
Citation: Wang, S.-J.; Zhang, J.-K.; Lu,

X.-Q. Research on Real-Time

Detection Algorithm for Pavement

Cracks Based on SparseInst-CDSM.

Mathematics 2023, 11, 3277. https://

doi.org/10.3390/math11153277

Academic Editors: Vitaly Kober and

Tae Sun Choi

Received: 6 June 2023

Revised: 17 July 2023

Accepted: 24 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Research on Real-Time Detection Algorithm for Pavement
Cracks Based on SparseInst-CDSM
Shao-Jie Wang 1,2, Ji-Kai Zhang 1,2,* and Xiao-Qi Lu 3

1 School of Information Engineering, Inner Mongolia University of Science and Technology,
Baotou 014010, China; wsj101@foxmail.com

2 Key Laboratory of Pattern Recognition and Intelligent Image Processing in Inner Mongolia Autonomous Region,
Baotou 014010, China

3 School of Information Engineering, Inner Mongolia University of Technology, Hohhot 101051, China;
wsjzll1213@outlook.com

* Correspondence: jkzhang0314@imust.edu.cn; Tel.: +86-180-4722-3826

Abstract: This paper proposes a road crack detection algorithm based on an improved SparseInst
network, called the SparseInst-CDSM algorithm, aimed at solving the problems of low recognition
accuracy and poor real-time detection of existing algorithms. The algorithm introduces the CBAM
module, DCNv2 convolution, SPM strip pooling module, MPM mixed pooling module, etc., ef-
fectively improving the integrity and accuracy of crack recognition. At the same time, the central
axis skeleton of the crack is extracted using the central axis method, and the length and maximum
width of the crack are calculated. In the experimental comparison under the self-built crack dataset,
SparseInst-CDSM has an accuracy of 93.66%, a precision of 67.35%, a recall of 66.72%, and an IoU
of 84.74%, all higher than mainstream segmentation models such as Mask-RCNN and SOLO that
were compared, reflecting the superiority of the algorithm proposed in this paper. The comparison
results of actual measurements show that the algorithm error is within 10%, indicating that it has
high effectiveness and practicality.

Keywords: intelligent transportation; road cracks; image segmentation; SparseInst algorithm; convolutional
attention module

MSC: 68T07

1. Introduction

Highways are key infrastructure, serving as hubs for transportation and playing an
irreplaceable role in people’s daily lives. However, as investment in highways and other
infrastructure in China increases year by year, many highways in service continue to
deteriorate and become damaged, requiring regular monitoring and assessment of their
condition. The primary method used in traditional bridge fracture detection is human
measurement, with low efficiency, high missed detection rate, long time consumption, and
high cost. Additionally, factors such as crack width and length take a while to calculate
and process. Thus, automatic and effective fracture detection is crucial for determining the
structural health of a bridge.

Early methods of detecting and maintaining the condition of the road surface generally
relied on manual inspection, which was not only labor- and time-intensive, but also had a
low detection accuracy and some dangers [1–3]. Scholars around the world have conducted
a series of extensive and in-depth research using the latest scientific and technological
developments to accurately and effectively extract crack information from images [4–6].
In 2014, Wang et al. [7] proposed a road surface crack extraction method based on valley
bottom boundary; it generates findings for crack detection by applying a number of image
processing methods. A crack connection technique for road surfaces was put forth by Liang

Mathematics 2023, 11, 3277. https://doi.org/10.3390/math11153277 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11153277
https://doi.org/10.3390/math11153277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11153277
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11153277?type=check_update&version=1

Mathematics 2023, 11, 3277 2 of 20

et al. [8] in 2015, and it is based on Prim’s minimum spanning tree. The algorithm fills the
cracks to create the crack structure. These conventional fracture-detecting techniques have
clear drawbacks. Each technique is intended for a particular database or circumstance, but
if the dataset or scenario changes, the crack detector will fail.

The threshold segmentation algorithm is one of the most basic methods in crack
image segmentation, with the characteristics of less computation, simple operation, and
robust performance. This algorithm can segment an image into black and white colors
by extracting its grayscale value information. However, when dealing with images with
weak contrast, threshold segmentation usually requires contrast enhancement first. In 1992,
Kirschke et al. [9] proposed a road surface crack image segmentation algorithm based on
the histogram, but it is only suitable for clear crack recognition. Subsequently, Oh et al. [10]
proposed an iterative threshold segmentation algorithm, but it requires the manual setting
of thresholds. Therefore, the threshold segmentation algorithm is suitable for road surface
crack images with consistent background texture, uniform illumination, and high contrast.

Some traditional algorithms can be used to implement road crack detection, such as the
improved K-Means algorithm proposed by Fang et al. [11]. Senthan et al. [12] proposed to
use fuzzy Hough transform to detect cracks in road images, taking into account the fact that
cracks are composed of nearly straight segments embedded in surfaces with considerable
texture. The minimum path selection algorithm proposed by Rabin et al. [13] realizes
automatic crack detection of two-dimensional road images. However, these algorithms
require the manual setting and adjustment of parameters and have a strong dependence
on human operation. In summary, edge-detection algorithms mainly judge whether it is a
crack edge based on local gray and gradient information, which is only suitable for crack
images with strong edge information, and tend to misjudge the background with strong
edge information as cracks. When the noise is high, the effect of edge detection is poor.

Deep-learning techniques have been extensively applied to the identification and
segmentation of road surface cracks in recent years [14–16]. By merging deep-learning
techniques with road surface crack detection technology [17–19], this technology has signif-
icantly increased the efficiency and accuracy of road surface crack detection. However, due
to the characteristics of high similarity between road surface cracks and background and
small and irregular shapes of cracks in reality, accurate identification has always been a
challenging problem. Improving the accuracy and timeliness of image crack extraction has
become the focus of current research. Early CNN-based crack detection approaches essen-
tially consist of two tasks: finding the detection target’s bounding box and determining its
category. These algorithms only identify the smallest bounding rectangle of the target crack
in the image. Currently, window-based and region-based object detection methods are the
two most often used approaches for finding objects. Window-based detection techniques
use a fixed-size window to scan the image and a classifier to categorize each sliding win-
dow section. Cha et al. [20] used a window-based neural network to detect road surface
cracks. The outcomes demonstrated that this method could gather crack information more
precisely than conventional edge detection methods, although its detection accuracy was
influenced by window width and length, which were challenging to measure. An increase
in detection accuracy is hampered when the window size is too large and contains an
excessive amount of irrelevant information. On the other hand, if the sliding window is too
small, there will not be enough crack information in the sliding window region to establish
whether or not there are any. This will reduce the detection accuracy.

Methods for detecting objects based on regions create candidate regions that initially
employ region proposal approaches, establish regions of interest, and then carry out feature
extraction. Due to its superior detection effect, Faster Region CNN (Faster R-CNN) has
been utilized numerous times for fracture identification on road surfaces [21,22]. However,
Maeda et al. [23] claim that they are only able to identify road fractures and cannot learn
the maximum width, length, or area of a geometric feature. Attard et al. [24,25] discovered
road damage using the most recent object identification techniques, Inception V2 and
MobileNet. Research Mask R-CNN was also used to detect road surface cracks with

Mathematics 2023, 11, 3277 3 of 20

satisfactory results. However, the above methods have limited detection accuracy and
cannot achieve pixel-level detection due to irregular crack shapes.

The area detection method can only locate cracks and cannot obtain the geometric
dimensions of the cracks. Therefore, in order to achieve this goal, crack segmentation is
necessary. Semantic segmentation, which categorizes each pixel to identify whether it
belongs to a crack or the background, is one of the potential techniques being studied
to increase the accuracy of road surface fracture detection. Zhang, L. et al. [26] used an
improved CNN method that obtained better results compared to other traditional methods.
Zhang et al. [27] adopted another efficient structure called CrackNet which has a strong anti-
interference ability and can maintain stable detection results, having strong adaptability
and robustness. However, these two methods cannot segment small cracks well because
the traditional CNN has limitations in fine image segmentation; thus, a fully convolutional
network [28,29] gradually began to be applied to road surface crack detection. In contrast
to CNN, fully convolutional networks (FCN) may accept inputs of any size and utilize
deconvolution to upsample the most recent feature map and restore it to the original input
image’s size, enabling prediction for each individual pixel.

More and more encoder–decoder model frameworks are being applied to CNN as
people strive for improved detection accuracy. The decoder is a network used to gradually
restore feature information, while the encoder is a classification network used to extract
input features. Bang et al. [30] used a new encoder–decoder network with more layers and
deeper network structure for the pixel-level identification of urban road surface cracks, and
it is capable of identifying flaws in black box photos. For the quantification and detection
of cracks, Ji et al. [31] utilized an integrated approach based on DeepLabV3+. Two-step
convolutional networks were employed by Chun et al. [32] and J. Liu et al. [33] to first
recognize and locate cracks before segmenting them. The most common CNN among the
numerous encoder–decoder networks is named U-Net, according to Ronneberger et al. [34].
Its outstanding performance on medical photos drew the attention of numerous scholars
for further study. Researchers in the field of civil engineering started using U-Net to
find structural road surface cracks since the size and form of medical cells and cracks in
the road surface differ. Although the U-Net network performs well in the field of crack
detection, considering that future crack detection will be fully automated in real time, its
further application will still be hindered by data volume increasing significantly, high
computational cost, long training process, etc. [35,36]. The introduction of the SOLO
model brings new ideas and methods to the field of instance segmentation [37]. The SOLO
model adopts a new segmentation strategy that can more accurately segment targets and
obtain high-quality segmentation results. Additionally, the SOLO model adopts a center-
point-based target segmentation scheme, which can quickly and efficiently predict and
segment instances in images. However, the segmentation effect of the SOLO model on small
targets is not good because the SOLO model is an instance location-based segmentation
algorithm, so there may be certain limitations for objects of different sizes. Especially for
smaller objects, the SOLO model may not be able to capture enough location information,
resulting in poor segmentation effect. The SOLO model was subsequently upgraded
to the SOLOv2 model [38], introducing some new technologies to improve the model’s
segmentation performance and efficiency, such as using a distributed head network, mask
feature pyramid, etc. However, SOLOv2 still has some limitations.

SparseInst is a real-time instance segmentation framework based on sparse instance
activation maps [39]. Compared with traditional image-based or deep-learning-based
methods, SparseInst has the following advantages: it adopts a sparse feature-based design
that can significantly reduce computation and storage space without losing information,
improving algorithm efficiency and robustness; relative to image-based methods, it has
faster speed and higher accuracy in crack detection tasks. However, for small-sized cracks,
SparseInst’s segmentation effect is still not good, and under certain conditions, such as low
resolution, uneven illumination, and large noise interference, the detection effect will be
greatly affected.

Mathematics 2023, 11, 3277 4 of 20

Therefore, in view of the problems of low detection accuracy and easy background
interference in related work, this paper improves the original SparseInst network in Chapter
2 by adding CBAM module [40], DCNv2 convolution [41] and introducing SPM stripe
pooling structure and MPM hybrid pooling structure [42] to adaptively highlight object
information areas, improve detection accuracy, and achieve the real-time accurate detection
of cracks. In Chapter 3, the SparseInst-CDSM algorithm is used to extract clear crack
images, extract the central axis skeleton of the crack through the central axis method,
calculate its pixel length and width, and then use the formula to convert the pixel size
into actual physical size according to current standards to judge whether cracks need
maintenance, reducing labor costs and greatly improving work efficiency. Chapter 4
analyzes the experimental environment and experimental results, verifying the feasibility
of the algorithm proposed in this paper.

2. Methodology

The algorithm in this paper is based on the SparseInst network and improves the frame-
work to achieve crack morphology segmentation and extraction. As shown in Figure 1, the
model mainly includes three components: the backbone, the encoder, and the IAM-based
decoder. Given an input image, the backbone extracts multi-scale image features (i.e., C3,
C4, and C5).

Figure 1. Improved SparseInst instance segmentation model.

The original SparseInst encoder uses a pyramid pooling module (PPM), and this
paper replaces PPM with SPM to avoid establishing unnecessary connections between
distant positions. In Figure 1, ‘4×’ or ‘2×’ indicates upsampling by a factor of 4 or 2. The
IAM-based decoder consists of two branches, namely the instance branch and the mask
branch. In the instance branch, the IAM module predicts instance activation maps (as
shown in the right column) to obtain instance features {zi}N for identification and mask
kernels. The mask branch aims to provide mask features M and multiply them with the
predicted kernels to generate segmented masks.

2.1. Attention Mechanism Module

In order to enhance the feature extraction capability of the SparseInst backbone net-
work, this paper adds the CBAM module, as shown in Figure 2, without destroying the
structure of the feature extraction network.

Figure 2. CBAM module structure.

Mathematics 2023, 11, 3277 5 of 20

This module first performs the maximum pooling process of the encoding part in
the channel attention module, as shown in Figure 3a. The size of the input feature map
is H ×W × C, where H and W are the height and width of the feature map, respectively,
and C is the number of channels of the feature map. Here, this paper first uses two pooling
methods, MaxPool and AvgPool, to obtain two 1 × 1 × C feature maps, denoted as M
and A, respectively. In order to obtain a weight coefficient between 0 and 1, the sigmoid
function is used to combine the two feature maps, M and A, into two completely connected
layers. This weight coefficient will be used to adjust the weight of the input feature map.
The final output feature map is obtained by multiplying the weight coefficient with the
input feature map. For the channel attention module, use the following formula:

Ms(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(1)

Figure 3. (a) Channel attention structure; (b) spatial attention structure.

In this case, the shared MLP module in the channel attention module is represented
by the MLP (Multilayer Perceptron). This module first compresses the number of channels
before expanding them back to their original number. The Relu activation function yields
the outcome of two activations.

After the channel attention module, the spatial attention module is introduced, and it
should concentrate on which area of the space has more significant features, as shown in
Figure 3b. Its input size is H ×W × C. One channel dimension is subjected to max pooling
and average pooling to produce two H ×W × 1 feature maps, which are then combined in
the channel. Next, the two feature maps are concatenated in the channel dimension, and
H ×W × 2 is the current feature map. Then, after passing through a convolutional layer, it
is restored to one channel with a convolution kernel of 7 × 7. The final feature map, while
maintaining HW constant, is H ×W × 1. The sigmoid function is multiplied by the input
feature map to produce the final feature map. The following equation describes the spatial
attention module:

Ms(F) = σ(f 7×7([AvgPool(F); MaxPool(F)])
= σ(f 7×7(Fs

avg; Fs
max))

(2)

2.2. Deformable Convolution Module

When traditional CNN modules are used for visual recognition, there are some defects
in fixed geometric structures that are difficult to avoid. Convolutional units, for instance,
can only sample the input feature map at specific locations, whereas pooling layers diminish
spatial resolution at a specific ratio. An ROI (Region of Interest) pooling layer also divides
a ROI into fixed spatial units, and is devoid of an inherent mechanism for dealing with
geometric alterations. These defects limit the efficiency and accuracy of traditional CNN
modules in handling geometric transformations.

Therefore, adding deformable convolution can solve these problems to some extent
because it can make different positions have different receptive field sizes and shapes
to better adapt to the diversity of objects. In this way, the accuracy and robustness of
convolutional neural networks can be improved so as to better handle various practical
problems. This paper adds an offset to the traditional convolution operation of SparseInst,

Mathematics 2023, 11, 3277 6 of 20

as shown in Figure 4. It is this offset that makes the convolution deform into an irregular
convolution. This offset can be a decimal and needs to be calculated using the method of
bilinear interpolation.

Figure 4. A 3 × 3 deformable convolution.

Deformable convolution DCN v1 will introduce some irrelevant areas and interfere
with the extraction of features, reducing the performance of the algorithm; therefore, this
paper adopts DCN v2. In DCN v2, not only is the offset of each sampling point added, but
also a weight coefficient is added to distinguish whether the introduced area is an area of
interest. If the area of this sampling point is not an area of interest, the weight is assumed
to be 0. The formula is as follows:

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn + ∆pn) · ∆mk (3)

2.3. Improved Context Encoder

In order to achieve faster inference speed, the original SparseInst used single-layer
prediction. Considering the limitations of the single-layer features of various scale objects,
the original SparseInst reconstructed the feature pyramid network and proposed an in-
stance context encoder, as shown in Figure 5. In order to increase the receptive field and
fuse features from P3 to P5, the instance context encoder employs the pyramid pooling
module PPM [43] after C5. This improves the output single-stage features’ multi-scale
representation even further.

Figure 5. Encoder structure diagram.

Mathematics 2023, 11, 3277 7 of 20

However, the ability of PPM to utilize contextual information is limited because only
square kernel shapes are applied. In addition, PPM is only modularized above the backbone
network, so it cannot be flexibly or directly applied to the network building blocks of feature
learning, and PPM heavily relies on standard spatial pooling operations, which can actually
lose important information features in specific scenarios. In response to the problems
with the PPM feature pyramid, this paper uses the strip pooling module (SPM) instead
of the PPM module, as shown in Figure 1. To gather remote context from several spatial
dimensions, SPM employs horizontal and vertical strip pooling procedures. Establishing
long-range dependencies between discretely distributed regions and encoding regions in
a strip shape using extended kernel shapes is simple when horizontal and vertical strip
pooling layers are present.

At the same time, because the kernel shape of this algorithm is narrow in other
dimensions, it emphasizes documenting regional specifics. These features distinguish the
suggested SPM from conventional spatial pooling, which uses square kernels. Let the input
a two-dimensional tensor, and in strip pooling, the pooling window is (H, 1) or (1, W).
The biggest difference between strip pooling and average pooling is reflected here. Strip
pooling averages all feature values in rows or columns. The formula is as follows:

yh
i =

1
W ∑

0≤j≤w
xi,j, yv

i =
1
H ∑

0≤i≤H
xi,j (4)

Compared with the PPM module, the SPM module considers a narrow range instead
of the entire feature map, avoiding unnecessary connections between distant positions,
as shown in Figure 6 below. Let x ∈ RC×H×W be the input tensor, where C represents
the number of channels; where x is first fed into two parallel channels, each of which
contains a horizontal or vertical bar pooling layer; and where, after being modulated
by a one-dimensional convolutional layer with a kernel size of 3, the current position
and its surrounding features are determined. Define yh

c,j ∈ RC×H and yv
c,j ∈ RC×W ; then,

y ∈ RC×H×W can be expressed as:

yc,i,j = yh
c,i + yv

c,j (5)

Figure 6. SPM Structure.

The final output is:
z = Scale(x, σ(f (y))) (6)

Multiplication of elements is represented by Scale(.,.), σ represents the sigmoid func-
tion, and f represents 1× 1 convolution. In order to improve the performance and efficiency
of the model, the inner product of feature vectors is combined and calculated to make the
model more lightweight. In addition, SPM is used to encode the horizontal and vertical
information of the image and balance the weights of different parts to optimize the features.

Mathematics 2023, 11, 3277 8 of 20

This method greatly improves the global context information collection ability of the model,
thus improving its performance.

2.4. Add Mix Pooling Module

In order to increase the distinctiveness of feature representations, the MPM module
focuses on collecting multiple types of context information through various pooling meth-
ods. It is composed of two sub-modules: standard pooling and stripe pooling, as shown in
Figure 7. Stripe pooling makes it possible to connect regions that are discretely distributed
throughout the scene and encode areas with band-like structures, as shown in Figure 7a.
However, for cases where semantic regions are closely distributed, spatial pooling is also
required to capture local context information. With this in mind, as shown in Figure 7b,
a lightweight pyramid pool sub-module is used to collect short-distance dependencies.
It starts with two spatial pooling layers and then moves on to a convolutional layer for
extracting multi-scale features and a 2D convolutional layer for retaining the original spa-
tial information. The size of the merged feature maps after each merge is 20 × 20 and
12 × 12, respectively. All three sub-paths are then merged by summation. These two
sub-modules can simultaneously capture short- and long-range dependencies between
different positions and are essential for scene parsing networks.

Figure 7. MPM structure of (a) long-distance dependency aggregation sub-module and (b) short-
distance dependency aggregation sub-module.

Since MPM is modularly designed, it can be directly built on the backbone network,
as shown in Figure 1. Since the output of the backbone network is 2048 channels, a
1 × 1 convolutional layer is first connected to the backbone network to reduce the output
channels from 2048 to 1024; then, two MPMs are added. Each MPM uses 256 channels (i.e.,
a 1/4 reduction rate) for all convolutional layers with kernel sizes of 3 × 3 or 3. To forecast
the segmentation map, a convolutional layer is finally implemented.

2.5. Preventing the Problem of Overfitting

Overfitting is a common problem in machine learning and statistical modeling, where
the model overfits the training data, reducing its generalization ability. The model performs
well on the training dataset but cannot generalize well on new datasets. The model focuses
too much on the details and noise of the training data, ignoring the true characteristics
of the data distribution, resulting in poor performance on new unseen data. Overfitted
models are also more sensitive to outliers, noise, or errors in the input data. This means
that even in the presence of slight interference or errors, the model may produce unreliable
predictions. To address the problem of overfitting, this paper uses the following methods
to avoid overfitting:

(1) Data Augmentation: By randomly transforming and augmenting the training data, the
diversity of the training data can be increased. This can effectively reduce overfitting
and improve the model’s generalization to new images. The data augmentation
operations used in this paper include random cropping, rotation, scaling, and flipping.

Mathematics 2023, 11, 3277 9 of 20

(2) Regularization: Regularization is a method of limiting the complexity of the model
by introducing a regularization term into the loss function. Common regularization
methods include L1 regularization and L2 regularization. In this paper, regularization
is used to penalize large weight values in the model, thereby avoiding overfitting.

(3) Early Stopping: Early stopping is a simple and effective method to prevent overfit-
ting. It monitors the performance metrics on the validation set and stops training
before the model starts to overfit. Generally, when the performance on the valida-
tion set no longer improves, it can be considered that the model has reached its best
generalization ability.

3. Crack Skeleton Extraction and Crack Size Calculation
3.1. Crack Morphology Skeletonization

In order to obtain crack segments from the crack edge mapping, it is necessary to merge
the crack edges and represent them in a simplified manner; i.e., the area limited by the crack
edges should be skeletonized. The resulting crack skeleton not only reflects the expansion
of the crack but also greatly facilitates the positioning of the crack segments. Given that the
crack skeleton is contained inside its two edges, the crack region is reconstructed using a
morphological closure technique employing crack edge confidence mapping. In order to
get rid of the crack skeleton, the fracture area is then narrowed [44–46].

As shown in Figure 8a, the space between the two edges is filled by morphological
closure, which recreates a whole crack. Given that the crack’s severity is not known, it is
difficult to choose the appropriate shape and size of the structural element for morphologi-
cal closure. A tiny structural component cannot effectively cover extensive crack regions, as
evidenced by the red circular area in Figure 8b, resulting in false holes. Incorrect crack areas
will result in extracted skeletons that do not match the expansion of the crack. In order
to obtain the correct crack area, a small structural element is first used in order to patch
the fracture, and then each hole is located using linked component analysis. The typical
grayscale of the picture is situated between the gray levels of the road surface and the crack
and can be chosen as a threshold to make a distinction between the two. In light of this,
road surface images may be affected by uneven illumination, and the local average gray
level of the area around the hole is used to distinguish between real holes and false holes.
If a hole’s average gray level exceeds the regional average value, it is a real hole; otherwise,
it is a false hole that should be filled. As shown in Figure 8c, if the holes produced by small
structural elements’ morphological closure between crack pixels are filled in, the crack area
is correct and can be used to extract skeletons.

Figure 8. Reconstruction of crack area (a) Original crack image; (b) False holes in large cracks; (c) The
result after processing.

Mathematics 2023, 11, 3277 10 of 20

Skeleton extraction is a technique in the field of image processing and computer vision
that aims to extract the skeleton information of objects from images. It is commonly used
for tasks such as object analysis, recognition, and classification. This article uses the medial
axis method to extract the medial axis of the crack skeleton, which is divided into the
following steps:

(1) Convert the crack image into a binary image; that is, set the pixel values in the crack
area of the image to white and other areas to black.

(2) Use the Canny algorithm [47] to perform edge detection on the binary image.
(3) The skeletonization algorithm proposed by Ma et al. [48] is used to skeletonize the

binary image obtained by edge detection and extract the midline of the crack area.
(4) Connect the pixels on the medial axis to obtain the skeleton diagram of the crack.
(5) Post-process the crack skeleton diagram to remove redundant lines and fill in broken

line segments.

These operations can eliminate noise and unimportant details in the image and retain
key shape information. In order to obtain a one-pixel-wide crack skeleton, border pixels in
the crack area must be continuously removed such that they no longer interfere with the
crack’s continuity. This procedure will retain redundant skeletons brought about by noise
or minor edge changes. Figure 9 depicts the removal of the skeleton result of Figure 8c,
where spurious junctions and superfluous skeletons are produced.

Figure 9. Redundant skeletons and false intersections.

They do not accurately depict the crack’s fundamental topology. Therefore, after
skeletonizing the crack, it is necessary to eliminate redundant skeletons and further refine
the skeletonization results. Trim redundant skeletons through the subsequent actions:

(1) Because the duration of a curved crack should be significantly larger than its breadth,
the maximum crack width specified in the precise crack quantification method of
AASHTO PP67-10 is employed as the default cutoff for trimming [49].

(2) Track the eight neighbors of each skeletal pixel in a clockwise fashion. Let N stand for
how many times a pixel’s color switches from white to black. According to Figure 10,
if N = 2, it is a typical skeletal pixel (P2); if N > 2, it is identified as an intersection (P3);
if N = 1, the current pixel is an endpoint (P1).

(3) Begin at any endpoint and work your way along the skeleton until you reach another
endpoint or intersection; then, part of the skeleton is documented. The skeleton
must be pruned if its length is less than the standard pruning threshold since it is
redundantly short. After pruning, a result will be obtained, as shown in Figure 10.

Mathematics 2023, 11, 3277 11 of 20

Figure 10. Result of pruning redundant skeletons.

3.2. Calculation of Crack Pixel Length

For cracks with branches, the following two methods are generally used to calculate
their length:

(1) Using the total length calculation method, add the length of the main crack and its
branch cracks to obtain the total length of the crack.

(2) Using the main crack length calculation method, only calculate the length of the main
crack and do not calculate the length of the branch cracks. This method is suitable for
situations where the branch cracks are short and dense.

The pixel length of the crack is calculated by obtaining a smooth and complete skeleton
diagram. Since the crack has a bending process, a straight line mode is used instead of a
bending mode. The idea is to measure each segment’s length in the skeleton diagram, add
them all together, and then subtract that number to obtain the crack’s length. The diagram
of the crack length calculation is shown in Figure 11.

Figure 11. Crack length calculation method.

The calculation process is as follows:

(1) Obtain the n sets of target point coordinates between the starting point and the end
point (xi, yi), i = 1, 2, . . . , n through iterative branch skeleton.

(2) Use the formula below to determine the straight-line separation between two places:

di =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2, i = 1, 2, . . . , n (7)

(3) Include the line of sight distances of each part:

sun =
n−1

∑
i=1

di (8)

(4) Keep repeating the above steps until the distance between the two points is finally calculated.

Mathematics 2023, 11, 3277 12 of 20

3.3. Calculation of Maximum Crack Pixel Width

Find a point in the crack skeleton and use the tangent direction of that point as the
direction of the pixel to draw the normal one. Locate a point on the central axis where it
intersects with the normal, and then determine the distance between that point and the
edge point. Twice this distance is the pixel width of the crack. Calculate the width of each
crack in the skeleton diagram and compare it with the maximum value. The crack width at
its widest is the outcome. The calculation method for the maximum width of the crack is
shown in Figure 12:

Figure 12. Maximum crack width calculation.

The entire process of calculating the width of the crack is as follows:

(1) Obtain the n sets of target point coordinates between the starting point and the end-
point (xai, ybi), i = 1, 2, . . . , n; a, b = 1, 2, . . . , n through an iterative branch skeleton.

(2) The orientation of the skeleton can be obtained from the coordinates of each point
on the skeleton; that is, its normality is discernible. The appropriate points on the
central axis can be identified by using the procedure described above to obtain their
coordinates. The target point is (xi, yi), i = 1, 2, . . . , n.

(3) The crack’s breadth is now equal to double the separation between the two points:

di =

√
(xai − xi)

2 + (yai − yi)
2, i = 1, 2, . . . , n; a, b = 1, 2, . . . , n (9)

(4) The largest crack at each point is compared:

max(d) = 2max
{

d(i) + . . . + d(j)

}
(10)

(5) Repeat the procedure a few more times to determine the last point’s crack’s breadth.

3.4. Calculation of Crack Physical Size

Using the formula to connect the object size in the image with the real size so as to
achieve accurate measurement, the specific calculation method is as follows:

P = (D×O)/(f × S) (11)

where P represents the physical size, D represents the shooting distance, O represents the
pixel size of the crack, f represents the focal length, and S represents the number of pixels
per centimeter of the photosensitive element. The pixel size of the crack can be calculated
by pixel calibration; the shooting distance is the distance between the camera and the object,
which can be obtained by methods such as triangulation; and the focal length is an internal
parameter of the camera and can be obtained from the technical parameters of the camera.
The number of pixels per centimeter corresponding to the photosensitive element is the size
of the camera’s image sensor, which can also be obtained from the technical parameters of
the camera. Through this formula, it is possible to calculate the physical size corresponding
to any pixel in the image, thereby achieving an accurate measurement of object size and
distance in the image.

Mathematics 2023, 11, 3277 13 of 20

4. Experimental Results and Analysis
4.1. Experimental Environment

The experimental environment of this article is shown in Table 1. The parameter
settings are shown in Table 2.

Table 1. Experimental environment configuration.

Experimental Environment Experimental Configuration

Operating system Ubuntu 20.04.4
CPU Intel core i5-10400
GPU GTX 3060 12 GB
RAM 16 GB

Experimental tools Pycharm + python 3.8.12
Deep-learning framework Pytorch + detectron 2

Table 2. Parameter settings.

Parameter Name Parameter Value

NUM_CLASSES 1
Weight_decay 0.05
Learning_rate 0.00005

Iter 270,000

4.2. Experimental Dataset Collection

To facilitate the conversion of crack sizes in the image to actual crack sizes, the ratio of
crack length in the image to actual length is set to 1:4, the camera lens is kept perpendicular
to the road surface, and the distance between the camera and the road surface remains
unchanged when acquiring images. The image acquisition device is shown in Figure 13.
The camera is mounted on a bracket, and the operator only needs to control the switch to use
the continuous acquisition mode during acquisition. In order to obtain crack images under
different lighting conditions, this paper collected road crack images from 6 a.m. to 9 a.m.,
10 a.m. to 12 p.m., and 5 p.m. to 7 p.m. on a sunny day, and from 7 a.m. to 9 a.m., 10 a.m. to
12 p.m., and 3 p.m. to 5 p.m. on a cloudy day. The collected road cracks include asphalt road
surfaces and concrete road surfaces, and the cracks on asphalt and concrete road surfaces
are somewhat different. The cracks on asphalt road surfaces are mainly fatigue cracks
and alligator cracks, which are linear or reticulated in distribution. The cracks on concrete
road surfaces can be shrinkage cracks, cold joints, thermal cracks, structural cracks, etc.,
with different shapes and distribution methods. The original crack images were divided
into 200 × 200 images. A total of 1500 segmented images with cracks and 300 segmented
images without cracks were selected as training samples. To ensure the completeness of
the samples, all lengths of cracks should be included in the training samples. To evaluate
a training iteration, 300 images were randomly selected from the training samples as test
samples. It is worth noting that in order to ensure the independence between training
samples and test samples, these 300 images did not participate in this iteration.

4.3. Set Evaluation Indicators

The algorithm model in this paper is evaluated by four indicators: accuracy, precision,
recall, and intersection over union (IoU). Table 3 presents the particular calculating formulas.
Accuracy can be used to determine how accurate a model is, that is, the ratio of the number
of pixels correctly identified by the model to the total number of pixels. Precision represents
the proportion of samples that are truly positive among those that the model selected as
positive. IoU intersection over union is the ratio of the intersection and union of true values
and predicted values. TP stands for the proportion of positive pixels that were correctly
identified, TN for positive pixels that were correctly identified, FP for negative pixels that

Mathematics 2023, 11, 3277 14 of 20

were mistakenly identified as positive, and FN for positive pixels that were mistakenly
identified as negative.

Figure 13. Data acquisition device.

Table 3. Calculation formulas for evaluation indicators.

Evaluation Indicators Calculation Formula

Accuracy
TP + TN

TP + TN + FP + FN

Precision
TP

TP + FP

Recall
TP

TP + FN

IoU
TP

TP + FP +FN

4.4. Instance Segmentation Comparison Experiment

In order to verify the feasibility of the improvement of the SparseInst model by the
algorithm in this paper, a comparison experiment was conducted. By comparing the
algorithm in this paper with the current mainstream segmentation models, as shown
in Figure 14, it was found that, under the condition of sufficient light and clear crack
morphology, several other model methods can extract the crack morphology. However,
the algorithm in this paper can extract the cracks clearly and completely, while the cracks
extracted by other methods are all somewhat blurred or broken. The above results show
that under ideal conditions, the accuracy of crack extraction by the algorithm in this paper is
better than that of the original SparseInst network and other segmentation network models
compared. This also shows that the improvement of the SparseInst model by the algorithm
in this paper is feasible and can improve the accuracy and robustness of crack recognition.

Figure 14. Recognition effect of six methods in ideal environment.

In order to confirm the algorithm’s viability even more, this paper conducted ex-
periments under dark–light conditions, as shown in Figure 15, and under complex crack
conditions, as shown in Figure 16.

Mathematics 2023, 11, 3277 15 of 20

Figure 15. Recognition effect of six methods in dark–light environment.

Figure 16. Effect of six methods in recognizing complex cracks.

Through the above experiments, it can be concluded that under conditions of insuffi-
cient light or complex crack morphology, other segmentation models often fail to extract
cracks completely, while the algorithm in this paper can extract crack segmentation results
of a certain quality under these conditions. This is because the algorithm in this paper can
better use the texture information in the image to improve the recognition ability of cracks.
Therefore, compared with the original SparseInst network model, the algorithm in this
paper performs better in dealing with complex situations.

The specific experimental comparison results are shown in Table 4. Under the same
dataset, the algorithm in this paper is compared with eight mainstream segmentation
network models. According to the evaluation indicators defined in the previous section,
the values of each indicator are calculated. The accuracy of the algorithm in this paper
is 94.58%, the precision is 82.77%, the recall is 83.26%, and the IoU is 87.68%, which are
higher than both the original SparseInst network and other network models compared,
fully reflecting the superiority of the algorithm in this paper.

Table 4. Crack detection accuracy.

Method Accuracy Precision Recall IoU

Mask-RCNN 83.21% 65.86% 62.75% 81.69%
DeepLab 81.33% 61.67% 71.45% 79.34%
SegNet 84.47% 65.24% 72.34% 82.57%
PSNet 83.25% 70.12% 73.33% 80.21%

SOLOv1 85.35% 71.42% 76.76% 83.68%
SOLOv2 86.21% 73.39% 77.28% 82.57%

U-Net 88.31% 80.77% 81.67% 84.33%
SparseInst 89.45% 74.76% 80.39% 82.97%

SparseInst-CDSM 94.58% 82.77% 83.26% 87.68%

Figure 17 shows the comparison of the precision–recall curve test results of various
segmentation algorithms under the same dataset. The results show that under the same
recall rate, the precision of the algorithm proposed in this paper is higher. At the same
time, under the same precision conditions, the recall rate of the algorithm in this paper is
higher. Therefore, it can be concluded that the algorithm in this paper is better than other
algorithms in terms of crack segmentation effects.

Mathematics 2023, 11, 3277 16 of 20

Figure 17. Precision–recall curve test chart.

The algorithm suggested in this research needs to be further tested to confirm its
efficacy and a more thorough evaluation of the model’s performance, the public dataset
CRACK500, and a self-built dataset are used to compare with some mainstream instance
segmentation networks on the evaluation index AP (Average Precision). AP considers
the precision (Precision) at different recall (Recall) levels, thus more comprehensively
evaluating the performance of the model. Different IoU thresholds are selected, including
50%, 75%, and the average precision AP, under all IoU thresholds as reference standards.
The experimental results are shown in Table 5.

Table 5. Instance partition network comparison.

Datasets Methods AP% AP50% AP75% FPS

CRACK500 Mask-RCNN 61.63 87.45 77.31 27.7
CRACK500 DeepLab 63.77 86.33 76.53 21.2
CRACK500 SegNet 62.35 84.34 80.32 28.8
CRACK500 PSNet 63.65 85.76 81.33 23.3
CRACK500 SOLOv1 65.37 87.75 79.67 32.4
CRACK500 SOLOv2 62.78 88.21 80.52 37.9
CRACK500 U-Net 66.72 89.32 82.45 29.7
CRACK500 SparseInst 65.47 90.77 81.77 52.5
CRACK500 SparseInst-CDSM 69.89 92.86 84.62 56.2

Self-built datasets Mask-RCNN 62.57 88.73 79.73 29.8
Self-built datasets DeepLab 61.76 86.82 78.46 22.4
Self-built datasets SegNet 64.37 83.67 81.42 27.3
Self-built datasets PSNet 63.79 88.92 81.97 25.7
Self-built datasets SOLOv1 66.67 87.81 82.33 35.5
Self-built datasets SOLOv2 67.78 89.44 83.52 41.6
Self-built datasets U-Net 68.74 90.47 82.45 33.1
Self-built datasets SparseInst 67.68 93.73 83.26 57.6
Self-built datasets SparseInst-CDSM 71.72 95.86 85.57 61.9

After being verified in the CRACK500 dataset and self-built dataset, the algorithm in
this paper has shown excellent performance in object detection tasks. In the CRACK500
dataset, the AP value of the algorithm in this paper reached 69.89%, the AP50 value was
92.86%, and the AP75 value was 84.62%; in the self-built dataset, the AP value of the
algorithm in this paper was 71.72%, the AP50 was 95.86%, and the AP75 was 85.57%.
Compared with the comparative segmentation model, the algorithm in this paper showed
higher AP, AP50, and AP75 indicators in both datasets, proving that it has higher accuracy
and can effectively detect crack defects in images. Since the goal of SparseInst-CDSM
is real-time instance segmentation, this paper mainly compares the differences between

Mathematics 2023, 11, 3277 17 of 20

SparseInst-CDSM and the latest real-time instance segmentation methods in terms of
accuracy and inference speed. Table 5 shows that SparseInst-CDSM achieves 56.2 FPS on
the CRACK500 dataset and 61.9 FPS on the self-built dataset, outperforming most real-time
segmentation models with better performance and inference speed.

4.5. Ablation Experiment

Through ablation experiments, the improved modules of the model can be clearly
verified to prove the role of each improved module. Here, we chose the Resnet101 backbone
network with the best performance in the above comparison experiment as the backbone.
On this basis, the effectiveness of adding the attention mechanism, DCN convolution,
and introducing the SPM strip pooling module and the MPM mixed pooling module was
verified, as shown in Table 6.

Table 6. Ablation experiment results.

Model CBAM DCN v2 SPM MPM AP% AP50% AP75%

SparseInst101 × × × × 67.72 93.81 78.35
Optimization model 1

√
× × × 67.23 94.67 79.53

Optimization model 2 ×
√

× × 68.44 92.98 79.13
Optimization model 3

√ √
× × 68.71 93.73 78.85

Optimization model 4 × ×
√

× 67.16 92.46 78.56
Optimization model 5

√ √ √
× 69.44 94.33 80.11

Optimization model 6 × × ×
√

68.97 93.22 79.12
SparseInst-CDSM

√ √ √ √
71.21 95.86 85.57

Through ablation experiments, the model’s performance in identifying targets was
shown to be significantly improved by the addition of attention processes. The attention
mechanism allows the model to focus more accurately on areas of interest, thereby improv-
ing its accuracy and robustness. At the same time, the effectiveness of DCN convolution in
segmentation tasks was verified. This is because DCN convolution has stronger feature
expression and better object edge recognition abilities. The SPM strip pooling module can
decompose the feature map into strips of different scales and perform pooling operations
for each strip, thereby improving the multi-scale expression ability of the feature map. The
MPM mixed pooling module combines the advantages of different pooling methods to
improve the diversity and robustness of the feature map. These improved modules can
better solve various challenges in segmentation tasks, giving the model a wider application
prospect in practical applications.

4.6. Comparison of Calculated and Measured Values of Cracks

The width of the cracks is measured manually using a crack width tester and a
crack detector. The length of the cracks is calculated by scanning the cracks with a laser
scanner and then using software to calculate the length of the cracks. Figure 18 shows the
comparison results.

Two hundred sets of calculated and measured values were randomly selected. The
horizontal axis is defined as the measured value, and the vertical axis is defined as the
calculated value. When the point falls on y = x, it proves that the calculated value and the
measured value are the same, and the effect is the best. As can be seen from the figure, most
of the points are basically concentrated near the y = x-axis. After calculation, the average
error does not exceed 10%, and the maximum error does not exceed 20%. However, it can
also be seen from the figure that some points have large errors and are far away from the
y = x-axis. One possible reason is that there is a certain error in the manual measurement
process. Due to the different shapes and sizes of cracks and their different positions, manual
measurement may have some subjectivity and errors. In addition, during image processing,
some crack information may be missed or improperly handled, which can also cause errors.

Mathematics 2023, 11, 3277 18 of 20

Figure 18. Scatter plot of measured and calculated values of crack length and width (a) Crack length
(b) Maximum crack width.

5. Conclusions

For the detection of road cracks, this paper proposes the SparseInst-CDSM algorithm
with the addition of the CBAM attention mechanism, the introduction of the SPM stripe
pooling structure and the MPM hybrid pooling structure, as well as the addition of DCNv2
convolution to design and implement an algorithm for measuring road crack-related
features. Experimental results show that under the same dataset, the evaluation indicators
of SparseInst-CDSM are 94.58% accuracy, 82.77% precision, 83.26% recall rate, and 87.68%
intersection over union, all higher than other segmentation networks. Compared with the
original SparseInst evaluation indicators, they have increased by 5.13%, 8.01%, 2.87%, and
4.71%, respectively, and the feature distinction is obvious. In addition, by comparing the
calculated crack length and width values with the actual measured values, the error is
basically kept within 10%. In summary, the road crack area segmentation algorithm based
on the SparseInst network proposed in this paper provides an effective solution to the
problem of road crack detection. At the same time, this algorithm also has a wide range of
application prospects and can provide references and inspiration for feature segmentation
problems in other fields. Further research and optimization of this algorithm are expected to
bring more extensive and in-depth applications to the field of road maintenance and repair.

Author Contributions: S.-J.W.—edited and wrote the manuscript and collected and analyzed the
data; J.-K.Z.—validation and formal analysis and supervision of project administration and funding
acquisition; X.-Q.L.—review and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China project,
grant number 51904161.

Data Availability Statement: Data are contained within the article. The data presented in this study
can be requested from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gavilán, M.; Balcones, D.; Marcos, O.; Llorca, D.F.; Sotelo, M.A.; Parra, I.; Ocaña, M.; Aliseda, P.; Yarza, P.; Amírola, A. Adaptive

Road Crack Detection System by Pavement Classification. Sensors 2011, 11, 9628–9657. [CrossRef] [PubMed]
2. Sun, X.; Huang, J.; Liu, W. Decision model in the laser scanning system for pavement crack detection. Opt. Eng. 2011, 50, 127207.

[CrossRef]
3. Yao, M.; Zhao, Z.; Yao, X.; Xu, B. Fusing complementary images for pavement cracking measurements. Meas. Sci. Technol. 2015,

26, 025005. [CrossRef]
4. Hu, G.X.; Hu, B.L.; Yang, Z.; Huang, L.; Li, P. Pavement Crack Detection Method Based on Deep Learning Models. Wirel. Commun.

Mob. Comput. 2021, 2021, 1–13. [CrossRef]

https://doi.org/10.3390/s111009628
https://www.ncbi.nlm.nih.gov/pubmed/22163717
https://doi.org/10.1117/1.3662424
https://doi.org/10.1088/0957-0233/26/2/025005
https://doi.org/10.1155/2021/5573590

Mathematics 2023, 11, 3277 19 of 20

5. Abdellatif, M.; Peel, H.; Cohn, A.G.; Fuentes, R. Pavement Crack Detection from Hyperspectral Images Using A Novel Asphalt
Crack Index. Remote Sens. 2020, 12, 3084. [CrossRef]

6. Ren, J.; Zhao, G.; Ma, Y.; Zhao, D.; Liu, T.; Yan, J. Automatic Pavement Crack Detection Fusing Attention Mechanism. Electronics
2022, 11, 3622. [CrossRef]

7. Wang, W.; Wu, L. Pavement crack extraction based on fractional integral valley bottom boundary detection. J. South China Univ.
Technol. (Nat. Sci. Ed.) 2014, 42, 117–122.

8. Liang, R.; Zhigang, X.; Xiangmo, Z.; Jingmei, Z. Pavement crack connection algorithm based on prim minimum spanning tree.
Comput. Eng. 2015, 41, 31–36.

9. Kirschke, K.R.; Velinsky, S.A. Histogram-based approach for automated pavement-crack sensing. J. Transp. Eng. 1992, 118,
700–710. [CrossRef]

10. Oh, H.; Garrick, N.W.; Achenie, L.E. Segmentation algorithm using iterative clipping for processing noisy pavement images. In
Imaging Technologies: Techniques and Applications in Civil Engineering. Second International Conference Engineering Foundation and
Imaging Technologies Committee of the Technical Council on Computer Practices; American Society of Civil Engineers: Reston, VA,
USA, 1998.

11. Fang, C.; Zhe, L.; Li, Y. Images crack detection technology based on improved K-means algorithm. J. Multimed. 2014, 9, 822.
12. Mathavan, S.; Vaheesan, K.; Kumar, A.; Chandrakumar, C.; Kamal, K.; Rahman, M.; Stonecliffe-Jones, M. Detection of pavement

cracks using tiled fuzzy Hough transform. J. Electron. Imaging 2017, 26, 053008. [CrossRef]
13. Amhaz, R.; Chambon, S.; Idier, J.; Baltazart, V. Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm

Based on Minimal Path Selection. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2718–2729. [CrossRef]
14. Zhang, A.; Li, Q.; Wang, K.C.P.; Qiu, S. Matched Filtering Algorithm for Pavement Cracking Detection. Transp. Res. Rec. J. Transp.

Res. Board 2013, 2367, 30–42. [CrossRef]
15. Hongxun, S.; Weixing, W.; Fengping, W.; Linchun, W.; Zhiwei, W. Pavement crack detection by ridge detection on fractional

calculus and dual-thresholds. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 19–30.
16. Oliveira, H.; Correia, P.L. Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 2012, 14, 155–168.

[CrossRef]
17. Ma, D.; Fang, H.; Wang, N.; Xue, B.; Dong, J.; Wang, F. A real-time crack detection algorithm for pavement based on CNN with

multiple feature layers. Road Mater. Pavement Des. 2022, 23, 2115–2131. [CrossRef]
18. Feng, X.; Xiao, L.; Li, W.; Pei, L.; Sun, Z.; Ma, Z.; Shen, H.; Ju, H. Pavement Crack Detection and Segmentation Method Based on

Improved Deep Learning Fusion Model. Math. Probl. Eng. 2020, 2020, 8515213. [CrossRef]
19. Wu, Y.; Yang, W.; Pan, J.; Chen, P. Asphalt pavement crack detection based on multi-scale full convolutional network. J. Intell.

Fuzzy Syst. 2021, 40, 1495–1508. [CrossRef]
20. Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks.

Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
21. Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based

Deep Learning for Detecting Multiple Damage Types. Comput. Civ. Infrastruct. Eng. 2018, 33, 731–747. [CrossRef]
22. Majidifard, H.; Jin, P.; Adu-Gyamfi, Y.; Buttlar, W.G. Pavement Image Datasets: A New Benchmark Dataset to Classify and

Densify Pavement Distresses. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 328–339. [CrossRef]
23. Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection and Classification Using Deep Neural

Networks with Smartphone Images. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 1127–1141. [CrossRef]
24. Attard, L.; Debono, C.J.; Valentino, G.; Di Castro, M.; Masi, A.; Scibile, L. Automatic crack detection using mask R-CNN. In

Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia,
23–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 152–157.

25. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

26. Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the
2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 3708–3712.

27. Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated Pixel-Level Pavement
Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 805–819.
[CrossRef]

28. Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019,
99, 52–58. [CrossRef]

29. Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic Pixel-Level Crack Detection and Measurement Using Fully
Convolutional Network. Comput.-Aided Civil Infrastruct. Eng. 2018, 33, 1090–1109. [CrossRef]

30. Bang, S.; Park, S.; Kim, H.; Kim, H. Encoder–decoder network for pixel-level road crack detection in black-box images. Comput.-
Aided Civ. Infrastruct. Eng. 2019, 34, 713–727. [CrossRef]

31. Ji, A.; Xue, X.; Wang, Y.; Luo, X.; Xue, W. An integrated approach to automatic pixel-level crack detection and quantification of
asphalt pavement. Autom. Constr. 2020, 114, 103176. [CrossRef]

https://doi.org/10.3390/rs12183084
https://doi.org/10.3390/electronics11213622
https://doi.org/10.1061/(ASCE)0733-947X(1992)118:5(700)
https://doi.org/10.1117/1.JEI.26.5.053008
https://doi.org/10.1109/TITS.2015.2477675
https://doi.org/10.3141/2367-04
https://doi.org/10.1109/TITS.2012.2208630
https://doi.org/10.1080/14680629.2021.1925578
https://doi.org/10.1155/2020/8515213
https://doi.org/10.3233/JIFS-191105
https://doi.org/10.1111/mice.12263
https://doi.org/10.1111/mice.12334
https://doi.org/10.1177/0361198120907283
https://doi.org/10.1111/mice.12387
https://doi.org/10.1111/mice.12297
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1111/mice.12412
https://doi.org/10.1111/mice.12440
https://doi.org/10.1016/j.autcon.2020.103176

Mathematics 2023, 11, 3277 20 of 20

32. Chun, P.J.; Izumi, S.; Yamane, T. Automatic detection method of cracks from concrete surface imagery using two-step light
gradient boosting machine. Comput.-Aided Civ. Infrastruct. Eng. 2020, 36, 61–72. [CrossRef]

33. Liu, J.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee, V.C.; Ding, L. Automated pavement crack detection and segmentation based on
two-step convolutional neural network. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1291–1305. [CrossRef]

34. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Part III 18. pp. 234–241.

35. Jang, K.; An, Y.K.; Kim, B.; Cho, S. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot.
Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 14–29. [CrossRef]

36. Jiang, S.; Zhang, J. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system. Comput.
Civ. Infrastruct. Eng. 2020, 35, 549–564. [CrossRef]

37. Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. Solo: Segmenting objects by locations. In Proceedings of the Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Berlin/Heidelberg,
Germany, 2020; Part XVIII 16. pp. 649–665.

38. Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. Solov2: Dynamic and fast instance segmentation. Adv. Neural Inf. Process. Syst.
2020, 33, 17721–17732.

39. Cheng, T.; Wang, X.; Chen, S.; Zhang, W.; Zhang, Q.; Huang, C.; Zhang, Z.; Liu, W. Sparse instance activation for real-time
instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,
LA, USA, 18–24 June 2022; pp. 4433–4442.

40. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

41. Wang, R.; Shivanna, R.; Cheng, D.; Jain, S.; Lin, D.; Hong, L.; Chi, E. DCN V2: Improved Deep Cross Network and Practical
Lessons for Web-scale Learning to Rank Systems. In Proceedings of the Web Conference, Ljubljana, Slovenia, 19–23 April 2021;
pp. 1785–1797. [CrossRef]

42. Hou, Q.; Zhang, L.; Cheng, M.M.; Feng, J. Strip pooling: Rethinking spatial pooling for scene parsing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4003–4012.

43. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 July 2017; pp. 2881–2890.

44. Weng, X.; Huang, Y.; Wang, W. Segment-based pavement crack quantification. Autom. Constr. 2019, 105, 102819. [CrossRef]
45. Zhou, Q.; Ding, S.; Qing, G.; Hu, J. UAV vision detection method for crane surface cracks based on Faster R-CNN and image

segmentation. J. Civ. Struct. Health Monit. 2022, 12, 845–855. [CrossRef]
46. Wieser, E.; Seidl, M.; Zeppelzauer, M. A study on skeletonization of complex petroglyph shapes. Multimed. Tools Appl. 2016, 76,

8285–8303. [CrossRef]
47. Lynn, N.D.; Sourav, A.I.; Santoso, A.J. Implementation of Real-Time Edge Detection Using Canny and Sobel Algorithms. In

Proceedings of the IOP Conference Series: Materials Science and Engineering, Chemnitz, Germany, 24 March 2021; IOP Publishing:
Tokyo, Japan, 2021; Volume 1096, p. 012079.

48. Ma, J.; Ren, X.; Tsviatkou, V.Y.; Kanapelka, V.K. A novel fully parallel skeletonization algorithm. Pattern Anal. Appl. 2022, 25,
169–188. [CrossRef]

49. Qiu, S.; Wang, W.; Wang, S.; Wang, K.C. Methodology for Accurate AASHTO PP67-10–Based Cracking Quantification Using
1-mm 3D Pavement Images. J. Comput. Civ. Eng. 2017, 31, 04016056. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/mice.12564
https://doi.org/10.1111/mice.12622
https://doi.org/10.1111/mice.12550
https://doi.org/10.1111/mice.12519
https://doi.org/10.1145/3442381.3450078
https://doi.org/10.1016/j.autcon.2019.04.014
https://doi.org/10.1007/s13349-022-00577-1
https://doi.org/10.1007/s11042-016-3395-1
https://doi.org/10.1007/s10044-021-01039-y
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000627

	Introduction
	Methodology
	Attention Mechanism Module
	Deformable Convolution Module
	Improved Context Encoder
	Add Mix Pooling Module
	Preventing the Problem of Overfitting

	Crack Skeleton Extraction and Crack Size Calculation
	Crack Morphology Skeletonization
	Calculation of Crack Pixel Length
	Calculation of Maximum Crack Pixel Width
	Calculation of Crack Physical Size

	Experimental Results and Analysis
	Experimental Environment
	Experimental Dataset Collection
	Set Evaluation Indicators
	Instance Segmentation Comparison Experiment
	Ablation Experiment
	Comparison of Calculated and Measured Values of Cracks

	Conclusions
	References

