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Abstract: The deep learning-based side-channel analysis gave some of the most prominent side-
channel attacks against protected targets in the past few years. To this end, the research community’s
focus has been on creating the following: (1) powerful multilayer perceptron or convolutional neural
network architectures and (2) (if possible) minimal multilayer perceptron or convolutional neural
network architectures. Currently, we see that, computationally intensive hyperparameter tuning
methods (e.g., Bayesian optimization or reinforcement learning) provide the best results. However,
as targets with more complex countermeasures become available, these minimal architectures may be
insufficient, and we will require novel deep learning approaches.This work explores how residual
neural networks (ResNets) perform in side-channel analysis and how to construct deeper ResNets
capable of working with larger input sizes and requiring minimal tuning. The resulting architectures,
obtained by following our guidelines, are significantly deeper than commonly seen in side-channel
analysis, require minimal hyperparameter tuning for specific datasets, and offer competitive perfor-
mance with state-of-the-art methods across several datasets. Additionally, the results indicate that
ResNets work especially well when the number of profiling traces and features in a trace is large.
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1. Introduction

Many digital devices, from phones to payment terminals, rely on encryption algo-
rithms for security. While modern cryptographic algorithms are (presumed to be) the-
oretically secure, the practical implementations come with an entirely separate set of
concerns. Several types of attacks that rely on some vulnerability in the implementation
exist. In this work, we focus on side-channel analysis (SCA). Side-channel analysis is a
non-invasive implementation attack, focusing on extracting leaked information during the
algorithm’s execution. Examples of these leakages include the following: timing [1], power
consumption [2], electromagnetic emanation [3], sound [4],or cache-timings [5].

In the last few years, the focus of the side-channel community has primarily shifted
to attacks using deep learning techniques [3,6,7]. Various works have looked at different
neural network architectures and hyperparameter setups. Still, the general trend for state-of-
the-art performance has been to take relatively small architectures [8] and to use automated
techniques to find optimal hyperparameter configurations [9,10]. While some works have
explored deeper architectures for specific scenarios, such as attacking traces with large
feature windows [11,12] or desynchronized traces [13,14], these cases are relatively limited
when compared to the large number of works using smaller architectures [8–10,15–18].

Although targets protected with various countermeasures have become relatively
straightforward to break with deep learning techniques [8,16], there are newer datasets that
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seem more difficult to successfully attack [12]. These recent datasets commonly provide
more measurements (and features) for the profiling and the attacking phase. As a result
of the increased complexity of the datasets, due to the additional countermeasures, larger
architectures may provide a way to break these targets. Therefore, it is essential to provide
insights into the construction and performance of these larger architectures to make any
conclusions as to the viability of the architectures for such tasks.

Since we focused on deeper neural networks, we used Residual networks (ResNets).
The ResNets are neural network architectures that include shortcut connections between
network layers. As these shortcut connections are added in deep networks, updating the
weights in earlier layers becomes difficult as the gradient vanishes in the deeper layers.
The shortcut connections then allow the gradient to skip layers and let the weights in these
deeper layers be trained [19]. The benefit of ResNets in this context is that the residual
connections allow deeper networks to be used without running into gradient vanishing
issues. Additionally, some recent works have used ResNets for side-channel analysis and
have shown promising results [14,20].

1.1. Related Work

Recently, several works investigated ResNets and concluded that they have relatively
competitive performances with the state-of-the-art SCA. Zhou and Standaert explored
using a ResNet architecture for dealing with desynchronized traces and showed impressive
attacking results [14]. Jin et al. also showcased a ResNet architecture utilizing attention
mechanisms, and the resulting architectures performed well across a fairly wide variety of
datasets [20].While both of these works showed good attacking results using ResNets, how
the authors arrived at the architectures they used is unclear. There are no experimental
results that investigate the benefits (or downsides) of fundamental design choices in the
construction of ResNet architectures and, as such, it is unclear whether the architectures
used are optimal. Additionally, these works do not provide a clear basis to compare the
performance of ResNet architectures to other state-of-the-art methods. In [20] it is difficult
to understand how much of the performance improvements should be attributed to the use
of the attention-based mechanisms, and in [14] the main focus is on non-public datasets and
the architecture description is unclear and does not allow the reproduction of the results.
Next, Gohr et al. used ResNets to break the CHES CTF 2018 dataset, exploring deeper
networks with up to 19 residual blocks [21]. The authors also discussed breaking the full
key and not only one subkey guess, as is commonly done. Finally, Masure et al. did not use
ResNets, but discussed them, and concluded that it is possible to use distinctive features
in SCA traces and avoid problems connected with deep architectures (which would then
necessitate the usage of ResNets) [22].

Other works have looked at attacking datasets with large numbers of features. Lu et al.
attacked the raw traces of several datasets with novel, attention-based architectures and
showed impressive results [11]. The authors also required large neural network archi-
tectures for this. Indeed, they used architectures with more than 50 layers, while most
of the results in the SCA domain are accomplished with architectures with less than ten
layers. Perin et al. also explored various feature selection scenarios and showed that even
very small architectures could have excellent results against datasets with large numbers
of features [18]. Moreover, the authors showed that it is possible to break the targets in
certain cases with only a single attack trace. Finally, Masure et al. looked at how the code–
polymorphism countermeasure impacts the security of implementations against attacks
using deep learning [22]. This countermeasure results in large feature windows, as the
sensitive operations are spread across larger periods of time. As a result of this, Masure et al.
created adapted CNN-like architectures to deal with these large-scale traces.

We can make several observations when we look at the state-of-the-art methods for at-
tacking more commonly used datasets in SCA. The architectures proposed by Zaid et al. are
amongst the top-performing architectures for several datasets [8]. These small architectures
provide a base for the novel model search strategies currently providing top performance
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for various datasets. Wu et al. showed how Bayesian optimization could be used to opti-
mize the hyperparameters for small architectures for specific datasets [10]. They also found
that random search can perform well if the hyperparameter search ranges are adequately
limited. Rijsdijk et al. utilized reinforcement learning to generate top-performing archi-
tectures automatically [9]. More recently, Schijlen et al. explored an approach, based on
genetic algorithms, that performs competitively with the aforementioned approaches [17].
Furthermore, Acharya et al. showed that an information theoretic approach performs
competitively while reducing computational overheads, in terms of memory footprint and
time complexity [15]. These automated search techniques rely on training and evaluating
large numbers of models and on pre-selecting reasonable ranges for hyperparameters to
limit the otherwise unreasonable search ranges.

Finally, there are some works that look at utilizing the benefits of DL-based approaches
for non-profiled attacks. Timon showed that, by training networks for each possible key
candidate it is possible to distinguish the correct key [23]. To mitigate the significant
computational overheads of training a model for each key candidate, Do et al. proposed a
multi-output regression approach to train only one neural network. More recently, methods
using DL networks trained on plaintext labels have been used to directly mount attacks [24]
and to improve collision attacks [25].

1.2. Our Contributions

This paper investigates how ResNets can be used in SCA and, more precisely, how
difficult it is to tune them and how they compare with state-of-the-art results. Our main
contributions follow:

1. We empirically investigate several constructions for deep ResNets and provide rec-
ommendations about what type of residual block should be used and how deep the
networks should be for state-of-the-art side-channel analysis.

2. From these recommendations, we construct a novel architecture that is significantly
deeper than the architectures previously used for SCA. This architecture performs
competitively with state-of-the-art model search strategies across several datasets.
In several settings, we obtained the best-known results (compared with other types of
deep learning and the same number of features).

2. Background
2.1. Deep Learning

Deep learning (DL) is a form of machine learning (ML) where the algorithm to learn
the function is a neural network of interconnected layers. Such DL algorithms are generally
(in the context of SCA) used to perform classification in a supervised learning setting. A
supervised learning setting is a setting where a set of already-labeled data is taken, and a
model is created from this labeled data to predict the labels for data that have not been
used before [26].

As described above, DL networks are trained using a set of training data assigned with
classification labels. The training lasts for a number of epochs. One epoch is equivalent to
processing all training data once (forward and backward passes with the backpropagation
algorithm). The data is divided into batches, and each batch is utilized in one iteration. When
the network has generated predictions for a batch, the models’ predictions are compared
to the actual labels. This comparison is made by computing a loss function. Various loss
functions are used to measure the errors the networks make during classification. The goal
during training is, then, to minimize the loss of the network. This is accomplished by
computing the gradient of the loss function concerning the weights in the network. Then,
the weights are updated according to this gradient by an amount scaled with the learning
rate. Several methods exist for updating the weights, and we refer to these as optimizers.
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2.2. Residual Neural Networks

A specific family of CNN architectures is that of Residual Neural Networks (ResNets).
One of the main problems deep CNN architectures experience is the gradient vanishing
problem wherein weights in the earlier layers of the network cannot be efficiently updated
using the gradient, since the gradient is too small in these layers [27]. This gradient
vanishing results in the training of very deep networks to be very complex [28]. To avoid
this problem, ResNets have shortcut connections that skip over some of the layers in the
network. These shortcut connections allow the network to have many layers while still
not experiencing the problem of vanishing gradients. Often, ResNets are implemented
using residual blocks. These are blocks of convolutional layers. Then, a shortcut connection
is added to the output of the residual block. This connection allows the gradient to flow
through the shortcut connection, which helps resolve the problems mentioned above
(i.e., gradient vanishing). This shortcut connection is generally realized with a connection
lacking any intermediate operations or a convolutional layer with kernels of size one, to
match the number of filters for the addition. Examples of typical constructions of residual
blocks can be seen in Figure 1.

Figure 1. Typical structure of residual blocks.

2.3. Profiling Side-Channel Analysis

The setting we considered was the profiling side-channel analysis. Profiling attacks are
generally more powerful than their non-profiling counterparts, as the adversary is assumed
to have access to (and full control over) a copy of the device being attacked [29]. The main
workflow for profiling SCA is to take a large number of measurements from the copy of
the device and to create a model of its behavior. Generally, this is done by labeling all
measurements using the chosen leakage model. A leakage model describes how the leakage
depends on some sensitive internal state dependent on the key [2]. Labeling the traces with
this leakage model is possible, as the adversary is assumed to have access to the key on the
copied device. After the profile of the clone device is built, several measurements are taken
from the device that is being attacked. A set of labels for these measurements is generated
using each of the possible values for the key bytes, and, for each of these, the log-likelihood,
according to the profile, is computed. In cases of a successful attack, the correct key byte
has a high (ideally, the highest) log-likelihood [30].

Creating these profiles can be seen as a supervised learning task, as measurements are
collected, labeled, and, then, used to train a model to predict new measurements. Over the
past years, ML and DL approaches have become prevalent in profiling SCA. Specifically,
the DL approach has led to impressive results, successfully attacking datasets protected by
various countermeasures [7,8].
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SCA Metrics

ML approaches for profiling SCA have proven very successful. However, accuracy
and loss, often used in standard classification tasks, are not necessarily the best indicators
of how successful a side-channel attack will be. While very good accuracy scores, or loss
values, indicate a successful attack, this is not a necessary condition. Indeed, models that
perform slightly better than random guessing can also generate successful attacks [31].
The models in profiling SCA are usually evaluated based on metrics related to the correct
key’s rank. Here, the rank of the correct key is the number of key candidates with a higher
log-likelihood than the correct key. Generally, metrics are computed using a relatively
large number of attacks on random subsets of the full-attacking set to accurately depict the
realistic (averaged) performance. More formally, we define the vector gSa as a vector of
key guesses ordered by the log-likelihood of each key. Here, Sa ⊂ Na is a subset of the full
attacking set Na. Then, we define gSa(k) as the rank of a key candidate k. The two main
metrics we considered were:

• Guessing Entropy: Guessing entropy (GE) [32] is the average key rank over a number of
attacks. This is defined as GE(Na) = E(gSa(k

∗)), where E is the mean function. As is
commonly done, we estimated it over 100 attacks.

• NoT: The NoT (Number of traces) metric refers to the number of measurements
required to reduce GE to one (i.e., to see if our best guess was also the correct guess).
This is defined as min{|Na|}, for which GE(Na) = 1. Then, the NoT metric estimates
how many measurements are required to recover the key.

2.4. Datasets

We ran our analysis on three datasets. They represented common choices when
assessing the performance of deep learning-based SCA, and, as such, they have been used
in numerous papers; see, for example, [7,8,16].

The ASCAD database [3] provides datasets from a protected AES implementation.
The sensitive value attacked for these implementations is generally the output of the third
S-box in the first round (as the third key byte is the first masked one). The ASCAD database
provides traces measured on an AES implementation, implemented on the ATMega8515 de-
vice. This implementation is protected with the first-order masking scheme around the
S-box, which can be described as:

S− box[pi ⊕ ki]⊕ rout.

Here, pi and ki represent the i-th byte of the plaintext and the key, respectively. rout
represents the additive mask.

Two versions of this dataset are provided. The first dataset has 50,000 training traces
and 10,000 attacking traces. All of the traces were measured with the same key and random
plaintexts. These traces were 100,000 samples (features) long, and the authors provided a
pre-selected window of 700 samples for attacking the third key byte for comparisons of
attacks. We refer to this version as ASCADf.

The second dataset has 200,000 training traces and 100,000 attacking traces. The profil-
ing traces were measured with random keys and plaintexts, and the attacking set had a fixed
key. The traces were 250,000 samples long, and the authors provided a pre-selected window
of 1400 samples for attacking the third key byte. We refer to this version as ASCADr.

The AES_HD dataset provides an unprotected AES hardware implementation [7]. The
dataset was measured on a Xilinx Virtex-5 FPGA. The dataset contains 500,000 traces with
1250 features each [33]. As the implementation is hardware-based, there is significantly
more noise present than is the case for the ASCAD datasets. Another difference is that a
different leakage model is used for AES_HD. The writing of the output to the register in
the final round being attacked:

InvSbox[Ci ⊕ k∗]⊕ Cj.
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Here, Ci and Cj are two of the ciphertext bytes, and the relationship of i and j is based
on the inverse ShiftRows operation. Generally, we used i = 16 and j = 12, as this is one of
the easier bytes to attack [7]. Additionally, we used the Hamming distance of this resulting
operation as the leakage model.

3. Construction of Deep ResNets for SCA

Our experiments were run on a high-performance computing cluster (HPC), and we
used one NVIDIA GeForce GTX 2080Ti GPU with 11 GB of memory. The required amount
of RAM ranged from sixteen to sixty-four GB of RAM, and training one of the models took
from twenty minutes to two hours, depending on the dataset and model size. The AISY
Framework [34] was used to implement the experiments with Python 3.7, TensorFlow 2.0,
and Keras 2.1.6.

As we wished to determine whether ResNets could be a viable alternative for the
more common smaller CNNs currently used in SCA, we first needed to create architectures
specifically created for SCA. First, we needed to determine whether residual blocks worked
well, which is a central part of our architecture. Second, it was helpful to determine how
deep the architectures should be to mount successful attacks consistently.

3.1. Residual Block Construction

We chose an empirical approach to test how residual blocks should be constructed for
SCA. We determined that there were six reasonable choices for the construction of the blocks.
These choices were based on recent works that explored ResNets for SCA [14,20]. We also
chose the Inception block, based on recent works in image recognition [35]. Inception blocks
are residual blocks where the first convolutional layer has its kernel size set to one. They
were included here because they could help mitigate the extra performance overheads of
our deeper networks, while potentially not harming the attacking performance. The tested
blocks can be seen in Figure 2. It is worth noting that we limited ourselves to a relatively
small number of basic residual blocks. We chose to only look at relatively simple residual
blocks because we wanted to determine what types of basic construction functioned well in
deeper networks. Additionally, we supposed that even simpler blocks could provide good
attack performance. In that case, it was intuitive that, with more experiments, it would be
wcwn further possible to improve the results and adjust for specific datasets and settings.

To limit the scope of our search for the best residual block, we decided that each
block should include either a convolutional stride or a pooling layer, so as to reduce
the feature map size by half. This design decision was made since the earlier ResNets
in SCA also used such blocks [12,14,20], and the reduction in feature map size in the
network has been a standard in some of the state-of-the-art architectures in SCA [7,8]. This
choice limited the maximum number of residual blocks our network could contain. This
maximum was determined by the number of features, and it equaled blog2(700)c = 9 (for
the ASCADf dataset).

To test the blocks, we attacked the ASCADf dataset with the pre-selected window
of 700 features. We used 50,000 traces for training and 5000 traces for both validation
and attacking. The network we used can be seen in Figure 3. The filter size was 11,
and the number of filters in the i-th residual block equaled min(2i−1, 256). The activation
function was selu, and the optimizer was the Adam [36] optimizer with a cyclic learning rate
schedule [37]. The loss function we used was categorical cross-entropy. We used 100 epochs
and a batch size of 50. We chose these hyperparameter values based on the work of
Zaid et al. [8]. While they were not necessarily optimal, it was reasonable to assume good
enough performance to test the differences in the performances the various residual blocks
could achieve.

To verify that the networks performed consistently, all of the results in this section
were averages over five training runs of the network. Additionally, GE was computed as an
average of 100 attacks. Finally, during training, we saved the model that achieved the best
validation loss, and we tracked the number of attacking traces required to reach GE = 1.
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In Figure 4, it can be observed that the average attacking performance of the models with
each residual block was significantly worse after the entire 100 epochs, than it was if the
model with the best validation loss was used instead. This performance difference was
due to the size of the tested networks being larger than necessary for the dataset. Due to
this, we observed that the models overfitted, as can also be seen in Figure 5. Additionally,
we observed that the models using pooling for feature map size reduction consistently
performed better than those using convolutional stride. We believe this might be because
when a convolutional stride was used (Stride controls the amount of movement over the
data. The larger the stride, the more downsampling of the data.), specific patterns might be
skipped over in the convolutions. Skipping these patterns could result in specific leakage
points being missed entirely, resulting in worse performance. Finally, we observed that the
two_layer_pooling- and the inception_pooling blocks performed best out of the chosen residual
blocks, with the difference in attacking performance between these two being negligible.

(a) (b)

(c)

(d)

Figure 2. Cont.
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(e)
(f)

Figure 2. The six types of residual blocks were used for testing follow: (a) An inception block with
pooling for down-sampling. (b) An inception block with stride for down-sampling. (c) A two-layer block
with pooling for down-sampling. (d) A two-layer block with stride for down-sampling. (e) A three-layer
block with pooling for down-sampling. (f) A three-layer block with stride for down-sampling.

Figure 3. Network setup for tests with 9 residual blocks.

(a) (b)

Figure 4. Attacking performance of both the final model and the model that had the best validation
loss. (a) Attack performance of the models after 100 epochs. (b) Attack performance of models
achieving best validation loss.
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(a) (b)

Figure 5. Evolution of early stopping metrics across epochs. (a) Evolution of the NOT metric on the
validation set over epochs. (b) Evolution of validation loss across the first 40 epochs.

In Figure 5, another reaffirmation of the earlier results can be observed. We again see
that, generally, the two_layer_pooling- and the inception_pooling blocks performed signifi-
cantly better than their counterparts, in terms of the number of traces required to reach
GE = 1. When we look at the validation loss, we note that there was no large difference
between the various blocks using pooling. However, we again observe that pooling layers
were better than convolutional stride.

3.2. Depth of ResNets

We conducted experiments that varied the number of residual blocks to test how deep
our Resnets should be for SCA. Varying these blocks was straightforwardly accomplished;
the only notable exception was that, now, we excluded the pooling layer from the final
residual block. This was done as a GlobalAveragePoolingLayer immediately following
this block, and, therefore, including a pooling layer in the final block was pointless. For
these experiments, we only used the two_layer_pooling residual block to limit the number
of experiments that we had to run. We chose this residual block as it was one of the
two best-performing residual blocks in our earlier experiments. All other hyperparameters
were identical to the earlier experiments, and the network setup was the same as that in
Figure 3, except for the number of residual blocks.

In Figure 6, we see that adding residual blocks seemed to improve the attacking
performance of the networks up to a point. From 4 to 7 residual blocks, the best models
steadily improved the attacking results. The difference from 7 to 9 residual blocks was
negligible. The results were similar for models after the full 100 epochs.

(a) (b)

Figure 6. GE results for networks of varying depths. (a) The GE results for networks of varying
depths with best model weights according to validation loss. (b) The final GE results for networks of
varying depths.
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We see some of the same phenomena when we look at the progression of the validation
metrics across the epochs in Figure 7. The networks with 4 to 6 residual blocks seemed to
perform a fair bit worse than those with 7 or more residual blocks. Specifically, in regard to
the validation loss, the networks with 9 residual blocks performed slightly better than the
rest, but this did not seem to translate into improved attack performance, as observed in
Figure 6.

(a) (b)

Figure 7. Evolution of the early stopping metric across epochs for blocks of varying depths. (a) Evo-
lution of the validation loss during training of residual networks of varying depths limited to the first
40 epochs. (b) Evolution of the NOT metric during training of residual networks of varying depths.

Combining all of these results provided several observations. First, using pooling
layers over a convolutional stride looked like an obvious choice, as the performance differ-
ence was significant. This differed from several of the other ResNets in SCA [12,14], which
suggested that these architectures could be improved significantly with this substitution.
Second, using more than two convolutional blocks did not look useful in our experiments,
and, thus, we chose to use the two-layer block in the next section. Still, the Inception
version was a viable alternative. Finally, we showed that using more residual blocks helped
the performance of the models for SCA, up to a point. Our experiments showed that using
more than seven residual blocks did not improve performance. If we generalize this, when
a dataset has x features, using blog2(x)c − y residual blocks seem a reasonable choice as
using more residual blocks results in an additional computational overhead, while, as
evidenced in our experiments, not improving performance. Our experiments showed
that y = 2 provided reasonable results, but more experiments are needed before giving
definitive recommendations. Still, we consider it “safe” to recommend that y should be a
small value (e.g., 1 or 2).

4. Comparison With State-of-the-Art CNN and MLP Architectures

We explored how ResNets should be constructed for SCA to provide insights into
what types of residual blocks function well and how deep the ResNets should be. How-
ever, it is still unclear how well ResNets compare to other state-of-the-art DL approaches.
Therefore, we do not yet know whether ResNets can be a viable alternative and, if they are,
in what scenarios.

To remedy this, we aim to utilized the ResNets we developed to attack the AES_HD
dataset and both versions of the ASCAD datasets. These experiments enabled us to
reach conclusions about the efficacy of ResNets in scenarios with varying numbers of
profiling traces and for both protected software and unprotected hardware implementations.
Additionally, it allowed us to directly compare the results of our ResNets to the results
of state-of-the-art model search strategies of Perin et al. [18] on the ASCAD datasets and
to the state-of-the-art CNN architecture of Zaid et al. [8] on the AES_HD dataset. The
architectures we compared against from [18] were the best-achieved MLP and CNN models
for each dataset, using the ID leakage model in the OPOI scenario. OPOI represents the
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optimized points of interest setting, where the attacked dataset consists of an optimized
interval, including the main SNR peaks and several low SNR points. This scenario is
commonly considered in related works, see, for example, [8,38]. In our experiments, we
only considered the Identity leakage model.

The experimental setup for the ASCAD datasets was similar to the one used in the
previous section. We used 50,000 and 200,000 profiling traces for ASCADf and ASCADr,
respectively. For both ASCAD datasets, we used 5000 traces for validation and 5,000 traces
for attacking, and we used the standard 700 and the 1 400 feature intervals. For the AES_HD
dataset, we used 50,000 profiling traces and 12 500 validation and attacking traces. Our
hyperparameter setups in this section were generally the same as in Section 3. Two minor
changes to the hyperparameters were made for AES_HD and ASCADr. For AES_HD,
we used a kernel size of 3 as opposed to 11 to emphasize “smaller” details that were
to be expected, due to more noise and the hardware implementation. For ASCADr, we
used 200 neurons in both of the fully connected layersm as opposed to 10. This was
because, with the additional training examples this dataset contained, we could use more
neurons in these final layers without the network immediately overfitting. Thus, these
additional neurons allowed our network to mount more powerful attacks. We again
saved the model weights that resulted in the best validation loss during training and
presented the result of this model. The number of residual blocks we used for each dataset
depended on the number of features. We used blog2(num_features)c − 2 residual blocks
for each dataset as was recommended in Section 3. This resulted in 7 residual blocks for
ASCADf and 8 residual blocks for both ASCADr and AES_HD. For the ASCAD datasets,
we also attacked larger intervals of varying sizes around the optimized intervals. These
experiments were used to evaluate the impact of more features on the performance of our
ResNets. The indices of an interval of size x were then [45 750− (x/2), 45 750 + (x/2)] for
ASCADf, and [81 645− (x/2), 81 645 + (x/2)] for ASCADr. It should be noted that the
larger feature sets here included additional leakage points, andm as such, attacks against
larger windows could achieve better attack results. We took the best-performing model
out of five training runs to compare our models to the state-of-the-art. Training the model
several times is conducted, as models are often inconsistent and do not always converge,
and, in the literature, the best-case performance is commonly showcased.

4.1. Results

ASCADf. When we compared our results to the state-of-the-art results from [18], we
observed that our results were somewhat worse. Indeed, we required almost double the
number of traces for CNN and 50% more traces than MLP. However, the attack results
for our ResNets were still reasonable, especially considering that we had made limited
investigations into optimizing our hyperparameter configurations. We believe that the
performance gap we saw here could potentially be bridged with enough additional tuning.
Another insight, that can be observed in Table 1, was the number of trainable parameters for
each architecture. Our ResNets had a significantly higher number of trainable parameters
than the relatively small architectures required in [18]. This additional size was unnecessary
for this dataset and resultws in our network starting to overfit in the first half of the training.
As we saved the model with the best validation loss, the performance penalty from this
overfitting was mitigated.

Table 1. Comparing the performance and size of our ResNets against the models resulting from
state-of-the-art model search strategies on ASCADf.

ResNet CNN [18] MLP [18]

Nr. of traces to reach GE = 1 160 87 104
Nr. of trainable parameters 96,800 7728 10,266
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ASCADr. When we compared the ResNets to the state-of-the-art results in Table 2, it
can be observed that the results of our networks were better than the hyperparameter search
strategy of Perin et al. [18]. Surprisingly, our models outperformed the methods here, as the
model search found a model tuned specifically for this dataset. We expected our model to
perform slightly worse than the state-of-the-art, as was the case for ASCADf. We presume
this difference was because the models were trained with a significantly larger training set
than for ASCADf. As a result of this, our deeper models could learn a better profile, while
the smaller networks that resulted from model search techniques did not benefit from the
additional information as much. An additional consideration here is that training the final
models of [18] only took a few minutes, while training the larger ResNet took about 1.5 h for
this dataset. The improved attacking performance came at a relatively high computational
cost. However, ref. [18] trained and evaluated 500 models to find these networks. Training
these models can take a couple of hours to complete, or, if the search space also includes
bigger models, it can take several days. When we consider this, the additional cost to train
one of our ResNet models is justified, as it minimizes the extensive search for optimal
hyperparameters (still, we note that we also required limited tuning to find our architecture).
In Table 3, we provide additional results for ASCAD datasets that show more features are
beneficial in regard to the performance of ResNets, giving an additional argument in their
favor. Notice how we found a setting where we required less than ten traces to break the
target for both datasets. Finally, our recommendation on the required number of residual
blocks generalized well for the tested cases.

Table 2. Comparing the performance and size of our ResNets against the models resulting from
state-of-the-art model search strategies on ASCADr.

ResNet CNN [18] MLP [18]

Nr. of traces to reach GE = 1 47 78 129
Nr. of trainable parameters 489,592 87,520 34,236

Table 3. Comparing the number of traces required to reach GE = 1 at various feature selection
scenarios for both ASCADf and ASCADr.

Nr. of Features Nr. of Residual Blocks ASCADf ASCADr

1500 8 36 34
2000 8 64 37
2500 9 86 37
3000 9 42 29
3500 9 6 21
4000 9 10 14
4500 10 9 9
5000 10 10 8

AES_HD. When attacking the AES_HD dataset, we observed some interesting phe-
nomena. It can be observed in Table 4 that the ResNet could successfully recover the key
in approximately 4100 attack traces. This attack was significantly better than the state-of-
the-art CNN model of Zaid et al. which could recover the key in about 6060 traces. It is
worth noting that the Zaid et al. network trains in only a few minutes, while training our
network takes approximately half an hour. Additionally, our model has significantly more
trainable parameters.
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Table 4. Comparing the performance and size of our ResNets against resulting state-of-the-art CNN
model AES_HD.

ResNet CNN [8]

Nr. of traces to reach GE = 1 4100 6060
Nr. of trainable parameters 111,491 3278

4.2. Discussion

Our experiments to determine the advisable residual block constructions showed that
models using convolutional stride perform significantly worse than models using pooling
layers. We believe this can be attributed to the fact that, when a convolutional stride is used,
specific patterns might be skipped over in the convolutions. Furthermore, using more than
two convolutional layers per residual block seems to worsen the attack performance of the
models. Therefore, our experiments indicate that using residual blocks with two convolu-
tional layers and a pooling layer, to reduce the feature map size, is the best choice for deeper
ResNets in SCA. This result is in line with the work of Jin et al. [20]. The residual block they
used adhered to these guidelines, but the focus of that work was the addition of attention
mechanisms to these blocks. On the other hand, further recent uses of ResNets for SCA did
not adhere to our guidelines. Masure et al. used convolutional stride [12], and Zhou and
Standaert used residual blocks with three convolutional layers [14]. This leads us to believe
that these works could be improved by updating the networks, as our results indicated
that some of their design choices could negatively impact the attack performance.

The second main result is that deeper variants of our networks showed significantly
improved attack results over the shallower variants. Our results indicated that adding
residual blocks does not negatively impact attack performance and, indeed, improves it
up to a point. We see that the networks that performed the best in our experiments were
deeper than some of the other ResNets used for SCA [14,20] (Masure et al. used a network
of similar depth, but the dataset they attacked had significantly more features [12]). The
networks were also significantly deeper than those used in state-of-the-art works [8,9,18].
Recently, the general trend has been to utilize hyperparameter search strategies to find small
architectures that perform well. These search methods involve running large numbers of
models across predefined ranges of hyperparameters. These ranges are often (loosely) based
on the work of Zaid et al. [8], which outlines a methodology for constructing relatively
small architectures with excellent attack performance for specific SCA datasets. As a
consequence of this, and because smaller architectures train faster, which makes training
large numbers of them less cumbersome, the resulting architectures are often very shallow.
This has resulted in a trend of very small architectures continually improving the state-
of-the-art. Thus, while we showed reasonable results, we used hyperparameter setups
designed for significantly smaller networks. It seems reasonable to assume that even better
performance is expected with a more fine-tuned setup.

The ResNet attack performance is competitive with the state-of-the-art CNNs and is
achieved across various datasets. It is also worth emphasizing that a single architecture
(with minor variations, such as in the number of residual blocks used across these scenarios,
or the kernel size and the number of neurons in the fully connected layers) is comparable
to random search methods that result in varying model architectures and hyperparameter
configurations. Additionally, while training ResNets is more computationally expensive
than current state-of-the-art architectures [8], it is significantly faster than the model search
strategies. Training one of the ResNets could take up to two hours in the scenarios tested
here, which is a significant step up from the mere minutes it takes to train the small
CNNs and MLPs that resulted from the searches. However, hundreds of models need to
be trained and evaluated during the search for this specific architecture, which can take
several hours or days to complete [9]. Additionally, the resulting architectures cannot be
easily repurposed for different attack scenarios, while the ResNets only require minimal
adjustments to be adapted (thus, they “generalize” better). The main use case for ResNets
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in SCA seems to be with larger datasets (both in terms of profiling set size and the number
of traces). We observed that the networks performed significantly better when the ASCADr
dataset was used, as opposed to the ASCADf dataset. Additionally, it is relatively intuitive
that our larger networks can fit more complex models and are, therefore, more suited
to more complex tasks with more training data. With new and more protected targets
(where the measurements are also significantly larger), like AES_HD_mm [13] and the
new ASCAD dataset [12], presumably becoming the focus of the SCA community in the
coming years.

5. Conclusions and Future Work

This work developed and evaluated novel ResNet architectures for SCA. We conducted
several experiments to determine suitable constructions for residual blocks and established
how deep the networks should be. With these novel architectures, we attacked the ASCAD
datasets and the AES_HD dataset. Our ResNets are competitive with state-of-the-art model
search strategies and even surpass previous best results for the ASCADr dataset. Thus,
we can conclude that ResNets provide an interesting new avenue for future research in
SCA, especially if considering large datasets (i.e., with many features or training traces) and
those protected with countermeasures. As our networks provide competitive performance
without much hyperparameter tuning, this leads us to believe not only that more tuning
can result in better performance, but also that limited tuning can still be a powerful option
for diverse settings/datasets. Additionally, deeper ResNets could provide a way to attack
more difficult targets that current deep learning state-of-the-art cannot break. For instance,
the ASCADv2 [12] could be an interesting target to explore in future work.
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SCA Side-channel Attack
SNR Signal-to-Noise Ratio
AES Advanced Encryption Standard
DL Deep Learning
ML Machine Learning
GE Guessing Entropy
HW Hamming Weight
ASCAD ANSSI SCA Database
ASCADf ASCAD with a fixed key
ASCADr ASCAD with random keys
ASCADv2 ASCAD version 2
CTF Capture The Flag
CHES Cryptographic Hardware and Embedded Systems
AES_HD Advanced Encryption Standard dataset
CNN Convolutional Neural Network
SELU Scaled Exponential Linear Unit
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