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Abstract: This paper addresses the fixed-time stability problem of chaotic systems with internal
uncertainties and external disturbances. To this end, new sliding-mode surfaces are introduced to
design fixed-time controllers for the stabilization of perturbed chaotic systems. First, the required
conditions for deriving fixed-time stability are determined. Then, using the obtained stability theo-
rems and sliding mode techniques, the controllers are synthesized. The proposed controller enables
the convergence of the trajectories of the chaotic system to the origin in finite time, independently
of the initial conditions. The performance of the proposed approach is assessed using a simulation
study of a PMSM system and the Matouk system. Among the advantages of the proposed controller
are its robustness to external disturbances and the boundedness of the settling time to a constant
value for any initial condition.
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1. Introduction

Chaotic dynamics are encountered in many engineering applications, such as network
systems, digital communications, mechanical systems, organic phenomena for example
biological populations, and so on [1-4]. These dynamical systems have several unique
characteristics, such as randomness, non-periodicity, and high sensitivity to the initial val-
ues. For instance, reference [5] demonstrates that the simple-model regulation of plant and
animal populations is inherently nonlinear and subject to uncertain chaotic dynamics. In
1990, a discrete control algorithm, dubbed the OGY method [6], was established to control
the chaos. The same year, the work [7] put out a principle to synchronize chaotic systems
by connecting them with standard signals. It considered the signs of Lyapunov exponents
and applied them to synchronize chaotic systems. In 2000, reference [8] proposed a power
integrator to address the problem of robust stabilization for a class of uncertain nonlinear
systems. In the same year, for the equilibrium of a continuous dynamical system, the
finite-time stability for a system was defined in [9]. Since then, several research initiatives
have been made to examine chaotic synchronization, and they have produced remarkable
results. A technique for the finite-time synchronization of two different chaotic systems
with unknown parameters was first presented in 2011 [10]. In 2012, the research [11]
proposed two different nonlinear control strategies for uncertain linear dynamics. The
objective was to provide global finite-time stability regardless of the initial conditions. To
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ensure finite-time and fixed-time stability for nonlinear systems, reference [12] developed a
number of theorems based on Implicit Lyapunov Functions in 2015. A method for regu-
lating dynamical systems with internal uncertainties, external disturbances, and chaotic
behavior was put out by [13] in 2016. In order to synchronize the modified Chua’s chaotic
system, the approach was then generalized for the control of chaotic systems. In 2017,
the work [14] highlighted the importance of chaotic dynamics in network systems and
proposed some novel methods for controlling the uncertain chaotic behavior in network
systems. The same year, [15] proposed a technique to synchronize and stabilize a certain
class of chaotic systems that are subject to both internal uncertainties and external distur-
bances. In addition, [16] created an adaptive dynamic surface in 2017 to control a type of
strict-feedback nonlinear system with complete state restrictions and unmodeled dynamics.
This study [17] in 2018 proposed a novel, robust tracking control system for robot manipu-
lators with dynamic uncertainties and unknown disturbances. The technique is carried out
by developing two adaptive interval type-2 fuzzy logic systems to better approximate the
parametric uncertainties of the nominal system. Following that, a novel control algorithm
based on a newly synthesized fuzzy sliding mode control law was proposed. Ref. [18]
presented a unique hyperchaotic system consisting of four-dimensional dynamical systems
with continuous-time ordinary differential equations and three quadratic nonlinearities for
the first time in 2019. They also proposed a method to suppress the chaotic behavior in this
system based on the Lyapunov stability approach. Additionally, [19] proposes a technique
based on backstepping and Lyapunov predictive control to synchronize nonlinear systems
in order to guarantee the boundedness of the solution for the perturbed system. In the same
year, [20] introduced an adaptive sliding mode disturbance observer-based finite time con-
trol approach for uncertain nonlinear systems. In addition, [21] established various criteria
for the resilient management and synchronization of a class of 3D fractional-order chaotic
systems with external disturbances in 2019. A class of ambiguous single-input, single-
output nonlinear systems with unclear control direction and disturbances was taken into
consideration in [22]. It designed new controllers and adaptive laws and demonstrated that
all the variables in the closed-loop system are constrained, and the tracking error converges
to the origin. In that year, [23] introduced various approaches based on continuous strate-
gies for solving the problem of finite time and fixed time synchronization of complicated
networks. In 2020, for the first time, [24] presented a novel control approach to suppress the
chaotic phenomenon in a PI control system. In [25], the issue of finite-time synchronization
of a type of chaotic master and slave system with unknown parameters, uncertainties, and
disturbances was examined. In addition, numerous effective control strategies have been
suggested to synchronize the chaotic dynamics. For example, in 2020, [26] derived a new
fixed-time stability theorem for the synchronization of chaotic dynamics. Moreover, [27]
used sliding mode control and Lyapunov stability to offer several sufficient conditions to
stabilize a globally nonlinear system. Ref. [28] considered the fixed-time control problem of
perturbed chaotic systems. Ref. [29] developed a novel analytical technique to synchronize
nonlinear systems with stochastic perturbations. However, the setting time was not only
dependent on the gains and initial conditions but also on the controlled and uncontrolled
widths. Simultaneously, [30] proposed a new hybrid-driven sampling control strategy for
the finite-time synchronization of complex networks with stochastic cyber-attacks. In recent
papers, authors have profoundly researched the finite-time synchronization of complex
network systems. They used Lyapunov functions and the inequality technique. Based
on the above-mentioned studies, it is evident that the systems’ initial conditions have
fundamental importance in the determination of fixed-time stability. The settling time
will be considerable if the initial values are large enough, a situation that is not suitable
for engineering applications. To alleviate this problem, [31] proposed a different analysis
method for the finite-time synchronization of the drive-response inactive neural networks
with mixed time-varying delays. A new inequality method was proposed to yield better
response dynamics while achieving fixed-time stability. In 2021, [32] presented some suf-
ficient conditions to guarantee the finite-time stability of time-varying systems. Ref. [33]
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proposed a method for the fast finite-time stability of a class of stochastic nonlinear systems.
Based on the Lyapunov theorem and some inequality techniques, sliding mode surfaces
were proposed to establish controllers that guarantee fixed-time stability independently of
the system’s initial conditions. In 2022, [34] proposed a criterion that determines a bound-
ary for the fixed-time stability of chaotic dynamics with internal uncertainties and external
disturbances. In that year, the article [35] addressed the topic of employing a dynamic
sliding mode controller to stabilize interval type-2 fuzzy systems with uncertainties, time
delays, and external disturbances. When designing controls, the sliding surface function
is employed. The reachability of the surface of the addressed sliding mode is first shown.
Second, the necessary requirements for the stability of the system and the suggested control
scheme are derived. Ref. [36] derived the criterion for finite-time stability of stochastic
systems represented by fractional-order delay differential equations. Ref. [37] used a type
of inequality to guarantee the finite-time stability of state-dependent delayed systems.
Ref. [38] developed some sufficient criteria for the finite-time stability of linear systems
in the fractional domain with time-varying delays. Ref. [39] considered some inequalities
and the Lyapunov-Krasovskii functional method to investigate the finite-time stability of
singular systems with time delays. Ref. [40] developed and presented a vital theory for the
finite-time stability of a class of stochastic nonlinear systems. Ref. [41] suggested sufficient
conditions for the finite-time and fixed-time stability of non-autonomous ODE systems. In
most of the papers mentioned above, the main problem is the control of a chaotic system
with uncertainty and disturbances. The methods used in these articles are often based on
the boundary assumption of uncertainty and disturbances under certain initial conditions.
These articles frequently take into account the common sliding surface, and by using matrix
inequalities, methods for adaptive and optimal control, fuzzy control, and other techniques,
under the assumption that the boundary of disturbances and particular initial conditions
have been known, an appropriate solution to the problem has been identified. Although
these approaches are theoretically efficient, the primary difficulty with them is that the
boundary assumption of disturbances and certain initial conditions cannot be neglected.
As these methods reveal, the problem becomes more difficult if we consider fixed-time
stability. The difficulty, in our opinion, stems from the fact that the appropriate sliding
surface is not addressed in the controller design. In this research, we suggested a sliding
surface and constructed controllers based on it to deal with the problem of unbounded
perturbations as well as arbitrary initial conditions. These controllers are constructed in a
way that removes the impacts of uncertainty and disturbances, whether they are bounded
or unbounded.

This paper addresses the fixed-time stability problem of chaotic systems with internal
uncertainties and external disturbances. Its main contributions are as follows:

e It designs a fixed-time controller for the stabilization of perturbed chaotic systems
based on a new sliding mode surface.

e  Itsuggests a method to determine a boundary for the fixed-time stability of uncertain
chaotic systems with external disturbances that is independent of the initial conditions.

e [t derives the required conditions to achieve the fixed-time stability.

The remainder of the paper is organized as follows. Some preliminaries are given in
Section 2. The controller design is detailed in Section 3. Numerical simulations illustrating
the performance of the proposed approach are given in Section 5. Finally, some conclusions
are drawn in Section 5.

2. Preliminaries and System Description

Consider the following dynamical system:

= f1 (x) + Afl(x) + &1 (x)
Xy = fz(x) + Af2(x) + 52(3() 1)

o = o () + Afu(x) + bu ()
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wherei € {1,2,....,n}, x; is the state vector, 4;(x) denotes the external disturbances, Af;(x)
refers to the internal uncertainties, and f;(x) is a continuous function. It is essential to first
present some lemmas and definitions for system (1).
Definition 1 [27]: An autonomous differential equation:
f:R"—=R", x(t) = f(x(t)), x(0) =xo ()
is said to be fixed-time stable if
3t V> 6 x(t) =0 A Jim|x(t)] =0 )

t. is independent of the initial value of the autonomous differential equation.

Lemma 1: Suppose that K > 0 and x : R — R is a continuous differentiable function that satisfies
the following conditions:

i = —Ksign(x)(|x| + D\/(Jx] +1)* =1 , x(0) = xo (4)

Then, origin of system (4) is fixed-time stable and setting time is t, < %.

Proof: It follows from the (4) that:

dx

o = —Ksign(x) (x| + 1)/ (x| + 1)~ 1 ©)
Thus
dx — Kt ©)
sign(x)(Jx| +1)y/(Jx| +1)* =1
So

x(t) dx t
= K[ dt 7)
/X<°> sign(x)(|x| + 1)1/ (|x| + 1)* =1 /0

After evaluating the integrals, the following result is obtained:

(2 tan—1 (sign(X) <_x + /2x. sign(x) + xz)) ) x(t) . ®
x(

sign(x) )

But, for any 6, we know that ‘Ztan_1 (9) ’ < m; thus [t| < 7, there exists a fixed time £,

such that thnt1 x(t) = 0. The convergence time t, is given by t, < Z. Therefore, Equation (4)
—ty

is fixed-time stable. J

Remark 1: In article [34], the setting time is defined by five parameters with limitations, while
in this article, the setting time is set by only one parameter. Therefore, in terms of applicability,
Lemma 1 has some advantages over Theorem 1 presented in paper [34].

For example, if K = 2and x = —K sign(x)(|x| + 1)1/ (|x| + 1)>—1, x(0) = 7. Figure 1
shows that the graph of x(t) is a continuous differentiable function, and the setting time is
b < 2.
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Figure 1. Graph of x(t) when K = 2, x(0) = 7.

Also, if placed K = % and x(0) = —3, similar results are obtained. Figure 2 shows that

the setting time is less than ¢, < 27t.

0.5

0 ’ 2 3 p 5 6
t
Figure 2. Graph of x(t) when K = %,x(O) = -3.

3. Sliding Surface and Controller Design

This section focuses on designing a controller for the dynamical system defined by (9):

X] = fl(X) + Afl (X) + 51(9() + Ml(t)
Xp = fz(x) + Afz(x) + 52(.%) + Mz(t) ©)

Xp = fu(X) + Afu(x) + 6n(x) + un(t)

wherei € {1,2,....,n}, x; is the state vector, J;(x) denotes the external disturbances, Af;(x)
shows the internal uncertainties, and f;(x) is a continuous function, u;(¢) denotes the
controller. We want to design u;(t), such that (9) is fixed-time stable.

Remark 2: In article [34], it is assumed that the external disturbances Af;(x) and the internal
uncertainties 6;(x) are bounded, while this article does not use such an assumption.

In this section, a new sliding mode controller is planned to realize the fixed-time stable
control of nonlinear system. There are two principal steps in the design technique of the
suggested fixed-time controller:

e  constructing a suitable nonsingular terminal sliding surface.
e building a robust fixed-time control law to guarantee the existence of the sliding
motion in a given setting time.
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To realize the control of the system (9), the nonlinear sliding mode is constructed as:
ot
si=x;+ [ Ksign() (|l + Dy (jx] + 1) 1 (10)

If the states arrive at the sliding surface, thens; = 0, s; = 0.

Theorem 1: Consider the sliding mode dynamics (10). This system is fixed-time stable and its
trajectories converge to the equilibrium x(t) = 0 in a setting time Ty which is determined by
Ty <%

Proof: Define the following Lyapunov function:

Wﬂ=$iﬁ (1)

Calculation of derivative of V() with respect to f yields:

V= ﬁ X;X;
= £ x(Ksign() (i + 1)/ (] 17 1) )
Ki(xlszgn( ) (%] + 1)/ (Jxi] + 1) —1)

But (xisz'gn(xi)(|xi| + 1)/ (x| +1)* - 1) >0, thus V < 0.
According to Lyapunov theorem x; — 0. However,

x; = —K sign(x;)(|x;] + 1)1/ (|xi| +1)* — 1, thus, by means of Lemma 1, it is clear that
setting time is Ty < %, and (10) is fixed-time stable. []

If s; # 0, it means the states of system (9) is outside of the sliding mode surface. We
should then design an appropriate controller to put the states into the sliding surface and
make it remain there constantly. For this aim, the following theorem is provided.

Theorem 2: Assume that

b= & — (K sign(x;) (|| + 1)/ (1] + 1) 1) A - AL &) (13)

With
& = - (Ksign(s) (5] + 1y (s 17~ 1) (14)
is a controller, then (9) is fixed-time stable. The convergence time t, is:
27T
< ==
T, < X (15)

where the parameter satisfies K > 0.

Proof: In the same way, we choose the Lyapunov function as:

V(t) =33 st (16)
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V:

calculating the derivative of both sides of V, one has:

(xi T K sign(x) (x| + 1)y/ (] + 1) 1) a7

= él 5i (K sign(x;) (x| + 1)/ (|xi| +1)% — 1) + é si(fi(x) + Afi(x) +6i(x) +u;(t))

Substituting the controller in the above equation yields:

v = £ s (Ksigna) (1l + 1)/ (il + 17 1)
- £ s Ksign( (il + 1yl + 17 1) (18)
i=1

- £ s (Ksignts)(si + 0y (] + 12 1)
i=1

Simplifying the above equation yields:

¥ = —KY. (s sign(s) sl + 1/ (i + 12 -1 (19)

i=1

But (sisign(si)(|si| +1)4/(Isi] +1)* - 1) >0, thus V < 0.
According to Lyapunov’s theorem s; — 0. However, s; = —s; sign(s;)(|s;| +1)

(si] +1)* = 1, thus, by means of Lemma 1, it is clear that setting time is T < Zo It
follows from the Theorem 1 that when the trajectories are placed on the sliding surface
s;i = 0, it takes a maximum of ¥ seconds to reach the origin; therefore, the system is
fixed-time stable, and setting time T; is determined by T, < 2Z. O

Remark 3: The basis of finding a fixed time is related to finding a differential equation x = —F(x),
such that it satisfies the expectations of Lemma 1. Also, the control structure in this paper is not
only unrelated to the system parameters but also independent of the initial values. The method
described here can be suitable for more general chaotic dynamics.

4. Numerical Simulations

To illustrate the performance of the proposed approach, we carried out some numerical
simulations of two systems: the PMSM system and the Matouk systems.

Example 1. Here the PMISM system is examined from the point of view presented in this article.

The dynamics of the PMSM system are defined as:

X1 = —x1 + X2x3 + Afq(x) + 01 (t) +uq(t)
Xo = —xo + x1x3 + a1x3 + Af o (x) + 62 (t) + ua(t) (20)
t

)

jCl = 612(X2—X3) + Afl (x) + 51(t) + 1/[1(

where a1, a5 are the system’s parameters.

The dynamics of (20) have been investigated in [42,43]. Particularly, system (20) can
exhibit chaotic behavior without control, uncertainties, or disturbances, with parameters
that are determined by equations a; = 20, a, = 5.46. The chaos movement of (20) with
x(0) = (—4.3, 5.7, 2.7) is illustrated in Figure 3. The trajectories of (20) are plotted in
Figure 4.
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Figure 4. The state trajectories of system (20).

The chaotic system is controlled by (13) that x(0) = (—4,2,8), Afi(x) = 15sin(xy),
Afa(x) = 2cos(x1), Afs(x) = 2.5sin(xq)cos(x3) are the uncertainties, d1(f) = 1+ 2sin(t),
0o (t) = 2sin(3t)cos(t), d3(t) = 1.5+ cos(3t) are the disturbances, u;(t), ua(t), uz(t) are the
controllers. We plan the robust controllers according to the results which are discussed.

Remark 4: The numerical simulations show that the proposed approach is more efficient that the
method proposed in [34]. The trajectories of the controlled system are shown in Figure 5.
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Figure 5. Trajectories of the controlled system with K = 0.25 according to controller in our method
and the method suggested in [34].

Table 1 shows that in our method, x1, x3, and x3 converge to zero in less than 0.4 s.
However, in the method proposed in [34], the convergence occurs after 1 s.

Table 1. Performance comparison.

Method Time (s) 0 0.2 0.4 0.6 0.8 1

Our x1 —4 0.1638 —3.9031 x 10718 —39031 x 1071  —39031 x 10~  —3.9031 x 10~18
method X 2 —0.0652 1.0503 x 10~19 1.0503 x 10~1? 1.0503 x 10~1° 1.0503 x 10~1?
8 —0.2688 45794 x 10717 45794 x 10~V 45794 x 10717 45794 x 10~V

Method of X1 —4 0.3975 0.0525 0.002 —24926 x 107*  —2.6047 x 107>
Ref [34] xo 2 —0.2800 —0.0507 —1.8392 x 104 1.4824 x 10~ 2.0169 x 107>
X3 8 —0.6131 —0.1117 —0.0031 —1.4171 x 1074 1.7504 x 10~4

Example 2. The controlled Matouk system with internal uncertainties and external disturbances is
defined as below:

i’l = bl (X4 - XZ) + ble — X1X4 + Afl (X) + (51 (t) + Ml(f),
Xy = b3xy — x1x3 + x4 + Afo(x) + 52 () + ua(t),

X3 = —byxz + bpx? + Afa(x) + 85(t) + us(t),

X4 = bsxy + Af4(x) + (54(1’) + u4(t),

(21)

For i € {1,2,3,4}, x; is the state vector, Afj(x) is internal uncertainty, and J;(f)
is external disturbance. by, by, b3, by, bs are parameters of the system. Let b = 15,
bz = -2, bg = —15, b4 = 0.5, b5 = —land xl(O) =1, Xz(O) = -2, X3(0) =3, X4(0) = -1
The Matouk system exhibits chaotic behavior without control, uncertainties, or compound
disturbances. Its chaotic behavior is shown in Figures 6-8. The state trajectories of the
system (21).
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Figure 6. The chaotic attractor of (21).

30
20

Figure 7. The chaotic attractor of (21).

To stabilize the Matouk system, the internal uncertainties are: Af;(x) = 1.5sin(x,),
Afy(x) = 2cos(x1), Afs(x) = 2.5sin(x1)cos(x3), Afa(x) = cos(xs), and the external distur-
bances are assumed as: &1(f) = 2cos(2t)sin(t) + 1, & (f) = 2cos(t)sin(3t),
03(t) = cos(3t) + 1.5, d4(t) = cos(3t) and x(0) = (3,—1,5,—2). The control parame-
ter is K = 0.5. The novel sliding surface and the robust controllers are defined in (10) and
(13). The numerical simulations are shown in Figures 9 and 10.
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Figure 9. The states x1, x2, x3, x4 of (21) with K = 0.25.

The actual convergence time is about f.. = 4 for K = 0.25; however, for K = 0.25, T is
given by T = 477 seconds.

The actual convergence time is about t. = 0.9 for K = 2; however; T is givenby T = 7.
Thus, combining two cases, one can find that ¢, < T which shows the correctness and
validity of the derived results.
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5. Conclusions

This paper proposed a technique for the fixed-time control of chaotic systems with
uncertainties and perturbations. At first, an innovative nonlinear dynamic system is
presented which reveals the existence of fixed-time stability. Then, based on this important
result, in the form of two theorems, a novel nonlinear terminal sliding mode surface is
defined. Afterwards, an appropriate controller is designed. The approach is assessed using
a numerical simulation of the PMSM system, and the Matouk system. The obtained results
proved the effectiveness of the proposed approach. The proposed method for estimating
fixed-time stability can easily be applied to control other chaotic systems with uncertainty
and perturbation.
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