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Abstract: Mathematical modeling is the most important tool for constructing theories of different
kinds of two-phase flows. This review is devoted to the analysis of the introduction of mathematical
modeling to two-phase flows, where solid particles mainly serve as the dispersed phase. The main
problems and features of the study of gas-solid two-phase flows are included. The main characteristics
of gas flows with solid particles are discussed, and the classification of two-phase flows is developed
based on these characteristics. The Lagrangian and Euler approaches to modeling the motion of a
dispersed phase (particles) are described. A great deal of attention is paid to the consideration of
numerical simulation methods that provide descriptions of turbulent gas flow at different hierarchical
levels (RANS, LES, and DNS), different levels of description of interphase interactions (one-way
coupling (OWC), two-way coupling (TWC), and four-way coupling (FWC)), and different levels of
interface resolution (partial-point (PP) and particle-resolved (PR)). Examples of studies carried out on
the basis of the identified approaches are excluded, and they are also excluded for the mathematical
modeling of various classes of gas-solid two-phase flows.

Keywords: gas-solid two-phase flows; mathematical modeling; Lagrangian and Eulerian modeling;
large eddy simulation (LES); direct numerical simulation (DNS)
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1. Introduction

Continuum flows, which carry dispersed admixtures, include [1–4] sandstorms, tor-
nadoes, volcanic eruptions, forest fires, and precipitation in the form of hail, snow, etc.
Examples of technical devices that use two-phase currents include the paths of solid-fuel
jet engines, pneumatic devices, and many others.

Today, we can state that there is continual growth of interest among researchers in the
study of two-phase flows. This seems to be due to two factors. First, in recent years, there
has been a tremendous growth in the possibilities of both the mathematical and physical
(experimental) modeling of two-phase flows. Second, the range of problems under study
for various types of two-phase flows is expanding. The second circumstance largely stems
from the first circumstance.

This review differs from other reviews on this topic, which have largely been devoted
to some narrower problems (for example, the problem of the influence of particles on
gas turbulence, the problem of particle clustering, etc.). This review attempts to analyze
the state of mathematical modeling in a broader sense. In the review, a classification of
two-phase turbulent flows according to particle inertia is constructed. This classification
covers almost the entire range of particle inertia. This classification is of great prognostic
value since it offers new dimensionless criteria that allow one to analyze both the existing
results at different qualitative levels and conduct new studies regarding various classes of
two-phase flows determined by the concentration and inertia of particles.
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This review is devoted to the analysis of the currently available approaches to the
mathematical modeling of two-phase flows, where mainly solid particles act as the dis-
persed phase. For anyone who is interested in the direct numerical simulation (DNS) of
turbulent flows with droplets and bubbles, it is recommended that they refer to the review
presented in [5].

This review is structured as follows. Section 2 describes the main problems and
the particularity of studying gas-solid two-phase flows. The main characteristics of gas
flows with solid particles and the classifications of gas-solid two-phase flows developed
on their basis are discussed in Section 3. Section 4 describes Lagrangian and Eulerian
approaches to modeling the motion of the dispersed phase and discusses issues relating to
the mathematical modeling of a gas flow that carries particles. The final section, Section 5,
presents modern numerical modeling methods that describe turbulent gas flow at different
hierarchical levels, different descriptive levels of interphase interactions, and different
levels of resolution of the interphase boundary.

2. Main Problems and Specific Features of Two-Phase Flow Modeling
2.1. Main Problems of Two-Phase Flow Modeling

Heterogeneous or two-phase flows are studied to solve two main problems [6,7].

2.2. Specific Features of Two-Phase Flow Modeling
2.2.1. Multiscale Physics of Two-Phase Flow

The inertia of particles (which is primarily determined by their size and density) can
vary in a colossal range (many orders of magnitude). One-phase flows are characterized
by a number of space-time scales that are determined by the magnitude of their inherent
flow velocity, flow regime (laminar, transient, and turbulent), flow geometry, etc. For the
accurate modeling of particle motion, it is necessary to consider particles’ interactions at
different scales; these interactions are determined by (1) averaged movement, (2) wide-
scale fluctuation motions, (3) fine-scale fluctuation motions, (4) different instabilities (for
example, Tollmin–Schlichting instability in boundary layers, Taylor–Gertler instability in
pipes, and Kelvin–Helmholtz instability in pure shear layers), etc.

2.2.2. Multiplicity of Forces Acting on Particles

For the correct integration of the equations of a particle’s motion, it is necessary to
consider a large number of force factors (forces). The main forces are listed as follows:
(1) aerodynamic drag force, (2) gravitational forces (Archimedes forces), (3) Safmans’ force,
(4) Magnus’ force, (5) the force of thermophoresis, (6) the force of turbofreezing, (7) the
force of diffusiophoresis, (8) centrifugal force, (9) electrostatic forces, and (10) wall power.

It important to notice that many of these forces, in one form or another, contain the
velocity of the carrier phase u(τ), which is a random variable in a turbulent flow. Therefore,
a question often arises regarding the applicability of a particular expression that is obtained
theoretically or empirically for other conditions to calculating the influence of forces (for
example, for laminar flow or in the absence of velocity shift).

2.2.3. Multiplicity of Modeling Parameters

The main parameters are as follows: (1) three components of the average speed

(Ui, Uj, and Uk), (2) three components of the fluctuation (rms) velocity ((u′i
2)

1/2
, (u′j

2)
1/2

,

and (u′k
2)

1/2
), (3) average temperature (T), (4) fluctuation (rms) in temperature ((t′2)

1/2
),

(5) double correlations of various components of fluctuation velocities (components of the
Reynolds stress tensor) (u′iu

′
j), (6) double correlations of fluctuation velocity and fluctuation

temperature (u′i t′, u′j t′), etc.
This multiplicity is explained by the fact that similar parameters for the dispersed

phase are added to the parameters indicated above (for example, averaged (Vi, Vj, Vk) and
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fluctuation velocities ((v′i
2)

1/2
, (v′j

2)
1/2

, and (v′k
2)

1/2
) and particle temperatures

(Tp, (t′p
2)

1/2
), etc.), including their size, size distribution, averaged and fluctuation (rms)

concentrations (Φ, (φ′2)
1/2

), and the parameters for the carrier phase (in the presence of
particles), the heat of phase transitions, and many others.

2.2.4. Multiplicity of Collision Processes

The main factors contributing to the occurrence of collisions between particles are
listed as follows: (1) polydispersity, which leads to a difference in the averaged velocities;
(2) the influence of the gradient of the averaged velocity of the carrier phase; (3) the
influence of gravity (Archimedes); (4) the turbulent transport effect, which leads to the
appearance of relative velocity between nearby particles; (5) the effect of clustering, i.e., an
increase in the concentration of the dispersed phase in local regions of space; (6) electrostatic
interactions; and (7) Brownian motion.

2.2.5. Multiplicity of Phase and Chemical Transformations

Phase transformations are not considered in this review because the subject of this
review is gas flows with solid particles (gas-solid two-phase flow). However, for non-
isothermal two-phase flows, particle melting may occur during interphase heat exchange.
The melting of particles in the gas stream leads to the transition of a gas-solid two-phase
flow into a gas–liquid two-phase flow. The subsequent process of the crystallization
(solidification) of droplets can cause the flow to “return” to its initial state.

2.2.6. Multiplicity of Dimensionless Parameters

An example of such parameters is represented by the numerous Stokes numbers (see
Section 3.3) that characterize the inertia of the dispersed phase with ratios of the various
scales of the carrier gas, the Reynolds number of the particle, etc.

3. Main Characteristics of Two-Phase Flows

This section presents classifications of two-phase flows developed on their basis.

3.1. Particle Concentrations

The possible varieties of particle concentrations (classification) are given in [8,9]. There
are three classes of two-phase flows: (1) dilute two-phase flows without the reverse effect
of the dispersed phase; (2) dilute two-phase flows with the reverse effect of the dispersed
phase; and (3) dense two-phase flows with intense collisional interactions between particles.

3.1.1. One-Way Coupling

To model the motion of particles in dilute two-phase streams (dispersed phase
Φ ≤ 10−6), that is, streams with a small Φ, “one-way coupling” (OWC) is applied.

3.1.2. Two-Way Coupling

With an increase in the concentration of particles (10−6 < Φ ≤ 10−3) [10–14], “two-way
coupling” (TWC) occurs.

3.1.3. Four-Way Coupling

Further growth (Φ > 10−3) requires the inclusion of the contribution of interpar-
ticle interactions to the process of the momentum and energy transfer of the dispersed
phase [15–18]. The chaotic motion of particles during their interaction is called “pseudo-
turbulence” to distinguish it from the actual turbulent fluctuations of particle velocities
associated with their involvement in the turbulent motion of the carrier flow.

It should be noted that there is a clustering phenomenon in two-phase flows that
consists of a sharp increase in the concentration of particles in local areas. This significant
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rise in Φ leads to an increase in the probability of particle collisions, even in a dilute
two-phase flow.

In reference to what has been discussed above, it is clear that in flows with a small mass
of dispersed phase content, in which particles do not undergo collisions and do not have a
reverse effect on the flow of the carrier continuous medium, clustering phenomena can lead
to flow restructuring. The formation of local areas of increased particle concentrations has
been revealed experimentally or via calculation in various flows, including homogeneous
isotropic turbulence [19,20], shear flows in pipes (channels) [21,22], flows in boundary
layers [23], jet flows, traces behind streamlined bodies, flows around blunted bodies [24],
and free, concentrated vortices [25–27].

3.2. Particles’ Dynamic Relaxation Time

The inertia of particles is the time of dynamic relaxation τp, which is represented in
the following form

τp = τp0/C(Rep) =
ρp d2

p

18µ C(Rep)
(1)

where ρp is the physical density; τp0 is the time of dynamic relaxation of the Stokes particle;
µ is the dynamic viscosity.

3.3. Stokes Numbers

There are three dimensionless criteria listed in [28,29]: Stk f , StkL, and StkK,
representing Stokes numbers in averaged, large-scale, and small-scale fluctuation
movements, respectively.

Stki =
τp

Ti
. (2)

In the equation above, Ti denotes a given characteristic time of the carrier phase.

3.3.1. Stokes Number in Time-Averaged Motion

We can apply the Stokes number to averaged motion, which we express as

Stk f =
τp

Tf
, (3)

where Tf is the characteristic time of the carrier phase in the averaged motion.

3.3.2. Stokes Number in Large-Scale Fluctuation Motions

In this case, the Stokes number assumes the following form

Stk f =
τp

TL
, (4)

where TL is the characteristic time of the carrier gas in a large–scale fluctuation motion
(temporal Lagrangian integral turbulence scale).

3.3.3. Stokes Number in Small-Scale Fluctuation Motions

The inertia of particles in small-scale fluctuation motions can be characterized by the
Stokes number we represent as

Stk f =
τp

τK
, (5)

where τK is the Kolmogorov time scale of turbulence.

3.4. Classification of Turbulent Two-Phase Flows According to Particle Inertia

We will briefly describe the classification of turbulent two-phase flows according to
particle inertia (see Figures 1 and 2) depending on Stokes numbers [28,29].
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Figure 2. Simplified schemes of turbulent two-phase flows of different classes depending on particle
inertia: (a) equilibrium flow, (b) quasi-equilibrium flow, (c) nonequilibrium flow, (d) flow with large
particles, (e) and flow around fixed “frozen” particles.

Flow around fixed “frozen” particles. In this case, the particles have an extremely
large amount of inertia, which remains completely static and whose temperature does not
change. An analogue of such a hypothetical class of two-phase flows is a one-phase flow
in heat exchangers, where fixed pipes act as such particles, through which the working
fluid moves.

4. Lagrangian and Eulerian Modeling of Two-Phase Flows

Mathematical modeling methods play an important role in the study of the processes
of the motion of solid particles. Detailing a large number of processes in which information
about each individual is not always indisputable can lead to a decrease in the reliability of
the created model.

4.1. Reasons for Considering of the Two-Phase Nature of Tornados

It is clear that the attempts to describe all the varieties of two-phase flows using all
models can hardly be justified. As a consequence, for certain classes of flows (see Section 3),
which are characterized primarily by the concentration of the dispersed phase and Stokes
numbers, specific models should be preferred.
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4.2. Lagrangian Modeling

The system of equations is as follows (example taken from [30])

dxp

dτ
= v, (6)

mp
dv
dτ

= ∑
i

Fi = FD + Fg + FS + FM + . . . , (7)

I
dωp

dτ
= T, (8)

where xp is the position vector (radius vector) of the particle, v is the instantaneous velocity
vector of the particle, ωp is the angular velocity vector of the particle, mp is the mass of the
particle, and I is the moment of inertia of the particle. Equation (8) describes the change in
angular velocity of the particle due to viscous interactions with the surrounding gas.

Due to the viscosity of the liquid, a moment of rotation T acts on a rotating particle.

4.3. Eulerian Modeling

Let us briefly consider the current approaches to constructing continuum equations
for the motion of dispersed impurity and analyze the features of describing their behavior
for different classes of two-phase flows.

Algebraic and differential models. There are two main approaches to determining
the velocity correlations of dispersed phases. One of them is presented in [31,32]

v′iv
′
j = A u′iu

′
j, (9)

where A is the function of a particle’s involvement in gas fluctuation movement.
The other approach consists of applying gradient relations like the Boussinesq relations

for a single-phase flow [33]

v′iv
′
j = −νp

(
∂Vi
∂xj

)
, (10)

or in the form presented in [34,35]

v′iv
′
j = −νp

(
∂Vi
∂xj

+
∂Vj

∂xi
− 2

3
∂Vk
∂xk

δij

)
+

2
3

kpδij, (11)

where νp is the turbulent viscosity coefficient of the dispersed phase. Different methods for
determining the value of νp have been described in the literature [34,35].

Models based on kinetic equations for probability density function (PDF).
The first method. Single-point kinetic equations for the PDF of the velocity and

temperature distributions of particles in a turbulent flow using a functional formalism
based on the Furutsu–Donsker–Novikov formula for Gaussian random fields were obtained
in [36–47].

According to this first method, to transform stochastic equations like the Langevin
equation into a kinetic equation for a group of particles, a probability density function
(PDF) that describes the coordinate x, velocity v, and temperature distribution of particles
tp is introduced:

P(x, v, tp, τ) = δ(x− rp(τ))δ(v− vp(τ))δ(tp − tp(τ)), (12)

where averaging is not carried out over time but over realizations of the random fields of
the carrying gas flow.
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The equation for the PDF is then used, as presented in [36]:

∂Φ
∂τ

+ ∑
j

∂ΦVj

∂xj
= 0, (13)

∂Vi
∂τ

+ ∑
j

Vj
∂Vi
∂xj

= −∑
j

∂v′iv
′
j

∂xj
+

Ui −Vi
τp

−∑
j

Dpij

τp

∂ ln Φ
∂xj

, (14)

∂Tp

∂τ
+ ∑

j
Vj

∂Tp

∂xj
= −∑

j

∂v′jt
′
p

∂xj
+

T − Tp

τt
−∑

j

Dt
pj

τt

∂ ln Φ
∂xj

, (15)

where v′iv
′
j = 1

Φ
s

v′iv
′
jPdvdtp, v′jt

′
p = 1

Φ
s

v′jt
′
pPdvdtp, Dpij = τp(v′iv

′
j + gpu′iu

′
j), Dt

pj =

τtv′jt
′
p + τpgptu′jt

′, gp = TpL/τp − 1 + exp(−TpL/τp), gpt = TpLt/τp − 1 + exp(−TpLt/τp).
Here, TpL and TpLt are the times of interaction between particles (droplets) and energy-

intensive fluctuations of velocity and temperature, respectively, for the non-inertial impuri-
ties TpL = TL and TpLt = TLt.

The system of Equations (13)–(15) is not closed, as the equations contain information
related to particle involvement in fluctuating motion turbulent stresses v′iv

′
j and turbulent

heat flux v′jt
′
p in the dispersed phase as well as the turbulent diffusion of momentum and

heat arising from non-uniform particle concentrations.
A mathematical description of momentum and heat transfer processes in the dispersed

phase of varying complexity was developed in [36]:

∂kp

∂τ
+ ∑

j
Vj

∂kp

∂xj
= − 1

Φ∑
j

∂Φv′iv
′
iv
′
j

2∂xj
−∑

j
∑

i
v′iv
′
j
∂Vi
∂xj

+
2
τp

( fuk− kp), (16)

where kp = 1
2 ∑

i
v′iv
′
i is the energy of the fluctuations of the dispersed phase velocity.

The second method. The methods presented in [48,49] allow for the acquisition of
equations for joint PDF distributions of the velocity and temperature of the dispersed
impurity [50].

The third method. The third method constitutes the construction of a closed kinetic
equation based on the expansion of the characteristic functional into a series of cumu-
lants [51,52].

4.4. Advantages and Limitations of Lagrangian and Eulerian Modeling

Let us consider Euler–Lagrange and Euler–Euler models with respect to describing
the motion of flows of continuous media with solid particles, droplets, and bubbles [36].

The advantage of Euler–Lagrange (trajectory and stochastic) models is their ability
to obtain detailed statistical information about the motion of individual particles via
integrating the equations of motion.

It should be noted that with an increase in the concentration of the dispersed phase,
there are also difficulties in using Euler–Lagrange models [53].

4.5. Description of the Gas Flow Carrying the Particles

An increase in the volume fraction of the dispersed phase can affect the carrier medium
(see Section 3.1.2). Let us consider the motion of a continuous medium (gas) in the presence of
particles when the particles begin to have a reverse influence on the medium’s characteristics.
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4.5.1. Actual Equations

The relevant equations are as follows:

∑
j

∂uj

∂xj
= 0, (17)

∂ui
∂τ

+ ∑
j

uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+ ν∑
j

∂2ui
∂xj∂xj

−
ρpφ

ρ

(ui − vi)

τp
, (18)

∂ t
∂τ

+ ∑
j

uj
∂ t
∂xj

= a∑
j

∂2t
∂xj∂xj

−
Cpp ρpφ

Cpρ

(t− tp)

τt
, (19)

The continuity equation (Equation (17)) has a form similar to the single-phase
flow equation.

4.5.2. Time-Averaged Equations

The resulting averaged continuity, motion, and energy equations are expressed
as follows:

∑
j

∂Uj

∂xj
= 0, (20)

∂Ui
∂τ

+ ∑
j

Uj
∂Ui
∂xj

= −1
ρ

∂P
∂xi

+ ν∑
j

∂2Ui
∂xj∂xj

−∑
j

∂(u′iu
′
j)

∂xj
−

ρpΦ
ρ

(Ui −Vi)

τp
−

ρpφ′u′i
ρτp

, (21)

∂ T
∂τ

+ ∑
j

Uj
∂ T
∂xj

= a∑
j

∂2T
∂xj∂xj

−∑
j

∂(u′jt
′)

∂xj
−

Cpp ρpΦ
Cpρ

(T − Tp)

τt
−

Cpp ρpφ′t′

Cpρτt
, (22)

Let us assume that the distributions of the averaged velocities and particle concentra-
tions are known. We need to determine the turbulent gas stresses u′iu

′
j and the turbulent

heat flux u′jt
′ as well as the correlations between particle concentration fluctuations and

gas velocity and temperature fluctuations φ′u′i and φ′t′ , which can be represented as fol-
lows [54–56]:

φ′u′i = −τpgpu′iu
′
j
∂Φ
∂xj

, (23)

φ′t′ = −τpgptu′jt
′ ∂Φ
∂xj

, (24)

gp = TpL/τp − 1 + exp(−TpL/τp), gpt = TpLt/τp − 1 + exp(−TpLt/τp).

4.5.3. Equations for the Reynolds Stresses

Subtracting Equations (20)–(22) from Equations (17)–(19) yields the following equations:

∂(u′iu
′
j)

∂τ + ∑
k

Uk
∂(u′iu

′
j)

∂xk
=∑

k

∂
∂xk

[
ν

∂(u′iu
′
j)

∂xk
− u′iu

′
ju
′
k

]
−

∑
k

[
(u′ju

′
k)

∂Ui
∂xk

+ (u′iu
′
k)

∂Uj
∂xk

]
− 1

ρ (u
′
i

∂p′
∂xj

+ u′j
∂p′
∂xi

)− 2ν∑
k

∂u′i∂u′j
∂xk∂xk

−

ρp
ρτp

[Φ(2u′iu
′
j − v′iu

′
j − u′iv

′
j) + φ′u′j(Ui −Vi) + φ′u′i(Uj −Vj)+

(2φ′u′iu
′
j − φ′v′iu

′
j − φ′u′iv

′
j)]

(25)
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Equation (25) differs from the corresponding equation of a single-phase flow via the
presence of the last group of terms on the right-hand side, which takes into account the
dynamic influence of particles on the carrier flow.

The system of Equations (20), (21), (23), and (25) is unclosed because Equation (25)
contains unknown triple correlations of velocity fluctuations of the carrier phase, serving
as correlations related to fluctuations in particle concentration and velocity.

Algebraic models. These models typically use the semi-empirical theory of turbulence
developed by Prandtl [57–59].

One-parameter models. The model based on the turbulence energy equation is the
most common (as in the case of single-phase flow). It is necessary to multiply the equation
of fluctuation motion by u′i, sum over i, and then average the result. The equation will then
have the following form:

∂k
∂τ + ∑

j
Uj

∂k
∂xj

= ∑
j

∂
∂xj

[
ν ∂k

∂xj
− u′ j

(
1
2 ∑

i
u′i

2 + p′
ρ

)]
−

∑
j

∑
i

u′iu
′
j

∂Ui
∂xj
− ν∑

j
∑
i

∂u′i
∂xj

∂u′i
∂xj
−

∑
i

ρp
ρτp

[
Φ(u′iu

′
i − u′iv

′
i) + φ′u′i(Ui −Vi) + (φ′u′iu

′
i − φ′u′iv

′
i)
] (26)

The Equation (26) can be rewritten concisely:

Dk
Dτ

= D + P− ε− εp, (27)

where the additional dissipation εp , caused by the presence of a dispersed phase, assumes
the following form:

εp = ∑
i

ρp

ρτp

[
Φ(u′iu

′
i − u′iv

′
i) + φ′u′i(Ui −Vi) + (φ′u′iu

′
i − φ′u′iv

′
i)
]
. (28)

There have been several studies (e.g., [60–62]) in which the authors attempted to
estimate the magnitude of the terms on the right-hand side (28) for different classes of
two-phase flows. This means the second and third terms on the right-hand side (28) are
small compared to the first term. Thus, in the implementation of quasi-equilibrium and
non-equilibrium flows (see Figures 1 and 2), the first term on the right-hand side (28) will
play a determining role in the process of dissipation:

εp = ∑
i

ρpΦ
ρτp

u′iu
′
i =

2Mk
τp

. (29)

Considering this mechanism [63–65] leads to Equation (27) assuming the following form

Dk
Dτ

= D + P− ε + Pp − εp, (30)

where Pp is the additional generation caused by the presence of particles.
Two-parameter models. As in the study of single-phase turbulent flows, the

two-parameter k− ε—turbulence model has become the most widespread.
By analogy with the equation for a single-phase flow in the case of two-phase flow,

we obtain
Dε

Dτ
= Dε + Pε − εε − εεp. (31)

where εεp is the reduction in dissipation due to the presence of particles.
The equation for εεp is most often represented as follows [66,67]:

εεp = Cε3
ε

k
εp, (32)
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where the constant Cε3 can assume the following values: Cε3 = 1.0 [68], Cε3 = 1.2 [66], and
Cε3 = 1.9 [69].

5. Methods of Numerically Modeling Two-Phase Flows

The main methods of numerically modeling two-phase flows are presented below.

5.1. Particle-Resolved DNS

Particle-resolved direct numerical simulation (PR DNS) is the method that most fully
describes the physics of two-phase flows. In this method, flow around each particle
is allowed to occur. In this case, the behavior of each particle is determined by both
external acting forces and the aerodynamic drag force from the carrier gas (determined
in the calculation process). This method is also applicable to the calculation of more
complex two-phase flows carrying droplets or bubbles, where the interfacial surface may
deform. This deformation is calculated using the aerodynamic force determined in the
calculation process.

A well-known limitation of this method is the following circumstance. It is possible to
calculate the movement of gas around each particle when the step of the computational
grid is small compared to the particle size. The application of this method is complicated
when the particle size exceeds the size of the smallest turbulent vortices (Kolmogorov
microscale) and the number of particles is large.

To date, various numerical methods and algorithms have been developed to imple-
ment PR DNS. In [70], this method was used to calculate the force acting on a single station-
ary particle in decaying homogeneous isotropic turbulence (DHIT). Effective methods of
implementing PR DNS include the immersed boundary method [71], which uses a Carte-
sian grid throughout the computational domain, and the lattice Boltzmann method [72],
which also uses a Cartesian grid that is not aligned in terms of particle shape. Another
method is Physalis [73], which uses a local analytical solution to determine the flow around
each particle.

5.2. Particle Point Methods

Lagrange’s methods of description are the oldest methods of describing the motion of
particles. These methods can be used to calculate the motion of millions of particles. The
condition for the applicability of Lagrange’s approaches is the smallness of the particle size
compared to the Kolmogorov spatial scale. In this case, the particles can be considered as
point particles.

The most important characteristic of particle inertia is dynamic relaxation time τp.
In the case of small values of τp, the instantaneous velocity of the particle is close to the
corresponding velocity of the carrier gas, and the particles are tracers. In this case, an
equilibrium flow is realized (Section 3). With an increase in τp, the particles cannot fully
track the turbulent fluctuations of the gas, and a quasi-equilibrium flow is realized. In
this case, to describe the motion of particles, it is necessary to integrate the equations of
their motion.

Lagrange’s models can have different levels of description of the turbulence of the
carrier gas, ranging from Reynolds-averaged Navier–Stokes equations (RANS), wherein
only fields of averaged turbulence characteristics are calculated, to large-eddy simulation
(LES) and direct numerical simulation (DNS), wherein only large vortices and vortices
of all scales are resolved (up to Kolmogorov), respectively (see Figure 3). The particle
concentration determines the required level of description of the interfacial interaction (see
Figures 1 and 2): (1) the mode of movement of single particles, where their presence does
not have a reverse effect on the characteristics of a non-existent gas (one-way coupling—
OWC); (2) the mode of weakly dusty flow (dilute two-phase flows), with a reverse effect
of particles (two-way coupling—TWC), and the mode of highly dusty flow (dense two-
phase flows), where collisions of particles with each other play a significant role (four-way
coupling—FWC).



Mathematics 2023, 11, 3290 11 of 20

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 22 
 

 

all scales are resolved (up to Kolmogorov), respectively (see Figure 3). The particle con-
centration determines the required level of description of the interfacial interaction (see 
Figures 1 and 2): (1) the mode of movement of single particles, where their presence does 
not have a reverse effect on the characteristics of a non-existent gas (one-way coupling— 
OWC); (2) the mode of weakly dusty flow (dilute two-phase flows), with a reverse effect 
of particles (two-way coupling—TWC), and the mode of highly dusty flow (dense 
two-phase flows), where collisions of particles with each other play a significant role 
(four-way coupling—FWC). 

 
Figure 3. Classification of approaches to numerical simulation of two-phase flows depending on 
different levels of turbulence description and interphase coupling. 

5.3. Direct Numerical Simulation 
To date, there has been a significant amount of work in which researchers have 

studied various problems regarding the physics of two-phase flows using DNS and by 
describing interphase interactions and interphase boundary at various levels. 

One of the first papers in which the behavior of point particles (PP DNS) under 
damped homogeneous isotropic turbulence decaying homogeneous isotropic turbulence 
(DHIT) was studied was [74]. In this study, the motion of 432 particles was studied at a 
very small Reynolds number ( 35Re <λ ). Only linear aerodynamic drag was taken into 
account in the equations of particle motion. 

In later studies [75,76] devoted to the study of particle motion, both regarding forced 
homogeneous isotropic turbulence forced homogeneous isotropic turbulence (FHIT) and 
with respect to damped homogeneous isotropic turbulence (DHIT), emphasis was placed 
on the study of the possibilities of various methods of interpolation (linear interpolation, 
high-order Lagrangian interpolation, and high-order Hermite interpolation) of the gas 
velocity at the location of the particle. 

A more complex case of turbulent two–phase flow turbulent flow in a channel is 
considered in [77,78]. In [77], in addition to the aerodynamic drag force, the Safman force 
was also taken into account, and in [78], a more advanced Fourier–Chebyshev pseu-
do-spectral method was used to interpolate the gas velocity at the particle’s location. To 
date, there have been numerous studies using the PP OWC DNS method of two-phase 
flows in the channel [79], in pipes [80–82], under FHIT [19,20], and under DHIT [83]. 

With an increase in the concentration of particles, the particles begin to have the 
opposite effect on the characteristics of the carrier gas flow (see Section 3), so TWC DNS 
is necessary. This introduces additional difficulties in mathematical modeling. Firstly, in 
the equation of the motion of a particle, it is not the initial (inherent in a single-phase 
flow) velocity of the gas that should be present but the “new” velocity of the flow caused 
by the presence of particles. In [84], it was suggested that the difference between these 
velocities is small if the diameter of the particles is smaller than the size of the numerical 
grid, Ld p < . This condition is almost always satisfied in the case of PP DNS. Secondly, it 
is necessary to introduce a source term in the equations of gas motion [85]. If the particle 

Figure 3. Classification of approaches to numerical simulation of two-phase flows depending on
different levels of turbulence description and interphase coupling.

5.3. Direct Numerical Simulation

To date, there has been a significant amount of work in which researchers have studied
various problems regarding the physics of two-phase flows using DNS and by describing
interphase interactions and interphase boundary at various levels.

One of the first papers in which the behavior of point particles (PP DNS) under
damped homogeneous isotropic turbulence decaying homogeneous isotropic turbulence
(DHIT) was studied was [74]. In this study, the motion of 432 particles was studied at a
very small Reynolds number (Reλ < 35). Only linear aerodynamic drag was taken into
account in the equations of particle motion.

In later studies [75,76] devoted to the study of particle motion, both regarding forced
homogeneous isotropic turbulence forced homogeneous isotropic turbulence (FHIT) and
with respect to damped homogeneous isotropic turbulence (DHIT), emphasis was placed
on the study of the possibilities of various methods of interpolation (linear interpolation,
high-order Lagrangian interpolation, and high-order Hermite interpolation) of the gas
velocity at the location of the particle.

A more complex case of turbulent two–phase flow turbulent flow in a channel is
considered in [77,78]. In [77], in addition to the aerodynamic drag force, the Safman force
was also taken into account, and in [78], a more advanced Fourier–Chebyshev pseudo-
spectral method was used to interpolate the gas velocity at the particle’s location. To date,
there have been numerous studies using the PP OWC DNS method of two-phase flows in
the channel [79], in pipes [80–82], under FHIT [19,20], and under DHIT [83].

With an increase in the concentration of particles, the particles begin to have the
opposite effect on the characteristics of the carrier gas flow (see Section 3), so TWC DNS
is necessary. This introduces additional difficulties in mathematical modeling. Firstly, in
the equation of the motion of a particle, it is not the initial (inherent in a single-phase
flow) velocity of the gas that should be present but the “new” velocity of the flow caused
by the presence of particles. In [84], it was suggested that the difference between these
velocities is small if the diameter of the particles is smaller than the size of the numerical
grid, dp < L. This condition is almost always satisfied in the case of PP DNS. Secondly, it is
necessary to introduce a source term in the equations of gas motion [85]. If the particle is
smaller than the Kolmogorov scale (dp < ηK), then there are no special problems. Otherwise,
(dp > ηK) raises the question of the relevance of the assumption of point particles. In [86,87],
calculations of a two-phase flow containing a lot of very small particles at Φ = O(10−4)
were carried out, and the number of particles was commensurate with the number of cells
of the computational grid.

Examples of studies in which PP TWC DNS modeling was performed include [88–91].
In [90], turbulent flow in a channel was studied. The volume concentration of particles was
equal to Φ ≈ 10−4. It was assumed that the particles were of the Stokes type (adhering
to the linear law of resistance). It was found that in the case of small particles (dp < ηK),
their presence suppressed turbulence, and, on the contrary, the presence of relatively large
particles (dp > ηK) caused turbulence intensification. In [89,90], a two-phase flow in a
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channel at Reτ = 180, determined from the half-height of the channel, was simulated. It
was revealed that the presence of particles reduces resistance and leads to an increase in
longitudinal fluctuations of the gas velocity. At the same time, the presence of particles
caused a decrease in gas velocity fluctuations in the other two directions and significantly
reduced Reynolds stresses. In [91], a two-phase turbulent flow in a channel was simulated
for the same Reynolds number (Reτ = 180), taking into account the nonlinearity in the
particle drag law (regarding non-Stokes particles). It was found that particles with small
Stokes numbers increased the intensity of turbulence, Reynolds stresses, and the level of
viscous dissipation. At the same time, particles with large Stokes numbers led to a decrease
in the intensity of turbulence.

The numerical concentration of particles N0 and the number of particles in the Kol-
mogorov vortex Nη are related, as Nη = N0 η3

K. The calculations [92] carried out allowed
for the clear identification of two regimes. At StkK < 1, the presence of particles results in a
decrease in the decay of turbulent energy (first mode). At StkK > 1, particles accelerate the
decay of turbulence (second mode). In [93], the results regarding PR TWC DNS with respect
to the direction of turbulent two-phase upward flow in a vertical channel are presented.

A further increase in particle concentration necessitates the consideration of interparti-
cle collisions (see Section 3), which requires conducting FWC DNS. Intense interparticle
collisions influence particle motion statistics and, consequently, their backreaction with
respect to gas flow. This greatly complicates mathematical modeling. Currently, several
stochastic approaches have been developed in order to depart from simple deterministic
calculations of pairwise particle collisions, which require immense computational time.

Examples of studies in which PP FWC DNS modeling was performed include [94,95].
In [94], the mathematical modeling of turbulent two-phase flow in a vertical pipe in the
presence of small heavy particles was carried out over a wide range of variations in particle
mass concentration (M = 0.1− 30). Various modeling techniques for real wall roughness
were used to better match the results with experimental data. It was found that the results
strongly depend on the model of wall roughness used rather than on the variation of
the parameters characterizing the inter-particle collision process. The calculations also
revealed a decrease in turbulence intensity with an increase in particle mass concentration.
In [95], the modeling of turbulent two-phase downward flow in a channel was performed
at Reτ = 642 and particle mass concentration M = 0.8. The calculations were carried out
for smooth and rough walls, where roughness was modeled by placing fixed tiny particles
on the wall. It was discovered that rough walls enhance the suppression of turbulence
caused by the presence of particles in the flow.

In [96], the interaction between a stationary homogeneous isotropic turbulent (HIT)
flow and inertial particles while accounting for inter-particle collisions (PP FWC DNS)
was studied via direct numerical simulation (DNS). The calculations were performed for
a periodic cubic box with a size of 1283 for two values of the Reynolds Taylor number
(Reλ = 35.4 and Reλ = 58) while varying the volume concentration of particles (from
Φ = 1.37 · 10−5 to Φ = 8.22 · 10−5) and the Stokes number (StkK = 0.19− 12.7). Elastic
spherical particles with a diameter of dp = 67.6 µm, corresponding to dp/ηK = 0.1, served
as the dispersed phase. The Stokes number was varied by changing the particle density over
a wide range, namely, ρp = 150− 18, 000 kg/m3. The results [96] showed that dissipation
decreases up to 32% with an increase in the Stokes number and the volume concentration
of particles. It was shown that this maximum reduction in dissipation is overestimated by
7% when accounting for inter-particle collisions. The spectral analysis revealed a transfer
of energy from large to small scales due to particle flow, which explains the difference
in dissipation.

5.4. Large Eddy Simulation

The use of the Reynolds-averaged Navier–Stokes (RANS) equations requires far fewer
computational resources, which is its undeniable advantage. This approach has been suc-
cessfully used in practical calculations. However, the Reynolds equations and turbulence
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models used to solve the equations do not have acceptable universality and, therefore,
cannot be used to solve a wide range of applied problems.

Large Eddy Modeling (LES) is a compromise between DNS and RANS. This approach
is limited to the study of flows only on scales exceeding some given value. In the LES
model, the Navier–Stokes equations, which are filtered in space, are solved, and only large
eddies are allowed to move. Small eddies have a more versatile structure and are modeled
using subgrid scale models.

The LES-based solution contains richer information than the RANS-based solution.
It contains not only the average flow characteristics (velocity, temperature, pressure, and
concentration fields) and Reynolds stress distributions but also spectral characteristics
(velocity, temperature, and pressure fluctuation spectra), two-point moments, and temporal
and spatial scales of turbulence. Many of these characteristics are important for engineer-
ing applications. For example, temperature fluctuations play a fundamental role in the
calculation of chemically reactive flows.

LES is similar to DNS, but the grid used in the process is much larger. Small vor-
tices are approximated using a subgrid-scale (subgrid-scale) model of turbulence. The
most commonly used model is the dynamic Smagorinsky model of vortex viscosity [97].
Other well-known models are based on scale similarity assumption [98], Taylor series
expansion [99], or approximate deconvolution [100].

One of the early works that used the PP OWC LES method was the study presented
in [101]. In this work, particle dispersion was investigated regarding the case of homoge-
neous shear flow. The authors did not use the term LES, but they considered the spatially
averaged Navier–Stokes equation for the gas and used time- and space-varying coefficients
for the small-scale vortices. The calculations were carried out for only 48 passive particles,
and the influence of subgrid scales on their motion was not considered.

The work presented in [102] investigated particle dispersion in a turbulent pipe flow
using PP OWC LES and DNS methods for different Reynolds numbers. The equation of
particle motion considered drag force, lift force, and buoyancy force. Due to very low
particle volume concentrations, their back-reactions on the gas and interparticle collisions
were not considered. Moreover, the influence of subgrid scales of the gas velocity was also
not considered. The main conclusion of this work was that the dynamic relaxation time of
particles plays an important role in their sedimentation.

In [103] studied particle motion in a vertical channel with a very low particle volume
concentration using the PP OWC LES method. The dynamic Smagorinsky approach,
previously developed in [104], was used as a subgrid-scale model. A comparison of the
results obtained with those of DNS-based modeling showed good agreement. It should
be noted that this work investigated the influence of subgrid-scale velocities on particle
settling. For this purpose, an additional equation for the transport of kinetic energy of
subgrid-scale turbulence was used, revealing only a minor effect on the calculation results.

In [105], the authors performed calculations of a two-phase flow for the case of forced
homogeneous isotropic turbulence (FHIT), for which the reverse influence of particles on
gas was taken into account, i.e., using the PP TWC LES method. The authors applied
various subgrid-scale models to the equations of motion of the carrying gas. A very
important conclusion was drawn: an increase in particle mass concentration leads to a
decrease in the weighting coefficients in the dynamic model of vortex viscosity. As a
consequence, the calculation error due to the use of subgrid-scale models for the two-phase
flow was reduced compared to the single-phase flow.

The PP FWC LES method was used to account for particle collisions in [106] in the
study of two-phase flow in a vertical channel at Reτ = 644 and a volume concentration
of up to Φ = 1.4× 10−4. The impact of drag force, gravitational force, and lift forces
(due to the presence of gas velocity shear and particle rotation) on particle behavior was
considered in the work. A deterministic model was used to account for particle collisions.
Conclusions were drawn about the significant influence of inter-particle collisions on the
statistical characteristics of particle motion, including the concentration magnitude.
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In [107], two-phase flow calculations were performed using the PP FWC LES method
in a channel with a very high particle volume concentration Φ = 1.3× 10−2. Among all
the forces, only the drag force and gravitational force were considered. The calculations
showed that particles have a colossal effect on turbulence, leading to a thinning of the
boundary layer, an increase in gas velocity fluctuations in the longitudinal direction, and,
conversely, a reduction in gas fluctuations in the two other directions.

In [108], the parameters of a two-phase flow in a channel were calculated at a particle
volume concentration of Φ = 4.8× 10−4 and a Reynolds flow rate of Re = 42, 000, both
of which were set based on the height of the channel. The authors separately considered
the effects of particle back-influence on gas and inter-particle collisions (PP TWC LES
and PP FWC LES). They also emphasized the use of various particle collision models
(hard-sphere and soft-sphere), different wall conditions (smooth and rough), and different
subgrid viscosity models (the Smagorinsky model and a dynamic model). The calculation
results showed that the differences when using different collision and subgrid models were
insignificant. At the same time, the consideration of particle collisions and wall roughness
leads to better agreement with the available experimental data.

In [109], PP FWC LES was performed for a two-phase flow with particles at a volume
concentration of Φ = 7.3× 10−5 and a Reynolds flow rate of Re = 11, 900, both of which
were set based on half of the height of the channel. The authors used a subgrid model
developed earlier in [110] for the particle motion equation as well as a deterministic
model to calculate inter-particle collisions. It was shown that with such a small volume
concentration of particles, their influence on gas turbulence is negligible. At the same
time, it was found that the influence of particle collisions plays a significant role. A good
agreement was found between the results and the DNS data described in [86] as well as
with the experimental data.

The authors of [109] later performed PP FWC LES simulations of a two-phase flow [111]
in a horizontal pipe at a Reynolds number of Re = 120, 000, which was set based on the
pipe diameter. The peculiarity of this study was the consideration of particle polydispersity
and particle rotation as well as the inclusion of not only the drag force but also the lift force
of Saffman and the Magnus force. Wall roughness was modeled by introducing coefficients
of normal and tangential velocity restitution that differ from unity and by taking into
account the so-called shadow effect at small wall collision angles.

In [112], PP FWC LES of a two-phase flow in a channel was performed with the
presence of particle agglomeration effects. The main technique that allowed for the con-
sideration of the appearance of particle agglomerates in the flow after their collision was
the introduction of van der Waals forces, which are responsible for the phenomenon of
cohesion. Various aerodynamic and energy systems can serve as examples of the use of
two-phase flows in the future [113–119]. It should be mentioned that mixing and chemical
reactions can occur in a two-phase flow. The coupling of CFD with chemicals can be used
to evaluate the performance of devices [120–122].

The following conclusions can be drawn from the above description and analysis of
works devoted to the mathematical modeling of two-phase flows.

As is known in this field, the Reynolds number is the most important criterion for
single-phase flows. It is known that high Reynolds number values limit the use of the DNS
method, as the requirements for computing power increase sharply. The Reynolds number
of a particle Rep determines the mode of flow around a particle (from the Stokes mode
to the mode of formation of turbulent wakes behind moving particles) and is the most
important criterion for two-phase flows. It is important to note that the Reynolds number
of a particle can be determined not only from the difference in average velocities but also
from the difference in fluctuating velocities between the carrier gas and the particles.

In the overwhelming majority of works, the ratio of a particle’s diameter to the
Kolmogorov space scale of turbulence is used as the only “two-phase” criterion. This is
obviously not sufficient, especially in the case of studying the flow in channels (pipes),
where there may be a difference in the average velocities of the gas and particles. It
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seems appropriate to use other criteria more widely, such as the Reynolds number of
a particle Rep, the Stokes number in average motion Stk f , and the Stokes number in
large-scale fluctuating motion StkL. This will allow for the mathematical modeling of
various classes of flows in accordance with the developed classification of two-phase flows
(see Figures 1 and 2).

6. Conclusions

Two-phase flows have a colossal distribution in nature and are widely used in practice.
The extreme complexity of the physics of two-phase turbulent flows is determined by
the factors described in detail in Section 2.2. In addition, in two-phase systems, it is
necessary to consider the processes of mixing and chemical reactions [120–122], which are
of great importance for the operation of a wide range of technical devices. All of the above
information complicates the mathematical modeling of such flows.

In the last 20–30 years, there has been a tremendous growth in interest among nu-
merous researchers in the numerical modeling of two-phase flows with particles. As a
result, there has been significant progress in improving the methods and approaches for
the mathematical modeling of such flows. Currently, there are advanced methods such as
particle-resolved direct numerical simulation (PR DNS), which allows for the determination
of local gas velocities influenced by the presence of particles and interphase interaction
forces. This method has well-known limitations associated with its small number of parti-
cles and their “coarseness”. However, DNS is a very computationally intensive method for
solving practical problems. Therefore, in the near future, RANS and LES methods and the
modeling of particle motion based on the Euler approach are likely to be more in demand
and require further improvements.

In conclusion, we have formulated, in our opinion, the following promising direc-
tions for further progress in the field of the mathematical modeling of two-phase flows
with particles:

(1) The development of mathematical modeling methods for two-phase flows with rel-
atively large particles (non-equilibrium flows) that only interact with large energy-
carrying vortices and are characterized by dynamic slippage (velocity difference) in
relation to average motion.

(2) The development of mathematical modeling methods for two-phase flows with large
particles, which form turbulent wakes behind them. With the increase in particle
concentration, these turbulent wakes will interfere with each other, and the particles
will undergo collisions.

(3) The development of mathematical modeling methods for two-phase flows containing
particles of different sizes (polydisperse particles). Such flows are of interest to
practicing engineers. Particles of different sizes will have different velocities and
different effects on gas flow and tend to collide with each other at lower concentrations.

The development of mathematical modeling methods for two-phase flows with parti-
cles complicated by phase transitions (melting and subsequent evaporation) and chemical
reactions (primarily combustion reactions).
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Nomenclature

dp particle diameter, m
ηK Kolmogorov length scale, m
xp particle radius vector, m
u vector of actual velocity of gas, m/s
v vector of actual velocity of particle, m/s
ui, uj, uk actual velocity components of gas, m/s
vi, vj, vk actual velocity components of particle, m/s
Ui, Uj, Uk time-averaged velocity components of gas, m/s
Vi, Vj, Vk time-averaged velocity components of particle, m/s
u′i , u′j, u′k fluctuation velocity components of gas, m/s
v′i , v′j, v′k fluctuation velocity components of particle, m/s
ν kinematic viscosity of gas, m2/s
a coefficient of thermal diffusivity, m2/s
τ time, s
τp dynamic relaxation time of particle, s
τt heat relaxation time of particle, s
τK Kolmogorov time scale, s
Tf characteristic time of gas in time-averaged motion, s
TL Lagrangian integral time scale, s
TpL particle interaction time with energy-containing velocity fluctuations, s
TpLt particle interaction time with energy-containing temperature fluctuations, s
t actual temperature of gas, K
tp actual temperature of particle, K
T time-averaged temperature of gas, K
Tp time-averaged temperature of particle, K
t′ fluctuation temperature of gas, K
t′p fluctuation temperature of particle, K
µ dynamic viscosity of gas, kg/(ms)
ρ gas density, kg/m3

ρp particle density, kg/m3

p actual pressure of the gas, Pa
P time-averaged pressure of the gas, Pa
p′ fluctuation pressure of the gas, Pa
Cp isobaric heat capacity of gas, J/(kg K)
Cp p heat capacity of material of particle, J/(kg K)
φ actual volumetric concentration of the particles
Φ time-averaged volumetric concentration of the particles
φ′ fluctuation volumetric concentration of the particles
M time-averaged mass concentration of the particles
Rep particles Reynolds number
Reλ Reynolds number determined via Taylor turbulence scale
Reτ frictional Reynolds number
Stk f Stokes number in time-averaged motion
StkL Stokes number in large-scale fluctuation motion
StkK Stokes number in small-scale fluctuation motion
Superscripts
(. . .)′ fluctuation value
(. . .) time-averaged value
Subscripts
p particle
f fluid (gas)
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