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Abstract: SQL injection attacks are one of the most common types of attacks on Web applications.
These attacks exploit vulnerabilities in an application’s database access mechanisms, allowing at-
tackers to execute unauthorized SQL queries. In this study, we propose an architecture for detecting
SQL injection attacks using a recurrent neural network autoencoder. The proposed architecture was
trained on a publicly available dataset of SQL injection attacks. Then, it was compared with several
other machine learning models, including ANN, CNN, decision tree, naive Bayes, SVM, random
forest, and logistic regression models. The experimental results showed that the proposed approach
achieved an accuracy of 94% and an F1-score of 92%, which demonstrate its effectiveness in detecting
QL injection attacks with high accuracy in comparison to the other models covered in the study.

Keywords: SQL injection attacks; recurrent neural network (RNN) autoencoder; ANN; CNN; decision
tree; naive Bayes; SVM; random forest; logistic regression

MSC: 68T99

1. Introduction

Structured query language (SQL) is a programming language used to manage, or-
ganize, and manipulate relational databases. It also allows the user or an application
program to interact with a database by inserting new data, deleting old data, and changing
previously stored data. Structured query language injection attacks (SQLIAs) pose a severe
security threat to Web applications [1]. These attacks involve the malicious execution of
SQL queries on a server, enabling unauthorized access to and retrieval of restricted data
stored within databases [2]. Figure 1 illustrates the basic process of an SQLIA.

Figure 1. SQL injection attack process adopted from [3].

Attackers can exploit Web applications by injecting SQL statements or sending special
symbols through user input to target the database tier and gain unauthorized access to
valuable assets [3]. Due to the absence of proper validation in some Web applications, which
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is usually the programmer’s fault, attackers can bypass authentication mechanisms and
gain access to databases, enabling them to retrieve or manipulate data without appropriate
authorization [2].

In recent years, researchers have proposed many detection methods, including ma-
chine learning algorithms and deep neural network models. Deep neural networks, also
known as deep learning, are a rapidly evolving research area within the field of machine
learning. They were developed to bring machine learning closer to its original goal of
achieving artificial intelligence. Deep learning involves training complex models that can
learn the underlying patterns and representations of large datasets. This has proven to
be a powerful technique for interpreting various forms of data, including text, images,
and sounds. Deep learning has also been successfully applied to Web security detection,
highlighting its potential impact on a broad range of applications [4]. However, one of
the major drawbacks of using neural networks is their tendency to make overconfident
predictions. This means that they have a high degree of certainty in their predictions, even
when they are incorrect [5,6]. Even though the models perform well on test data from the
same distribution as the training data, they do not know the limits of their knowledge and
make erroneous guesses outside that domain. This pitfall arises because neural networks
learn highly nonlinear functions that do not output calibrated probability estimates for
unfamiliar data [7]. To address this issue, researchers have developed various techniques
for estimating predictive uncertainty in neural networks. Lakshminarayanan et al. [7] intro-
duced deep ensembles, where multiple models are independently trained on the same data
and their predictions are averaged to capture model uncertainty. Mishra et al. [5] evaluated
Bayesian neural networks (BNNs) as a technique that can provide accurate predictions
along with reliably quantified uncertainties. Amodei et al. [6] suggested using model
rollouts/lookahead during training to avoid reward hacking, improve safety, and reduce
overconfidence. In summary, while neural networks have shown great promise in many
applications, it is important to be aware of their tendency to make overconfident predictions
and the potential pitfalls of overfitting. Estimating predictive uncertainty using techniques
such as deep ensembles can help mitigate these issues and improve the reliability of neural
network predictions.

Detection of SQL injection attacks is crucial to ensure the security and integrity of Web
applications and their associated data. To address this issue, a deep learning architecture
based on the recurrent neural network (RNN) autoencoder model is proposed for detecting
SQL injection attacks. The RNN autoencoder is a special case of the RNN-based encoder–
decoder (RNN-ED) model. The autoencoder consists of an encoder RNN that encodes
the input sequence into a hidden state and a decoder RNN that decodes the hidden state
back into the original input sequence. The encoder and decoder RNNs are trained jointly
using backpropagation to minimize the reconstruction error between the input and output
sequences [8].

The aim of this study was to develop an architecture based on a recurrent neural
network (RNN) autoencoder to detect SQL injection attacks. Moreover, the proposed
approach that addresses this attack is discussed and compared with other approaches. The
research questions were:

Q1: Is the proposed RNN autoencoder-based architecture effective for detecting SQL
injection attacks?

Q2: How can the RNN autoencoder be optimized to improve its performance in detecting
SQL injection attacks?

Q3: Can an RNN autoencoder outperform other SQL injection attack machine learning
detection models?

The main contributions of this paper are as follows:

• Proposing an SQLIA detection architecture based on a recurrent neural network (RNN)
autoencoder algorithm;

• Comparing the proposed architecture and different machine learning techniques used
for detecting and preventing SQLIAs.
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The paper is structured as follows: Section 2 reviews the related research in this area.
The methodology is discussed in Section 3. Experiment results and the discussion are
shown in Section 4. The last section provides the conclusion and discusses future work.

2. Literature Review

This section explores a variety of ML and DL techniques found in the literature for the
detection of SQL injection attacks.

Ketema [1] used a deep learning convolutional neural network (CNN) to build a
model to prevent an SQLI using a public benchmark dataset. The model was trained
using deep learning with different hyperparameter values and five different scenarios. The
model achieved an accuracy of 97%. Roy et al. [9] presented a method for detecting SQL
injection attacks using machine learning classifiers. The authors used five ML classifiers
(logistic regression, AdaBoost, naive Bayes, XGBoost, and random forest) to classify SQL
queries as either legitimate or malicious. The proposed model was trained and evaluated
using a publicly available dataset of SQL injection attacks on Kaggle. The results of the
study showed that the best performance was achieved by the naive Bayes classifier, with
an accuracy of 98.33%. Finally, the authors performed a comparison with previous work.
Overall, the study demonstrated the potential of machine learning classifiers in improving
the accuracy and efficiency of SQL injection attack detection.

S.S. Anandha Krishnan et al. [10] proposed a machine learning-based approach for
detecting SQL injection attacks. The authors argued that traditional signature-based ap-
proaches are ineffective against advanced attacks, and machine learning can help address
this issue. The authors first described the various types of SQL injection attacks and their
impact on Web applications. They then outlined the proposed framework, which consisted
of preprocessing the data, feature extraction, model training, and evaluation. The results
showed that the CNN classifier model performed better than the other classifiers in terms
of accuracy, precision, recall, and F1-score. Rahul et al. [11] proposed a novel method
of protecting against SQL injection and cross-site scripting (XSS) attacks by augmenting
the Web application firewall (WAF) with a honeypot. The WAF filters incoming traffic
using established patterns, while the honeypot is designed to attract attackers and cap-
ture information about their attack methods, which is then used to improve the WAF’s
ability to detect and prevent future attacks. The proposed method was evaluated through
experiments, and the results suggested that the combination of a honeypot and WAF can
effectively protect Web applications from these types of attacks.

Zhang et al. [4] proposed a method for detecting SQL injection attacks using a deep
neural network. The authors stated that traditional methods of SQL injection attack de-
tection have limitations, prompting the development of their new approach. The authors
gathered a dataset of clean and malicious queries and used it to train a deep neural network
classifier with several layers. They then compared the result of the proposed method with
the traditional machine learning algorithms, including KNN, DT, and LSTM algorithms.
Liu et al. [12] proposed a new approach called DeepSQLi for the automated detection of
SQL injection vulnerabilities in Web applications using deep semantic learning techniques.
DeepSQLi uses a deep neural network to learn the semantic meanings of SQL queries
and identify potential injection vulnerabilities. The model is trained using a dataset of
benign and malicious SQL queries and leverages multiple layers of convolutional and
recurrent neural networks. The experimental results showed that DeepSQLi outperformed
SQLmap, and more SQLi attacks could be identified faster while using a lower number of
test cases. Chen et al. [3] presented a novel approach for detecting and preventing SQL
injection attacks on Web applications using deep learning algorithms. The authors trained
and evaluated the performance of a convolutional neural network (CNN) and a multilayer
perceptron (MLP) and compared them in terms of accuracy, precision, recall, and F1-score
metrics. The experimental results showed that the CNN and MLP models both performed
well for SQL injection attack detection.
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In summary, deep learning-based approaches have shown great promise in detecting
SQL injection attacks. These approaches can learn the underlying patterns in the input data
and detect any anomalies, making them more effective in detecting disguised attacks. In
this research, our goal was to explore the effectiveness of the proposed RNN autoencoder
in detecting SQL injections.

3. Materials and Methods

The proposed architecture is depicted in Figure 2.

Figure 2. Steps of the proposed architecture.

The architecture consists of the following steps:

• Loading and preprocessing the dataset;
• Splitting the dataset into training and testing sets;
• Building the autoencoder model, which consists of an input layer, an encoder layer, and

a decoder layer. The encoder layer reduces the dimensionality of the input data, while
the decoder layer reconstructs the original input from the encoded representation;

• Training the autoencoder model on the preprocessed training data;
• Extracting the encoded data from the trained autoencoder model for use in the

RNN model;
• Building the RNN model, which consists of an LSTM layer and a dense output layer;
• Training the RNN model on the encoded data;
• Evaluating the model using a set of evaluation techniques.

3.1. Data Preprocessing

The Kaggle dataset [13] was utilized in this research to train, evaluate, and compare
the performance of the RNN autoencoder with several classifiers. The dataset was prepared
by collecting different SQL injection queries from multiple websites. The dataset contained
30,919 SQL query statements of the form “SELECT FROM” and related variations. Each
statement had a binary label, with 1 indicating malicious and 0 benign.

In order to enhance the accuracy of our trained models, we performed data cleaning
on the selected dataset. This involved removing any null values and eliminating duplicate
records. The removal of missing or null values is crucial, as it prevents the model from
learning incorrect relationships or making predictions based on incomplete data. After
completing the cleaning process, the dataset consisted of a total of 30,907 records, with
19,529 normal statements and 11,378 malicious statements. The statistics for the dataset are
depicted in Figure 3. Each record contained two main features: “Query”, which represented
the statement itself, and “Label”, which indicated whether the statement was normal (0) or
malicious (1).
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Figure 3. Distribution of benign and SQL injection attacks in the dataset.

Stratified sampling was applied, which ensured that the training and testing sets had
similar proportions of each class. This is important for imbalanced datasets like the SQL
injection dataset, where the number of malicious queries is much lower than the number of
benign queries [14].

3.2. Data Splitting

The dataset was divided into two parts: 80% for training and 20% for testing. This
division allowed us to train the proposed approach with the majority of the data and assess
its performance with unseen samples.

3.3. Building and Training RNN Autoencoder Model

We developed an architecture for an RNN autoencoder that combines an autoen-
coder and a recurrent neural network (RNN) for SQL injection attack detection. Figure 4
illustrates the architecture of the proposed model.

Figure 4. The RNN autoencoder architecture for SQL injection attack detection.

As shown in Figure 4, the proposed architecture consists of two main parts: the
autoencoder and the RNN. The autoencoder contains an input layer, an encoder, and a
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decoder. The encoder takes the input data and compresses it into a lower-dimensional
latent space, which is then fed to the decoder. The decoder then reconstructs the input data
from the encoded representation. The size of the latent space can affect the performance of
the autoencoder and RNN model, as a smaller latent space may lead to loss of information,
while a larger latent space may lead to overfitting. The dimensionality of the latent space
in an autoencoder is a crucial hyperparameter that should be carefully tuned [15]. In this
research, we experimented with different values for the latent space using a grid search
technique to find a value that resulted in a good balance between representation power and
computational efficiency. The result of the hyperparameter tuning process showed that 64
was the optimal value for the latent space hyperparameter, which meant that the encoder
layer compressed the input data into a 64-dimensional latent space. The RNN was designed
to take the compressed representation of the input data learned by the autoencoder and use
it to make binary classification predictions [16]. The RNN consisted of an LSTM layer and
a dense layer, which takes the encoded data from the autoencoder as input and processes
it through an LSTM layer, from where it is then fed to a dense layer to make a prediction
with the output.

3.4. Model Evaluation

After training the RNN autoencoder model on the training set, we applied it to the
testing set and calculated various performance metrics, such as the ROC curve, accuracy,
precision, recall, and F1-score, to measure the effectiveness of the RNN autoencoder in
detecting SQLIAs. The mathematical representation of these metrics was as follows.

The accuracy metric measures the percentage of correctly classified samples [17], and
it is calculated as follows:

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Precision, another important metric, represents the probability that a sample will be
correctly classified [17]. It is calculated as follows:

Precision =
TP

TP + FP
(2)

Recall, also known as sensitivity or the true-positive rate, indicates the proportion of
positive samples that are correctly classified [17]. The recall score is calculated as follows:

Recall =
(TP)

(TP + FN)
(3)

The F1-score is a combined metric that considers both precision and recall, providing
a balanced measure of model performance [18]. It is calculated as follows:

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

TN is the true-negative rate. It indicates the number of correctly predicted normal
requests. TP is the true-positive rate. It indicates the number of correctly predicted
malicious requests. FN is the false-negative rate. It indicates the number of incorrectly
predicted normal requests. FPis the false-positive rate. It indicates the number of incorrectly
predicted malicious requests.

4. Results and Discussion

This section provides a description of the experimental results. The Python environ-
ment was used to implement the system. Table 1 summarizes the performance of the RNN
autoencoder in terms of the evaluation metrics.
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Table 1. Performance metrics for the proposed model.

Performance Metrics Result

Accuracy 94%
Precision 95%

Recall 90%
F1-Score 92%

The results from Table 1 show that the RNN autoencoder performed better in terms
of prediction accuracy. The RNN autoencoder achieved an accuracy of 94% and an F1-
score of 92%. Further, we used the receiver operating characteristic (ROC) curve to check
the performance of the proposed approach. The ROC curve is a graph that shows the
relationship between the true-positive rate (TPR) and false-positive rate (FPR) for different
classification thresholds [19].

The AUC curve for the RNN autoencoder model is shown in Figure 5. We obtained the
value of 0.94, which indicated that our model could successfully separate 94% of positive
and negative rates.

Figure 5. Receiver operating curve (ROC) for our proposed approach.

Regarding RQ1, based on the results provided, it appears that the proposed RNN
autoencoder model performed well in correctly identifying instances of SQL injection
attacks in the dataset and can be effective for the detection of SQL injection attacks.

Regarding RQ2, one of the most used methods to optimize RNN autoencoders to
improve their performance in detecting SQL injection attacks is to adjust the hyperparame-
ters of the model, such as epochs [19]. To find the optimal number of epochs to train the
model, we experimented with various numbers of epochs and checked how they affected
the accuracy. In the first iteration, we used 10 epochs.

With 10 epochs, we obtained an accuracy of 88%. From Figure 6, we can infer that the
validation error decreased. Next, we set the number of epochs to 50.
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Figure 6. Loss in SQL injection dataset using 10 epochs.

As shown in Figure 7, the accuracy of the model increased to 94% with 50 epochs.
Next, we tried to increase the number of epochs to 100.

Figure 7. Loss in SQL injection dataset using 50 epochs.

As shown in Figure 8, with 100 epochs, the accuracy increased to 95% but the validation
error also increased. This may cause overfitting. Using a small number of epochs, the
model cannot capture the underlying patterns in the data, and this may cause underfitting.
Furthermore, training the model using many epochs may lead to overfitting, where the
model even learns noise or unwanted parts of the data [20]. Therefore, from the this
experiment, we deduced that we could stop the training process early at around 50 epochs



Mathematics 2023, 11, 3286 9 of 12

to obtain better performance from the model without underfitting or overfitting. Then, a
grid search technique was used to find the optimal combination of hyperparameters, such
as the activation function. Table 2 summarizes the choices for the different hyperparameters
after using the grid search.

Figure 8. Loss in SQL injection dataset using 100 epochs.

Table 2. Values for several hyperparameters.

Hyperparameters Value

Number of hidden layers 3
Hidden layer size (neurons) 64 units

Optimizer Adam
Loss function Binary cross-entropy

Activation function ReLU and sigmoid
Number of epochs 50

Batch size 128

The proposed model achieved the best performance when trained for 50 epochs using
the Adam optimizer, a batch size of 128, the ReLU activation function for the encoder layer,
and the sigmoid activation function for the decoder layer in the autoencoder and output
layer in the RNN.

We compared the performance of the proposed approach with the performance of
several classifiers, including the ANN, CNN, decision tree, naive Bayes, SVM, random
forest, and logistic regression classifiers. The results are presented in Figure 9.

The results in Figure 9 show that the RNN autoencoder and the ANN were effective in
detecting SQL injection attacks, achieving a high accuracy of 94% and F1-score of 92%. The
RF, LR, and DT models also performed well, achieving accuracy scores of 92%, 93%, and
90%, respectively, and F1-scores of 89%, 90%, and 87%. The CNN model had the highest
accuracy of 96% and an F1-score of 49%, indicating its potential for detecting SQL injection
attacks. However, the naive Bayes and SVM models had lower accuracy and F1-scores,
achieving accuracy scores of 82% and 75%, respectively, and F1-scores of 80% and 49%.
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Figure 9. The comparison of evaluation metrics for different ML algorithms.

Regarding RQ3, the results indicated that the RNN autoencoder approach outper-
formed some of the other algorithms, including the logistic regression, decision tree, ran-
dom forest, SVM, and naive Bayes algorithms, in terms of accuracy, precision, recall, and
F1-score. The RNN autoencoder approach also performed comparably to some of the other
algorithms, including the CNN and ANN models, in many NLP tasks, but each architecture
has its strengths and weaknesses. According to a study by Yin et al. [21], CNNs perform
better at tasks that require local feature extraction, such as sentiment analysis, while RNNs
perform better at tasks that require an understanding of longer-term dependencies, such
as question answering. They found that both CNNs and RNNs are sensitive when hyper-
parameter values are varied depending on the task. Banerjee et al. [22] developed CNN
and RNN models with similar architectures for classifying radiology reports and found
that RNNs were the more powerful model to encode sequential information. However, the
study noted that CNNs required less hyperparameter tuning to prevent overfitting and
were more stable, while RNNs needed more careful regularization.

In this research, since the SQL queries could contain longer-term dependencies, it made
sense that the RNN autoencoder model achieved comparable accuracy to the CNN model.
The added memory and sequencing modeling of the RNN likely helped it perform well
with the longer query texts, but it may require additional tuning to match the performance
of CNNs in some cases. This may explain why the CNN model slightly outperformed the
RNN model.

In summary, our results are consistent with previous findings that indicate that RNNs
are well suited for longer textual sequences but may require additional tuning to maximize
performance compared to CNN models. The strong accuracy of 94% demonstrates the
promise of the RNN autoencoder architecture for detecting SQL injection attacks. The key
advantage of the RNN autoencoder is that it can learn a compressed representation of the
input data, allowing it to capture the underlying patterns and relationships in the data
more effectively than traditional methods.

5. Conclusions and Outlooks

A deep learning architecture model based on an RNN autoencoder was proposed
for detecting SQL injection attacks. The autoencoder was trained to learn a compressed
representation of the input data, while the RNN used this compressed representation to
make binary classification predictions. In this study, the RNN autoencoder was trained
with different optimization techniques on a public SQL injection dataset. The performance
of the model was evaluated using standard evaluation metrics, such as accuracy, precision,
recall, and F1-score. Additionally, an ROC curve was calculated to evaluate the model’s
performance. The experimental results showed that the proposed approach achieved
an accuracy of 94% and an F1-score of 92%, indicating that the RNN autoencoder is a
promising method for detecting SQL injection attacks. As part of future research, we plan
to explore the use of a more complex architecture for the RNN autoencoder to detect SQL
injection attacks. Additionally, we acknowledge that the dataset used in this study was
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relatively small, and we recommend expanding the dataset and implementing the models
in real-world scenarios in future investigations.
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The following abbreviations are used in this manuscript:

SQL structured query language
SQLIA SQL injection attack
RNN-ED RNN-based encoder–decoder
IDSs intrusion detection systems
ML machine learning
DL deep learning
NB naive Bayes classifier
DT decision tree
LR logistic regression
RF random forest
SVM support vector machine
CNN convolutional neural network
ANN artificial neural network
MLP multilayer perceptron
RNN recurrent neural network
LSTM long short-term memory
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