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Abstract: Due to their rich information, color images are frequently utilized in many different
industries, but the network’s security in handling their delivery of images must be taken into account.
To improve the security and efficiency of color images, this paper proposed a color image encryption
algorithm based on cross-spiral transformation and zone diffusion. The proposed algorithm is based
on Chen’s system and the piecewise linear chaotic map, and uses the chaotic sequences generated by
them for related operations. Firstly, the R, G and B planes are extracted, and the spiral starting point of
each plane is randomly selected by the chaotic sequence to implement the cross-spiral transformation.
Secondly, the bit-level image matrix is constructed by the scrambled image matrix, and the bit-level
chaotic matrix is constructed by the chaotic sequence. Finally, the three-dimensional matrix is divided
into four zones by a dividing line, and partition diffusion is carried out to obtain the encrypted
image. Simulation results and algorithm analyses indicate that the proposed algorithm has superior
performance and can resist a wide range of attacks.

Keywords: image security; spiral transformation; color image; chaotic system
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1. Introduction

With the rise of emerging technologies, people have realized the rapid information
transmission in Internet. Digital images have a significant role in communication, the med-
ical industry, the military, and other fields as vital carriers of multimedia communications.
However, the convenience brought by new technologies is accompanied by the risk of
information leakage, which poses a threat to the development of the country, society, and
individuals. In March 2022, Samsung Electronics was attacked by a hacker group, resulting
in the leakage of a large amount of the company’s confidential data. That same month, the
anonymous hacking group released a database of food giant Nestlé on its Twitter account,
exfiltrating about 10 GB of sensitive data, including company emails, passwords, and data
related to business customers. The consequences and losses caused by these information
breaches are immeasurable. Therefore, the secure transmission of information is an ur-
gent problem. As a result, both in theory and in practice, the protection of digital image
information becomes crucial. Encrypting the plain image is the most common method.

Traditional encryption algorithms are mainly designed for protecting the security
of text information, such as the advanced encryption standard [1], data encryption stan-
dard [2], and international data encryption algorithm [3]. However, due to the high
redundancy and strong correlation of images, there are some drawbacks to encrypt the
image by the traditional encryption algorithms, such as the low encryption efficiency
and weak security [4,5]. With the wide application of digital images, these traditional
encryption algorithms are obviously no longer applicable, so it is necessary to study the en-
cryption algorithm suitable for digital images to ensure the secure and efficient transmission
of images.
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The encrypted image is obtained through the encryption algorithm with the encryption
key. The encrypted image is transmitted to the recipient through the communication
channel, and the key is transmitted through the secure channel. After the recipient finally
obtains the encrypted image, the decryption algorithm and the decryption key are used to
decrypt the encrypted image to obtain the plain images. During the image transmission,
even if the encrypted image is attacked, it is difficult for the attacker to obtain the real
information of the plain image without the decryption algorithm and decryption key. Most
of the image encryption algorithms are designed based on the scrambling and diffusion
operations, and the decryption algorithm is the inverse process of the encryption algorithm.

Most image encryption algorithms cover roughly two parts. The first part is the
method design of generating chaotic sequences. The generation of chaotic sequences
depends on chaotic systems and keys, and complex chaotic systems and excellent key-
generated methods always make encryption algorithms more secure. The chaotic system
is a nonlinear phenomenon with the characteristics of initial sensitivity, unpredictability,
ergodicity, etc. [6]. It is very consistent with the concepts in cryptographic algorithms. Most
of the current image encryption algorithms are based on chaotic theory [7–9]. Therefore, it
is necessary to select a chaotic system with excellent performance and design a reasonable
random sequence generation method. Fridrich firstly used chaotic theory in 1998 to
change the positions of image pixels to achieve the purpose of encrypting images [10].
Wang et al. used the improved one-dimensional (1D) Logistic map to scramble the pixel
position [11]. Naskar P. K. et al. used the Logistic map for diffusion [12]. Many scholars
propose a 1D chaotic system. In addition, some experts and scholars use high-dimensional
chaotic systems to encrypt images. Chen applied the Lorentz chaotic system to image
encryption [13]. Luo et al. proposed a hybrid system [14].

The second part is the structural design of the encryption algorithm. The scrambling-
diffusion mechanism is the framework of typical image encryption. The scrambling opera-
tion can change the pixel positions of the plain image to reduce the correlation of adjacent
pixels. The classical scrambling methods include the spiral transformation [15], Zigzag
transformation [16], Arnold transformation [17], magic square transformation [18], and
Latin square transformation, etc. [19]. Among them, the magic square transformation and
the Latin square transformation are complex. Arnold has a short conversion period and
low efficiency. The Zigzag transformation has the disadvantages of the unchanged position
of the first and last elements before and after the transformation and a single scanning
starting point. Compared with the above transformations, the spiral transformation has
the advantages of simple transformation and low time complexity, so the spiral transfor-
mation is selected to realize the chaotic process in our algorithm. Xian et al. proposed a
novel chaotic image encryption algorithm based on the spiral transformation [15]. Tang
et al. designed a double helix transformation that effectively shuffles the pixels of image
blocks [20]. Yuan et al. devised a bit-level spiral-filling method that scans pixels with odd
and even lines successively [21]. Wang et al. constructed a two-way spiral transformation.
For the R, G, and B planes of color images, the left half of the region is scanned clockwise
spirally, and then the right half of the area is counterclockwise. The scrambling effect
of the proposed bidirectional spiral transformation is significantly better than that of the
traditional spiral transformation [22]. Thangaraja et al. designed a randomly selectable
starting point of the spiral based on the chaotic map and used this helical transformation to
scramble the plain image in a clockwise direction [23]. Xiao et al. screwed the image in pixel
blocks, and its starting position, orientation and direction were all controlled by the chaotic
sequences [24]. Huang et al. firstly performed a clockwise or counterclockwise spiral
transformation within the block on the image and then performed the spiral transformation
between the blocks to achieve scrambling of the image [7]. Wang et al. designed a dynamic
spiral scrambling algorithm to dynamically combine the chaotic sequence with the plain
image to change the pixel value of the plain image. Experimental simulation analysis
showed that the algorithm can resist various common attacks. However the non-square
image needs to be filled, and there may be blank information after decryption [25]. Liu et al.
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proposed the RSA algorithm to protect the structural parameters and geometric size of
the structured spiral phase mask and the security of the JTC cryptosystem, which can
be enhanced simultaneously [26]. Xian et al. proposed a novel chaotic image encryption
algorithm with a spiral transformation-based fractal sorting matrix [27]. Xu et al. proposed
a robust image encryption algorithm combining a new chaotic system and discrete cosine
transformation. The spatial image is scrambled by the spiral transformation, and then the
diffusion operation is performed to obtain the encrypted image [28]. Wang et al. designed
a dynamic spiral block scrambling to encrypt the sparse matrix generated by performing
discrete wavelet transformation (DWT) on the plain image. Then, the encrypted image is
compressed and quantified to obtain the noise-like cipher image [29].

The diffusion operation can modify the pixel values of an image to improve the ability
of statistical attacks. The scrambled image is still difficult to resist statistical attacks, and
the security is not strong enough. Therefore, the further diffusion operation on the image is
necessary. Diffusion methods processes generally include the exclusive OR (XOR) operation
diffusion and additive mode diffusion. To further strengthen the diffusion method, Huang
et al. carried out the XOR diffusion of the three components of the color image by a cyclic
shift of the row and column, respectively [30]. Zhu et al. constructed an improved two-
dimensional (2D) diffusion structure that extends slight variations of the plain image to
the entire encrypted image [31]. The diffusion process can also be divided into pixel-level
diffusion and bit-level diffusion from the study of particle size. Bit-level image encryption
causes both the positions and pixel values in the image matrix to change. Wang et al.
devised a snake-like pixel-level diffusion method. The chaotic image is XOR from left to
right, the row elements move in a circular manner, and then the columns of the image are
XOR from right to left in a serpentine order, and the column elements move in a circular
manner [32]. Xu et al. designed a bit-level mutual diffusion technique, which can achieve
the ideal effect in just one round [33]. Wang et al. designed cross-plane diffusion rule based
on the bit-level level and combined it with the S-box to replace half a pixel. The algorithm
design is ingenious, and the secure factor is high [34].

At present, many encryption algorithms for color images have been proposed in
academia. Wang et al. innovated a chaotic system and applied it to color images in
combination with new deterministic scrambling and XOR diffusion [35]. Zhang et al.
combined the three channels of color images into a 2D matrix. They used a chaotic index
to scramble the pixel positions and use the DNA dynamic coding operation to obtain
color-encrypted images [36]. Liu et al. used Arnold transformation to shuffle the pixels
of R, G, and B components, and then they spread the pixel values with the help of chaotic
sequences [37].

However, the current color image encryption algorithm still has shortcomings. For
examples, the partial scrambling algorithm has an obvious horizontal correlation [38], and
many algorithms only repeat the grayscale image encryption algorithm in the three com-
ponents, R, G, and B, when encrypting color images, ignoring the high correlation among
the R, G, and B components [36]. Therefore, on the basis of breaking the strong correlation
between the components of color images and making full use of the characteristics of color
images, it is necessary to propose an effective color image encryption algorithm for solving
the problem of weak security and low efficiency. An image encryption algorithm based
on cross-spiral transformation and zone segmentation is proposed in this paper. Firstly,
to increase the key space and improve the key sensitivity, the hash value of the plaintext
color image and six external parameters are utilized as the key in the key generation stage.
Secondly, a cross-spiral transformation with arbitrary starting points is established by
combining the features of color images, and the cross-spiral transformation of the three
components is performed by the constructed index matrix. Thirdly, the scrambled image
is decomposed into 8-bit planes, which are redivided into four zones. The bitwise XOR
operations are performed in different directions for each zone to obtain the cipher im-
age. Finally, in the simulation and performance testing stage, several metrics demonstrate
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that the proposed algorithm is highly resistant to brute-force, statistical, robustness, and
chosen-plaintext attacks.

The main contributions of this paper are described as follows, (1) Color image en-
cryption algorithm based on cross-spiral transformation and zone diffusion is proposed.
(2) The cross-spiral transformation is designed, which is not only suitable for any spiral
starting point in the matrix but also breaks the strong correlation between the components
of the color image. (3) The zone segmentation is designed, which can spread to three planes
at the same time. The operation based on the bit level can make the desirable diffusion
effect better.

The rest of this paper is arranged as follows. Section 2 describes the theoretical
principles. Section 3 proposes a new color image encryption algorithm based on cross-
spiral transformation and zone segmentation. Section 4 carries out some experiments.
The experimental analyses are provided in Section 5. Section 6 draws the conclusions
and outlooks.

2. Theoretical Principles
2.1. Color Image Encryption Algorithm

Vivid color images are widely used in various fields. The color image can be broken
down into three components: red, blue, and green. They are arranged in a certain order
and can be regarded as a three-dimensional (3D) matrix, as shown in Figure 1. All three
components are integers ranging from 0 to 255. each pixel contains information about these
three colors, and their proportions determine the color of the pixel.
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Figure 1. Color digital image.

There are two main ideas for existing color image encryption algorithms.

(1) The three channels are encrypted independently. Firstly, the three components, R,
G, and B, of the color image are decomposed, as shown in Figure 2. Secondly, the
same algorithm is used for the three channels and encrypted separately in the form of
grayscale images. Finally, the grayscale ciphertext images of the three components
are combined in their original order to form the final color ciphertext image. This line
of thinking does not take into account the high correlation between the R, G, and B
components, resulting in color images being slightly less defensive against attacks.
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length 25. The two matrices of 5 × 5 shown are illustrated to represent the matrices before 
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Figure 2. The three components are encrypted independently.

(2) The three channels are encrypted in the form of grayscale images as a whole. Firstly,
the three channels, R, G, and B, of the color image are decomposed, as shown in
Figure 3. Secondly, the three channels are first stitched into a large grayscale image.
Finally, the whole is encrypted in the form of a grayscale image to obtain a ciphertext
image. This line of thinking would ignore the characteristics of color images.
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2.2. Traditional Spiral Transformation

The traditional spiral transformation is a classic method of transforming the position
of pixels and can scan all pixels in the image in a spiral manner at a given spiral start and
direction to complete the scrambling process [15]. As shown in Figure 4, the upper-right
corner is used as the starting point to scramble the image. The matrix elements are changed
following the arrow trajectory, which converts the spiral matrix into a vector of length 25.
The two matrices of 5 × 5 shown are illustrated to represent the matrices before and after
the spiral transformation, respectively.
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2.3. Cross Spiral Transformation

On the basis of the traditional spiral transformation, the, R, G, and B components and
chaotic sequences of color images are combined to propose a new cross spiral transforma-
tion. The detailed steps are as described follows.

Step 1: Selecting the transformation starting points.
According to the chaotic sequence, the starting points are randomly selected in the

three components: R, G, and B.
Step 2: Arbitrary points spiral transformation.
Although the traditional spiral transformation operation is efficient, it can only process

square matrices, and the scrambling effect is undesirable. Therefore, an arbitrary points
spiral transformation is designed to solve the problems of limited image size and weak
scrambling effect. The specific transformation process is shown in Figure 5. Elements in
the matrix are scanned clockwise from the selected scan starting point from the inside to
the outside until the traversal is complete. The scanned elements are stored sequentially in
a 2D matrix to obtain the scrambled matrix.
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In the R, G, and B components, the selected starting points are used to carry out a
clockwise arbitrary points spiral transformation, and the scrambled R, G, and B components
can be obtained.

Step 3: Cross-scrambling operation.
Three chaotic matrices, whose elements are 1, 2, or 3, are used to further scramble

pixel position. The pixels in the scrambled R, G, and B components are selected, in turn, to
obtain three new matrices and reconstitute a 3D matrix. If the element of the chaos matrix
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is 1, it means that the element on the R component is selected. If the element of the chaos
matrix is 2, it means that the element on the G component is selected. If the elements of the
chaos matrix are 3, it means that the elements on the B component are selected.

Taking an example with a 5 × 5 × 3 matrix, the specific transformation process of the
cross-spiral transformation can be seen in Figure 6.
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Firstly, arbitrary points spiral transformations are performed in the R, G, and B com-
ponents in the 5 × 5 × 3 matrix. Secondly, the chaotic matrix is used to realize cross-
scrambling operations. Finally, the new R, G, and B components are combined to obtain a
scrambled matrix.

2.4. Chen’s Chaotic System

Chen’s chaotic system has the complex dynamic behavior, and its chaotic sequences
are random and unpredictable. Chen’s chaotic system is defined by [39]:

.
x = a(y− x)

.
y = (c− a)x− xz + cy,

.
z = xy− bz

(1)

where x, y, and z are state variables and a, b, and c are control parameters. This system
behaves as a chaotic characteristic when a = 35, b = 3, and 20 ≤ c ≤ 28.4 [39,40]. The
chaotic attractor is shown in Figure 7. It can be seen that the chaotic system has excellent
traversability when c = 28. Figure 8 shows a time series plot of Chen’s map. Chen’s map
has uniform distribution and excellent traversability, which can provide a good random
sequence for the encrypting of images.
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2.5. Piecewise Linear Chaotic Map

The piecewise linear chaotic map (PWLCM), as one of the common 1D chaotic systems,
meets the characteristics of transversality and simplicity. The PWLCM is defined by [41]

sn+1 = f (sn, p) =


sn/p, 0 < sn < p
(sn − p)/(0.5− p), p ≤ sn < 0.5,
f (1− sn, p), 0.5 ≤ sn < 1

(2)

where state variables are sn ∈ (0, 1) and control parameters are p ∈ (0, 0.5). Figure 9
shows the bifurcation diagram of the PWLM.
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2.6. Zone Segmentation

The pixel values can be changed by the diffusion operation. If the bit-level diffusion
method is reasonably designed, a better diffusion effect will be achieved to affect the entire
image, and there will only be minor changes in the plain image. To improve the security of
the proposed image encryption algorithm, this paper designs a bit-level zone segmentation
method. Zone segmentation is an important part of the bit-level diffusion method. The
main purpose is to divide the 3D image matrix into four zones, and each zone selects
different diffusion methods to change the pixel values and enhance the diffusion effect.

A color image with a size of m × n × 3, and any pixel of the R, G, and B components,
can be represented as having 8 bits. Therefore, a color image can be viewed as a 3D matrix,
like Figure 10. Segmentation is performed by selecting a dividing line, which then divides
the bit image matrix into four zones based on the chosen dividing line. The detailed steps
for zone segmentation are described as follows.

Step 1: Bit-plane decomposition.
The plain color image is I with a size of m × n × 3. It is decomposed into m × n ×

24-bit planes. Therefore, I can be viewed as a 3D matrix T with a size of m × n × 24.
Step 2: Selecting the dividing line.
The dividing line dpx ∈ {1, 2, . . ., m} on the x-axis and the dividing line dpy ∈ {1, 2, . . ., n}

on the y-axis are randomly selected by the chaotic sequence.
Step 3: 3D matrix segmentation.
According to the two dividing lines dpx and dpy, the 3D matrix T is decomposed into

four zones: Z1, Z2, Z3, and Z4.
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where floor(·) is the rounding toward negative infinity function, max(·) means the maxi-
mum value in all numbers, and δ1, δ2, δ3, δ4, δ5, and δ6 are the external parameters. 
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3. Algorithm Description

The proposed algorithm in this paper is composed of three stages, i.e., key generation,
encryption process, and decryption process.

3.1. Key Generation

The SHA-256 of the plain color image and external parameters are used to generate
the control parameters and initial values of Chen’s chaotic system and the PWLCM. The
detailed steps to generate the key are described as follows.

Step 1: Dividing the hash value.
The hash value K of the plain color image is decomposed into 32 segments with an

8-bit length:
K = k1, k2, . . . , k32. (3)

Step 2: Calculating intermediate parameters.
The six intermediate parameters are generated by:

h1 = f loor
(

6
∑

i=1
δi +

(k1+k3+k5+k7+k9+k11)
max(k1,k3,k5,k7,k9,k11)

)
h2 = f loor

(
2
∑

i=1
δi + h1 +

(k2+k4+k6+k8+k10+k12)
max(k2,k4,k6,k8,k10,k12)

)
h3 = f loor

(
3
∑

i=1
δi +

2
∑

i=1
hi +

(k13+k15+k17+k19+k21)
max(k13,k15,k17,k19,k21)

)
h4 = f loor

(
4
∑

i=1
δi +

3
∑

i=1
hi +

(k14+k16+k18+k20+k22)
max(k14,k16,k18,k20,k22)

)
h5 = f loor

(
5
∑

i=1
δi +

4
∑

i=1
hi +

(k23+k25+k27+k29+k31)
max(k23,k25,k27,k29,k31)

)
h6 = f loor

(
6
∑

i=1
δi +

5
∑

i=1
hi +

(k24+k26+k28+k30+k32)
max(k24,k26,k28,k30,k32)

)

, (4)

where floor(·) is the rounding toward negative infinity function, max(·) means the maximum
value in all numbers, and δ1, δ2, δ3, δ4, δ5, and δ6 are the external parameters.

Step 3: Generating initial values and control parameters.
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Six intermediate parameters can be used to calculate the control parameter c and initial
values x0, y0, and z0 of Chen’s chaotic system and the control parameter p and initial value
s0 of the PWLCM. These initial values and control parameters are generated by:

x0 =

(
(h1 ⊕ h2 ⊕ h3)/

6
∑

i=1
hi

)
mod1

y0 =

(
(h2 ⊕ h3 ⊕ h4)/

6
∑

i=1
hi

)
mod1

z0 =

(
(h3 ⊕ h4 ⊕ h5)/

6
∑

i=1
hi

)
mod1

s0 =

(
(h4 ⊕ h5 ⊕ h6)/

6
∑

i=1
hi

)
mod1

p = (h2 + h4 + h6)mod0.4 + 0.1
c = f loor((h1 + h3 + h5)mod8.4) + 20

, (5)

where⊕ indicates XOR operation, and mod(·) denotes the modulus operation after division.

3.2. Encryption Process

The proposed algorithm uses the classical permutation-diffusion framework. In the
scrambling stage, the chaotic sequence is used to select the spiral starting points of the
three planes of R, G, and B in the color image, and then cross-spiral transformation is
used to change the color image pixel position of each component to solve the problem of
the strong correlation between pixels. In the diffusion stage, the chaotic sequence is used
to randomly determine the two dividing lines, and then the bit-level zone segmentation
is used to enhance the resistance to data statistical attacks. The encryption diagram is
described in Figure 11. The specific steps are shown as follows.
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Step 1: Inputting the color image.
Let the plain color image be I, whose size is m × n × 3. Its R, G, and B components, IR,

IG, and IB, are matrices with sizes of m × n.
Step 2: Generating chaotic sequences.
This step uses the control parameter c and the initial values x0, y0, and z0 of Chen’s

chaotic system defined in Section 2.4. Three chaotic sequences, L1, L2, and L3, with lengths
of mn, can be obtained after iterating 1000 + mn times according to Equation (1) and
discarding the first 1000 values. Similarly, using the control parameter p and the initial
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values s0 of the PWLCM defined in Section 2.5, the chaotic sequence S with a length of
3 mn + 8 can be obtained after iterating 1008 + 3 mn times according to Equation (2) and
discarding the first 1000 values.

Step 3: Chaotic sequence processing.
L1, L2, and L3 are processed by:

H1(i) =
{

1, L1(i) > L2(i)
−1, L1(i) ≤ L2(i)

, i = 1, 2, · · · , mn, (6)

H2(i) = f loor
((

L1(i)× 1014
)

mod2
)
+ 1, i = 1, 2, · · · , mn, (7)

H3(i) = f loor
((

L2(i)× 1014
)

mod2
)
+ 1, i = 1, 2, · · · , mn, (8)

where H1, H2, and H3 are the intermediate sequences used to generate the index matrices.
Step 4: Generating index matrices.
L3, H1, H2, and H3 are processed by:

A1(i) = f loor
((

L3(i)× 1014
)

mod3
)
+ 1, i = 1, 2, · · · , mn, (9)

A2(i) =


H1(i) + A1(i), A1(i) = 1
H2(i) + A1(i), A1(i) = 3
H3(i) + A1(i), A1(i) = 2

, i = 1, 2, · · · , mn , (10)

A3(i) =


1, (A1(i) = 2&A2(i) = 3)

∣∣∣∣(A1(i) = 3&A2(i) = 2)
2, (A1(i) = 1&A2(i) = 3)

∣∣∣∣(A1(i) = 3&A2(i) = 1)
3, (A1(i) = 1&A2(i) = 2)

∣∣∣∣(A1(i) = 2&A2(i) = 1)
, i = 1, 2, · · · , mn, (11)

where A1, A2, and A3 index sequences with a size of mn. A1, A2, and A3 are reshaped into
three new 2D chaotic matrices, X1, X2, and X3, with lengths of m × n to select the pixels of
R, G, and B. The specific selection rules are described as follows.

(1) If the value of the index matrix X1, X2, and X3 is 1, it means that the pixel of the R
component is selected;

(2) If the value of the index matrix X1, X2, and X3 is 2, it means that the pixel of the G
component is selected;

(3) If the value of the index matrix X1, X2, and X3 is 3, it means that the pixel of the B
component is selected.

Step 5: Cross-spiral transformation.
The starting point of the spiral transformation of the three planes of R, G, and B is

calculated according to the first six values of the chaotic sequence S. The specific formula is
designed by:

spi = f loor
((

S(i)× 1014
)

mod256
)

, i = 1, 2, · · · , 6, (12)

where spi (i = 1, 2, . . ., 6) represents the coordinates of the spiral transformation starting in
the three planes of R, G, and B. The starting point in the R plane is (sp1, sp2). The starting
point in the G plane is (sp3, sp4). The starting point in the B plane is (sp5, sp6).

The cross-spiral transformation is achieved in IR, IG, and IB to obtain three scrambled
matrices, P1, P2, and P3 with a size of mn, using spi, X1, X2, and X3.

Step 6: Zone segmentation.
Each pixel value of P1, P2, and P3 is converted from a decimal to 8-bit binary to obtain

three binary matrices, Q1, Q2, and Q3, with sizes of mn × 8. Q1, Q2, and Q3 are reshaped
into a 3D image matrix Q with a size of m × n × 24.
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S is calculated to obtain X with a length of 3 mn, and X is converted into a binary 3D
chaotic matrix B with a size of m × n × 24.

X(i) = f loor
((

S(i)× 1014
)

mod256
)

, i = 9, 10, · · · , 3mn + 9. (13)

S is used to select the dividing lines x = dpx on the x-axis and y = dpy on the y axis;
they are calculated by: {

dpx =
(

f loor
(
S(7)× 1014))modm

dpy =
(

f loor
(
S(8)× 1014))modn

, (14)

where dpx ∈ (1, m), dpy ∈ (1, n), dpx, and dpy are used as the two dividing lines to divide Q
and E. They are divided into four areas: Z1, Z2, Z3, and Z4.

Step 7: Zone diffusion.
Row by row or column by column XOR operations are performed on each zone Q

and E to obtain a 3D matrix W with a size of m × n × 24. The specific process of zone
diffusion is designed by Z1 zone diffusion, Z2 zone diffusion, Z3 zone diffusion, and Z4
zone diffusion.

(1) Z1 zone diffusion:{
W(i, j, z) = Q(i, j, z)⊕Q(i + 1, j, z)⊕ E(i, j, z), i = dpx + 1, dpx + 2, . . . , m− 1
W(i, j, z) = Q(i, j, z)⊕ E(i, j, z), i = m

,

(15)
(2) Z2 zone diffusion:{

W(i, j, z) = Q(i, j, z)⊕ E(i, j, z), j = dpy + 1
W(i, j, z) = Q(i, j, z)⊕Q(i, j− 1, z)⊕ E(i, j, z), j = dpy + 2, dpy + 3, . . . , n

,

(16)
where i = dpx + 1, dpx + 2, . . ., m, and z = 1, 2, . . ., 24.

(3) Z3 zone diffusion:{
W(i, j, z) = Q(i, j, z)⊕Q(i, j, z + 1)⊕ E(i, j, z), z = 1, 2, . . . , 23
W(i, j, z) = Q(i, j, z)⊕ E(i, j, z), z = 24

, (17)

where i = 1, 2, . . ., dpx, y = dpy +1, and dpy + 2, . . ., n.
(4) Z4 zone diffusion:{

W(i, j, z) = Q(i, j, z)⊕Q(i, j + 1, z)⊕ E(i, j, z), j = 1, 2, . . . , dpy− 1
W(i, j, z) = Q(i, j, z)⊕ E(i, j, z), j = dpy

, (18)

where i = 1, 2, . . ., dpx and z = 1, 2, . . ., 24.

Step 8: Generating the encrypted image.
W is reshaped into a matrix with a size of 3 mn × 8, and the matrix is converted to a

decimal sequence U with a length of 3 mn. U reshaped the encrypted image C with a size
of m × n × 3. Algorithm 1 shows the encryption process.
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Algorithm 1: Encryption process.

Input: Plain color image I, h1, h2, h3, h4, h5 and h6
Output: Encryption image C

1: x0 =

(
(h1 ⊕ h2 ⊕ h3)/

6
∑

i=1
hi

)
mod1

2: y0 =

(
(h2 ⊕ h3 ⊕ h4)/

6
∑

i=1
hi

)
mod1

3: z0 =

(
(h3 ⊕ h4 ⊕ h5)/

6
∑

i=1
hi

)
mod1

4: s0 =

(
(h4 ⊕ h5 ⊕ h6)/

6
∑

i=1
hi

)
mod1

5: p = (h2 + h4 + h6)mod0.4 + 0.1
6: c = f loor((h1 + h3 + h5)mod8.4) + 20
7: L1, L2, L3= Chen (x0, y0, z0, 1000 + 1: 1000 + m × n)
8: for t = 1 to mn do:

9: H1(i) =
{

1, L1(i) > L2(i)
−1, L1(i) ≤ L2(i)

10: H2(i) = f loor
((

L1(i)× 1014)mod2
)
+ 1

11: H3(i) = f loor
((

L2(i)× 1014)mod2
)
+ 1

12: A1(i) = f loor
((

L3(i)× 1014)mod3
)
+ 1

13: A2(i) =


H1(i) + A1(i), A1(i) = 1
H2(i) + A1(i), A1(i) = 3
H3(i) + A1(i), A1(i) = 2

14: A3(i) =


1, (A1(i) = 2&A2(i) = 3)

∣∣∣∣(A1(i) = 3&A2(i) = 2)
2, (A1(i) = 1&A2(i) = 3)

∣∣∣∣(A1(i) = 3&A2(i) = 1)
3, (A1(i) = 1&A2(i) = 2)

∣∣∣∣(A1(i) = 2&A2(i) = 1)
15: end for
16: X1 = reshape (A1, m, n)
17: X2 = reshape (A2, m, n)
18: X3 = reshape (A3, m, n)
19: when X1 = 1, X2 = 1, X3 = 1, R component is selected
20: when X1 = 2, X2 = 2, X3 = 2, G component is selected
21: when X1 = 3, X2 = 3, X3 = 3, B component is selected
22: for t = 1 to 3 do:
23: Pt= Cross spiral transform (I(:, :, t))
24 : Qt = dec2bin(Pt)
25 : C( :, :, t) = Zone diffusion Qt
26 : Et = C( :, :, t)
27 : end for

3.3. Decryption Process

Each part of the proposed algorithm is reversible, and the encrypted image can be
decrypted to obtain the correct plain image by the correct decryption key and the reverse
operations of the encrypted process. The decryption diagram is shown in Figure 12.
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4. Simulation Experiments and Results

The encryption algorithm is run in Matlab R2018b. The hardware environment is
a 2.8 GHz CPU processor and 8 GB of memory. The software environment is a 64-bit
Windows 10 operating system. The keys are hash value K of the plain color image and
the external parameters δ1 = 20, δ2 = 0.4, δ3 = 12, δ4 = 130, δ5 = 256, and δ6 = 1.6. The
plain images are converted into encrypted images through the proposed algorithm. We
tested 50 images, 16 of which are shown in Figure 13. They are from the University of
Southern California SIPI image database (http://sipi.usc.edu/database (accessed on 5 April
2023)) [42]. Figure 13a–p shows that sixteen color images from the database: Tree, Jelly
beans, Couple, and Female are 256 × 256 × 3. Baboon, House, Peppers, and Airplane are
512 × 512 × 3. Sailboat has a size of 489 × 281 × 3 and Splash has a size of 377 × 467 × 3.
Richmond, Foster City, Oakland, San Diego, Shreveport, and Stockton are 1024 × 1024 × 3.
In Figure 14a–p, the encrypted images are displayed. The encryption images can be
effectively restored using the decryption procedure, as shown in Figure 15a–p.
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5. Algorithm Analyses
5.1. Key Space Analysis

It is known that the key space is one of the important indicators to measure the security
of the algorithms. The larger the key space, the stronger the resistance to brute force attacks.
When the key size made by the algorithm exceeds 2100, it can be considered to have the
conditions to resist brute force attacks, and the algorithm is secure [43]. The keys are
hash value K of the plain color image and the external parameters δ1 = 20, δ2 = 0.4, δ3 = 12,
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δ4 = 130, δ5 = 256, and δ6 = 1.6. The key space is 1014 × 6 × 2256 ≈ 10161, and it is much larger
than the minimum key space required. The comparisons of the proposed algorithm with
the key space of other algorithms is shown in Table 1. The results show that compared with
the existing algorithms, the proposed algorithm has better resistance to brute-force attacks.

Table 1. Key space analysis.

Algorithm Proposed Ref. [44] Ref. [45] Ref. [46] Ref. [47]

Key space 10161 10135 1056 10128 1090

5.2. Key Sensitivity Analysis

Analyzing the key sensitivity is a crucial indicator for confirming the algorithm. Key
sensitivity refers to the impact of small changes in keys in the same encryption algorithm on
producing results [48]. The stronger the key sensitivity, the greater the difference between
the obtained result and the result obtained by the original key under a slight change in
the key, and the higher the security of the algorithm. If the encrypted image is decrypted
with two different keys. The decrypted results should be completely different. Figure 16a
draws the image decrypted of a Baboon with the correct key. Figure 16b–d depicts the
encrypted image of the Baboon using the incorrect key. These decrypted images have no
visible connection to one another.
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result with the incorrect key.

The distinction between the two results is displayed in Table 2. The suggested keys
are, consequently, sensitive.

Table 2. Difference between decryption results from slightly modified keys.

Figure Decrypted Key Pixel Difference Ratios

Figure 13a the correct key 0.0%
Figure 13b δ1 + 10−14 99.7421%
Figure 13c δ3 + 10−14 99.6357%
Figure 13d δ5 + 10−14 99.2297%

5.3. Information Entropy Analysis

Information entropy is a key factor in measuring cryptographic algorithms. The
information entropy increases with better random performance [49]. Its mathematical
equation is:

H(I) =
255

∑
i=0

p(mi) log2
1

p(mi)
, (19)

where p(mi) denotes the pixel gray level mi.
Therefore, encryption algorithms should be designed with the entropy value as high

as possible. Table 3 draws the entropy values of plain images and corresponding encrypted
images. The data show that the entropy values of the encrypted images of the proposed
algorithm are very close to the expected value of 8 and have an advantage over other
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algorithms, which means that the statistical information of the plain images is success-
fully hidden. It can be confirmed that the proposed algorithm has a strong anti-entropy
attack ability.

Table 3. Information entropy values.

Algorithm Images
Entropy of Plain Images Entropy of Encrypted Images

R G B R G B

Proposed

Baboon 7.7066 7.4752 7.7522 7.9993 7.9991 7.9993
House 7.4156 7.2294 7.4353 7.9993 7.9992 7.9993

Sailboat 7.1927 7.5641 7.3057 7.9741 7.9746 7.9745
Splash 6.3093 6.9206 5.9263 7.9990 7.9990 7.9988

Average 7.1560 7.2973 7.1048 7.9929 7.9929 7.9929
Ref. [22] Baboon 7.7066 7.4752 7.7522 7.9970 7.9974 7.9975
Ref. [44] Baboon 7.7066 7.4752 7.7522 7.9970 7.9973 7.9973
Ref. [45] Baboon 7.7066 7.4752 7.7522 7.9992 7.9994 7.9992
Ref. [46] Baboon 7.7066 7.4752 7.7522 7.9972 7.9973 7.9974

In addition, local information entropy was introduced into the experiment to assess
the randomness of local images. Table 4 shows the local information entropy of the color-
encrypted images of the proposed algorithm. It can be seen that the local information
entropy of the encrypted images is in the ideal value (7.9019, 7.9030), which indicates
that the proposed algorithm cannot only encrypt the color image, but also have good
randomness in the local image.

Table 4. Test results of local information entropy of the color-encrypted images.

Color Encrypted Images Components
Local Information Entropy

Pass/File
Test Values Average Values

Baboon
R 7.9020

7.9021
Passed

G 7.9023 Passed
B 7.9021 Passed

House
R 7.9026

7.8026
Passed

G 7.9028 Passed
B 7.9024 Passed

Sailboat
R 7.9026

7.9028
Passed

G 7.9030 Passed
B 7.9028 Passed

Splash
R 7.9025

7.9022
Passed

G 7.9021 Passed
B 7.9022 Passed

5.4. Histogram Analysis

The histogram, also known as the mass distribution map, represents the frequency
of pixel values when analyzing the image and reflects the distribution of pixel values in
the image [50]. Ideally, the histograms of the original image are not evenly distributed,
and the pixel values of encrypted images occur almost identically; that is, the histograms
are evenly distributed. Figure 17 shows that the histograms of the encrypted image are
relatively evenly distributed. Therefore, the proposed algorithm can disrupt the image’s
pixel distribution.
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5.5. Differential Attack Analysis

Differential attack analysis tests the plaintext sensitivity of the algorithm aim to encrypt
two original images with the same key that are only slightly different [51]. Two encrypted
images can be obtained. A great algorithm should result in the ciphertext images having
larger changes than before. The Number of Pixels Change Rate (NPCR) and Unified
Average Changing Intensity (UACI) can test the capability of a differential attack. The ideal
values of the NPCR and UACI are about 99.61% and 33.46%, respectively [52].

Both the specific values can be obtained by [53]:

NPCR =
1

m× n
×

m

∑
i=1

m

∑
j=1

D(i, j)× 100%, (20)
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UACI =
1

255×m× n
×

m

∑
i=1

n

∑
j=1

∣∣C(i, j)− C′(i, j)
∣∣× 100%, (21)

where C (i, j) is the unmodified plain image, and C′(i, j) and C (i, j) only have a one-pixel
difference.

D(i, j) =
{

0 C(i, j) =C′(i, j)
1 C(i, j) 6= C′(i, j)

. (22)

The results are close to the ideal values, as shown in Table 5, and they show the
proposed algorithm defends against differential attacks.

Table 5. The NPCR and UACI values of the color-encrypted images.

Algorithms Images
NPCR (%) UACI (%)

R G B R G B

Proposed

Baboon 99.61 99.61 99.60 33.42 33.41 33.43
House 99.59 99.61 99.61 33.41 33.42 33.44

Sailboat 99.64 99.60 99.60 33.47 33.51 33.50
Splash 99.62 99.62 99.60 33.50 33.64 33.51

Ref. [22] Baboon 99.62 99.62 99.63 33.57 33.37 33.63
Ref. [44] Baboon 99.61 99.55 99.60 33.45 33.41 33.28
Ref. [45] Sailboat 99.59 99.62 99.60 33.47 33.46 33.48
Ref. [46] Baboon 99.65 99.64 99.62 33.26 33.64 33.33

5.6. Correlation of Adjacent Pixels

Image transformation has a high degree of data redundancy. To prevent an attacker
from analyzing the correlation of the adjacent pixels, the cipher image pixels should be as
uncorrelated as possible [54]. That is, the coefficient should be close to the ideal value of 0.
It is defined by:

D(x) =
1
N

N

∑
i=1

(xi − E(x))2, (23)

rx,y =
E((x− E(x))(y− E(y)))√

D(x)D(y)
, (24)

E(x) =
1
N

N

∑
i=1

xi, (25)

where x and y are the values of the adjacent pixels and D(x) and E(x) are the variance
and mathematical expectation of x, respectively. The calculated results are revealed in
Tables 6 and 7. Figures 18a–c, 19a–c and 20a–c show correlation maps of the plain color
image Baboon and encrypted images of R, G, and B in three directions, respectively. It can
be shown that the pixel correlation of the images before encryption is very high, and the
pixel encrypted is uniform, and has a very low correlation. Figures 18d–f, 19d–f and 20d–f
show that the plain images have a great large correlation, and the encrypted image of the
proposed algorithm has a low correlation.
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Table 6. Correlation coefficients of the plain images and corresponding encrypted images.

Images Channel
Plain Images Encrypted Images

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Baboon
R 0.9227 0.8597 0.8476 0.0004 −0.0003 0.00272
G 0.8656 0.7578 0.7260 0.0038 0.0009 0.0042
B 0.9070 0.8776 0.8357 −0.0010 0.0001 −0.0013

House
R 0.9543 0.9532 0.9184 −0.0025 −0.0013 −0.0006
G 0.9339 0.9279 0.8771 0.0028 −0.0015 0.0019
B 0.9751 0.9591 0.9356 0.0021 0.001 −0.0010

Sailboat
R 0.9415 0.9365 0.9203 0.0100 0.0359 0.0407
G 0.9678 0.9664 0.9523 0.0162 0.0484 0.0510
B 0.9691 0.9702 0.9511 0.0485 0.0810 0.1786

Splash
R 0.9883 0.9942 0.9862 0.0031 −0.0027 −0.0023
G 0.9883 0.9877 0.9804 −0.0052 −0.0008 0.0019
B 0.9864 0.9842 0.9753 0.0037 0.0021 −0.0008

Table 7. Comparisons of the correlation coefficients with other algorithms.

Images Algorithms Channel
Directions

Horizontal Vertical Diagonal

Encrypted
images of

the Baboon

Proposed
R 0.0004 −0.0003 0.0027
G 0.0038 0.0009 0.0042
B −0.0010 0.0001 −0.0013

Ref. [22]
R −0.0017 −0.0007 0.0015
G 0.0028 0.0039 0.0015
B 0.0041 0.0061 0.0025

Ref. [44]
R 0.0033 −0.0013 −0.0009
G 0.0001 0.0020 −0.0012
B 0.0000 0.0000 0.0004

Ref. [45]
R −0.0023 0.0014 0.0155
G −0.0115 −0.0178 0.0044
B 0.0066 −0.0089 −0.0132

Ref. [46]
R −0.0036 −0.0109 −0.0052
G −0.0008 0.0070 0.0095
B −0.0009 0.0082 −0.0113
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Figure 18. Correlation of the adjacent pixels on the R component of Baboon color image: (a) Ba-
boon—R—Horizontal; (b) Baboon—R—Vertical; (c) Baboon—R—Diagonal; (d) Encrypted—R—
Horizontal; (e) Encrypted—R—Vertical; (f) Encrypted—R—Diagonal. 
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Figure 19. Correlation of the adjacent pixels on the G component of the Baboon color image: (a) 
Baboon—G—Horizontal; (b) Baboon—G—Vertical; (c) Baboon—G—Diagonal; (d) Encrypted—
G—Horizontal; (e) Encrypted—G—Vertical; (f) Encrypted—G—Diagonal. 
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Figure 18. Correlation of the adjacent pixels on the R component of Baboon color image: (a) Baboon—
R—Horizontal; (b) Baboon—R—Vertical; (c) Baboon—R—Diagonal; (d) Encrypted—R—Horizontal;
(e) Encrypted—R—Vertical; (f) Encrypted—R—Diagonal.
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Figure 19. Correlation of the adjacent pixels on the G component of the Baboon color image: (a) 
Baboon—G—Horizontal; (b) Baboon—G—Vertical; (c) Baboon—G—Diagonal; (d) Encrypted—
G—Horizontal; (e) Encrypted—G—Vertical; (f) Encrypted—G—Diagonal. 
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Figure 19. Correlation of the adjacent pixels on the G component of the Baboon color image:
(a) Baboon—G—Horizontal; (b) Baboon—G—Vertical; (c) Baboon—G—Diagonal; (d) Encrypted—
G—Horizontal; (e) Encrypted—G—Vertical; (f) Encrypted—G—Diagonal.
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Figure 20. Correlation of the adjacent pixels on the B component of the Baboon color image:
(a) Baboon—B—Horizontal; (b) Baboon—B—Vertical; (c) Baboon—B—Diagonal; (d) Encrypted—B—
Horizontal; (e) Encrypted—B—Vertical; (f) Encrypted—B—Diagonal.

5.7. Occlusion Attack Analysis

To evaluate the robustness of resisting occlusion attacks [55], 10%, 25%, and 50% of
Peppers images are deleted, as drawn in Figure 21a–c. The decryption images are drawn in
Figure 21d–f. We can clearly see that the decrypted images are almost the same as the plain
images. Therefore, the proposed algorithm can resist data cropping attacks.
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Figure 21. Simulation results of the occlusion attack: (a) 10% occlusion; (b) 25% occlusion; (c) 50%
occlusion; (d) Decryption image of (a); (e) Decryption image of (b); (f) Decryption image of (c).

5.8. Chosen-Plaintext Attack

This is example 1 of an equation:
In an encryption system, the attack is very threatening to the encryption system.

Therefore, an image encryption system must have enough strength to resist the attack
analysis [56]. The result in Figure 22 indicates the encrypted images for three special
images, i.e., the all-white image, all-black image, all-purple image. Therefore, the plain
image features are corrupted. The proposed algorithm is reliable.

5.9. Randomness Test

The NIST test includes 15 tests [57]. The p-values of each test are calculated, and they
should be greater than 0.01 in the test. The encrypted image of the Baboon is tested. A total
of 100 repeat tests each have about 6.3 million bits. Table 8 shows the NIST test results of
the Baboon, and we can find that the encrypted image of the Baboon has passed all the
random tests. Therefore, the encryption effect of the proposed algorithm is excellent.

Table 8. The NIST test.

Test p-Values Pass/File

Random excursions variant test 0.9921 Passed
Frequency test 0.7652 Passed

Frequency test within a block 0.0975 Passed
Runs test 0.8743 Passed

Test for the longest run of the ones in a block 0.0871 Passed
Binary matrix rank test 0.4563 Passed

Discrete Fourier transform test 0.7611 Passed
Non-overlapping template matching test 0.2187 Passed

Overlapping template matching test 0.3125 Passed
Maurer’s “Universal Statistical” test 0.5692 Passed

Linear complexity test 0.1143 Passed
Serial test 0.3217 Passed

Approximate entropy test 0.5689 Passed
Cumulative sums test 0.4303 Passed

Random excursions test 0.7615 Passed
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Figure 22. Tests for the chosen-plaintext attacks: (a) All-black image; (b) Encrypted image of (a);
(c) Histogram of (b); (d) All-white image; (e) Encrypted image of (d); (f) Histogram of (e); (g) All-
purple image; (h) Encrypted image of (g); (i) Histogram of (h).

5.10. Encryption Time and Computational Complexity Analysis

The proposed algorithm is suitable for color images of any size, and its computational
complexity depends on the size of the plain image. Firstly, in the chaotic sequence gener-
ation stage, the complexity of the sequence generated by Chen’s map, and the PWLCM
map is about O(3 × m × n). Secondly, in the scrambling stage, it is mainly reflected in the
cross-spiral transformation of the three planes of the color image, and its complexity is
O(m × n). Finally, in the diffusion stage, it is mainly reflected in the bit-level partitioned
diffusion, and its complexity is O(8 × m × n). In summary, the total complexity of the
proposed algorithm is about O(m × n). Therefore, the higher the resolution of the image,
the higher the complexity.

The encrypted time is a parameter that affects the feasibility of an encryption algorithm.
Efficiency becomes especially important when encryption systems reach a certain level of
security. In the experiment, color images sizes of 256 × 256 × 3 and 512 × 512 × 3 were
tested several times, and their average was calculated.

Table 9 shows the computational complexity and encrypted time with other algorithms
under the same image. It can be seen that the larger the plain image size, the higher the
computational complexity of the proposed algorithm, and the encryption speed of the
proposed algorithm is relatively fast and not inferior to other algorithms. Therefore, the
proposed algorithm is efficient and suitable for real-world scenarios of image transmission.
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Table 9. Computational complexity and encryption time analysis.

Algorithms Size Resolution Time Simulation
Software

Proposed
256 × 256 × 3 256 × 256 0.5 s

MATLAB512 × 512 × 3 512 × 512 1.7 s
1024 × 1024 × 3 1024 × 1024 3.1 s

Ref. [22] 256 × 256 × 3 256 × 256 1.1 s MATLAB
Ref. [44] 512 × 512 × 3 512 × 512 2.5 s MATLAB
Ref. [45] 512 × 512 × 3 512 × 512 2.1 s MATLAB
Ref. [46] 512 × 512 × 3 512 × 512 1.7 s MATLAB
Ref. [58] 512 × 512 512 × 512 5.78 s FPGA
Ref. [59] 512 × 512 × 3 512 × 512 5.18 s FPGA

6. Conclusions and Outlooks

To improve efficiency and security, this paper designs a cross-spiral transformation
and partition diffusion and proposes a new color image encryption algorithm. On the one
hand, with the help of the characteristics of color images, the cross-spiral transformation is
constructed; that is, the pixel values of the R, G, and B planes are randomly exchanged by
the index matrix to change pixel position. On the other hand, the zone diffusion operation
is used to change the pixel values, and high security is obtained. After analysis, it is found
that the histogram of the encrypted image shows that the pixel distribution is uniform, the
information entropy is close to the theoretical value, the key space is sufficient to resist
brute force attacks, and the encryption speed is fast. It can be confirmed that the proposed
algorithm can successfully encrypt color images with high security and effectively resist
various illegal attacks. These analyses indicate the superiority of the proposed algorithm.

However, with the large-scale application of color images in various fields, the pro-
posed color image encryption algorithms are only suitable for single-color images of any
size. Multiple color image encryption algorithms will be studied to ensure their secure and
efficient transmission in the future.
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