 5–32. [CrossRef]
61. Deng, H.; Runger, G.; Tuv, E.; Vladimir, M. A time series forest for classification and feature extraction. Inf. Sci. 2013, 239, 142–153.

[CrossRef]
62. Guh, R.S.; Hsieh, Y.C. A neural network based model for abnormal pattern recognition of control charts. Comput. Ind. Eng. 1999,

36, 97–108. [CrossRef]
63. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.;

Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]
64. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,

45, 427–437. [CrossRef]
65. Löning, M.; Bagnall, A.; Ganesh, S.; Kazakov, V.; Lines, J.; Király, F.J. Sktime: A unified interface for machine learning with time

series. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada,
8–14 December 2019.

66. Jackson, J.E. Principal components and factor analysis: Part I—Principal components. J. Qual. Technol. 1980, 12, 201–213.
[CrossRef]

67. Doganaksoy, N.; Faltin, F.W.; Tucker, W.T. Identification of out of control quality characteristics in a multivariate manufacturing
environment. Commun. Stat. Theory Methods 1991, 20, 2775–2790. [CrossRef]

68. Niaki, S.T.A.; Abbasi, B. Fault diagnosis in multivariate control charts using artificial neural networks. Qual. Reliab. Eng. Int. 2005,
21, 825–840. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2019.06.032
https://doi.org/10.1016/j.patrec.2016.03.005
https://doi.org/10.1007/s10618-019-00619-1
https://github.com/fchollet/keras
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.1016/S0360-8352(99)00004-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1080/00224065.1980.11980967
https://doi.org/10.1080/03610929108830667
https://doi.org/10.1002/qre.689

	Introduction
	Related Work
	Methodology
	Recurrence Plot
	Multi-Channel Deep Convolutional Neural Network
	Traditional Machine Learning Algorithms
	Support Vector Machine
	Random Forest
	Time Series Forest

	Generation of Datasets in Multivariate Processes

	Discussion
	Experimental Settings
	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Conclusions
	References

