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1. Introduction

The integral representation of special functions provides an alternative way to express
these functions in terms of integrals involving other functions. They often involve a weight
function and a kernel function related to the specific special function being considered. The
weight function appears as a factor in the integral and reflects the orthogonality property
of the associated orthogonal polynomials, and the kernel function represents the additional
dependence.

The integral representation allows us to express special functions as infinite series or
integrals involving some classical orthogonal polynomials. This connection arises from the
fact that the orthogonality condition is satisfied by classical orthogonal polynomials, which
naturally leads to the appearance of these polynomials in the integral representation of
special functions. In this work, we are going to consider the Hermite polynomials.

The hypergeometric functions, which have applications in many areas, including
mathematical physics and combinatorics, can be represented in terms of integrals involv-
ing other hypergeometric functions and classical orthogonal polynomials like the Jacobi,
Hermite, and Laguerre polynomials, which can be expressed as hypergeometric series (see
c.f. [1] and [2] (Section 16)).

For a detailed history of the subject of integral representations for hypergeometric se-
ries and basic hypergeometric functions (which is a natural extension of the hypergeometric
series), see [3] and [4] (Chapter 4).

R. Sfaxi has established in [5], by means of a linear isomorphism, the so-called inter-
twining operator on polynomials, a relationship between the ordinary Hermite polynomials
and their analog nonsingular and of Laguerre–Hahn with class zero. Among others, the
author has put in value an important linear functional, namely the generalized Hermite linear
functional, denoted by GH(τ) of index τ ∈ C, with τ 6= −n, n ≥ 1, where their moments
are given by

(
GH(τ)

)
n := 〈GH(τ), xn〉 =


(τ + 1)2k

k!22k , if n = 2k,

0, if n = 2k + 1,
(1)
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where (a)n is the Pochhammer symbol, defined as

(a)0 := 1, (a)k := a(a + 1) · · · (a + k− 1), a ∈ C \ {0}, k = 1, 2, 3, . . . ,

thus GH(τ) is symmetric and monic, i.e.,
(
GH(τ)

)
0 = 1.

Observe that setting τ = 0 in (1) we recover the Hermite linear functional, i.e.,
GH ≡ GH(0), that is well-known by its integral representation

〈GH , p〉 = 1√
π

∫ ∞

−∞
p(x)e−x2

dx, p ∈ P. (2)

So we can write (
GH(τ)

)
n =

(τ + 1)n

(1)n
(GH)n, n = 0, 1, . . .

Note that the linear functional GH is classical, since it is quasi-definite and satisfies the
Pearson equation

G ′H + 2xGH = 0. (3)

Taking this into account, the following result holds.

Lemma 1. For any τ ∈ C, the linear functional GH(τ) fulfills the difference equation(
x2GH(τ)

)′′
+
(
2x(x2 − τ − 2)GH(τ)

)′
+
(
− 4x2 + (τ + 1)(τ + 2)

)
GH(τ) = 0.

Proof. Let τ ∈ C, if we define the linear functional E (τ) as

E (τ) :=
(

x2GH(τ)
)′′

+
(
2x(x2 − τ − 2)GH(τ)

)′
+
(
− 4x2 + (τ + 1)(τ + 2)

)
GH(τ).

Then, for n ≥ 0, one obtains(
E (τ)

)
n = −2(n + 2)

(
GH(τ)

)
n+2 + (n + τ + 2)(n + τ + 1)

(
GH(τ)

)
n. (4)

Since GH(τ) is symmetric, then
(
E (τ)

)
2k+1 = 0, for every k ≥ 0. On the other hand,

setting n = 2k in (4) and taking into account (1), we get for k ≥ 0,(
E (τ)

)
2k = −4(k + 1)

(
GH(τ)

)
2k+2 + (2k + τ + 2)(2k + τ + 1)

(
GH(τ)

)
2k

= − (τ + 1)2k+2

k!22k +
(2k + 1 + τ + 1)(2k + τ + 1)(τ + 1)2k

k!22k

= 0.

Therefore,
(
E (τ)

)
n = 0 for all n = 0, 1, . . . . Hence, the result holds.

Our purpose in this work is to provide integral representations for the linear functional
GH(τ), either on the real axis, or on the complex plane. More precisely, the problem consists
of determining a weight function GH(•; τ), such that

〈GH(τ), p〉 =
∫

Ω
p(x)GH(x; τ)dx, p ∈ P,

where Ω is an interval in the real line, or a contour in the complex plane.
The paper is organized as follows. In the next section, there are some preliminaries and

notations. In Sections 3 and 4, integral representations in the real line and in the complex
plane, respectively, are provided. As an application of the previous results, in Section 5,
some new integral representations for the Euler Gamma function are given.
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2. Preliminaries and Notation

Let P be the vector space of polynomials with complex coefficients and let P′ be its
dual space. We denote by 〈u, f 〉 the action of the linear functional u ∈ P′ on the polynomial
f ∈ P. In particular, we denote by (u)n := 〈u, xn〉, n ≥ 0, the moments of u.

Definition 1. A linear functional u is called symmetric if (u)2n+1 = 0, for all n = 0, 1, . . . , and
it is called monic if (u)0 = 1.

In fact, for any τ ∈ C, the linear functional GH(τ) is symmetric (see (1)) which allows us
to suppose the weight function GH(•; τ) is even, i.e., it can be written as GH(x; τ) = U(|x|; τ),
where U(•; τ) is a function defined on (0, ∞). In fact, this is a direct consequence of the
following result.

Lemma 2. Let L be a symmetric linear function that has an integral representation. Then, there
exists a function U defined on (0, ∞), such that

〈L , p〉 =
∫ ∞

−∞
p(x)U(|x|)dx.

Proof. From the assumption there exists a function L, defined on (−∞, ∞), such that

〈L , p〉 =
∫ ∞

−∞
p(x)L(x)dx.

Let us introduce the following two functions, defined on (0, ∞), as follows:

U(x) =
L(x) + L(−x)

2
, V(x) =

 L(x)− L(−x)
2x

, if x 6= 0,

0, if x = 0.

A straightforward calculation gives that L(x) = U(|x|) + xV(|x|), for all x ∈ R.
Moreover, since x2n+1V(|x|) is an odd function we have

(L )2n =
∫ ∞

−∞
x2nU(|x|)dx +

∫ ∞

−∞
x2n+1V(|x|)dx =

∫ ∞

−∞
x2nU(|x|)dx.

On the other hand, since L is symmetric and x2n+1U(|x|) is an odd function, we get

(L )2n+1 =
∫ ∞

−∞
x2n+1U(|x|)dx = 0.

Therefore, for any polynomial p ∈ P,

〈L , p〉 =
∫ ∞

−∞
p(x)U(|x|)dx.

The next result related to hypergeometric functions will be useful later.

Lemma 3 ([6,7]). The following formulae hold:

1. If <(α) > 0 and <(s) > 0, then

∫ ∞

0
tα−1

1F1(a1; b1; t)e−stdt =
Γ(α)

sα 2F1(a1, α; b1; 1/s). (5)



Mathematics 2023, 11, 3227 4 of 10

2. If <(c− a− b) > 0, then

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, (6)

where

2F1(a, b; c; z) :=
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
, 1F1(a; b; z) :=

∞

∑
k=0

(a)k
(b)k

zk

k!
.

In future work, we will denote by Hτ(x) the Hermite function (of degree τ), which can
be represented in terms of the confluent hypergeometric function 1F1 as follows [7]:

Hτ(x) = 2τ Γ( 1
2 )

Γ( 1−τ
2 )

1F1

(
−τ

2
;

1
2

; x2
)
+ 2τx

Γ(− 1
2 )

Γ(− τ
2 )

1F1

(
1− τ

2
;

3
2

; x2
)

. (7)

3. Integral Representation on R
In the following result, we present a new definite integration formulae involving the

Hermite functions.

Lemma 4. For any (z, τ) ∈ C2, with <(z) > −1, the following formulae hold:

∫ ∞

0
xz Hτ(x)e−x2

dx =

√
π

2z−τ+1
Γ(z + 1)

Γ( z−τ
2 + 1)

, (8)

∫ ∞

−∞
|x|z Hτ(|x|)e−x2

dx =

√
π

2z−τ

Γ(z + 1)
Γ( z−τ

2 + 1)
. (9)

Proof. Since the function |x|ν Hτ(|x|)e−x2
is even, it is enough to prove (8).

Let us fix τ ∈ C, with <(τ) > −1. For any z ∈ C, with −1 < <(z) < <(τ), let us
consider the following integral:

Λ(z) :=
∫ ∞

0
xzHτ(x)e−x2

dx.

Using (7), the previous integral can be written as

Λ(z) = 2τ Γ( 1
2 )

Γ( 1−τ
2 )

Π(z) + 2τ Γ(− 1
2 )

Γ(− τ
2 )

Ω(z), (10)

where

Π(z) :=
∫ ∞

0
xz

1F1

(
−τ

2
;

1
2

; x2
)

e−x2
dx,

Ω(z) :=
∫ ∞

0
xz+1

1F1

(
1− τ

2
;

3
2

; x2
)

e−x2
dx.

By changing the variable of integration, by setting t = x2, and using (5), with s = 1,
α = (z + 1)/2, a1 = −τ/2, and b1 = 1/2, we obtain

Π(z) =
1
2

Γ
(

z + 1
2

)
2F1

(
−τ

2
,

z + 1
2

;
1
2

; 1
)

.

Again, with (5), where s = 1, α = (z + 2)/2, a1 = (1− τ)/2, and b1 = 3/2, we get

Ω(z) =
1
2

Γ
(

z + 2
2

)
2F1

(
1− τ

2
,

z + 2
2

;
3
2

; 1
)

.
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Since <(z) < <(τ), by using (6) Π(z) and Ω(z) can be written as

Π(z) =
Γ( z+1

2 )Γ( 1
2 )Γ(

τ−z
2 )

2Γ( 1+τ
2 )Γ(− z

2 )
,

Ω(z) =
Γ( z+2

2 )Γ( 3
2 )Γ(

τ−z
2 )

2Γ( 2+τ
2 )Γ( 1−z

2 )
.

Therefore, taking into account Γ( 1
2 )

2 = −Γ(− 1
2 )Γ(

3
2 ) = π, the expression (10) can be

rewritten as follows:

Λ(z) =
2τ−1πΓ( τ−z

2 )

Γ(− z
2 )Γ(

1−z
2 )

(
U(z, τ)−U(z + 1, τ + 1)

)
,

where

U(z, τ) =
Γ( z+1

2 )Γ( 1−z
2 )

Γ( 1+τ
2 )Γ( 1−τ

2 )
.

Using the duplication formula

Γ(u)Γ(1− u) =
π

sin(πu)
,

a straightforward calculation leads to

U(z, τ) =
cos(π

2 τ)

cos(π
2 z)

, U(z + 1, τ + 1) =
sin(π

2 τ)

sin(π
2 z)

.

Then,

Λ(z) = −
2τπΓ( τ−z

2 )

Γ(− z
2 )Γ(

1−z
2 )

sin
(

π
2 (τ − z)

)
sin(πz)

,

so, by using the Gauss–Legendre multiplication formula,

Γ(u)Γ(u + 1
2 ) = 21−2u√π Γ(2u),

and, again, with the duplication formula, we get

Λ(z) =
√

π

2z−τ+1
Γ(z + 1)

Γ(1 + z−τ
2 )

.

For this proof, we assumed the conditions −1 < <(z) < <(τ), then the integral Λ(z)
converged exponentially to zero when τ → ∞. Hence, through analytic continuation, (10)
is valid for each (τ, z) ∈ C2, with <(z) > −1.

Remark 1. Note that the above result also covers the z = τ case. In fact, if τ =0, 1, . . . this
identity represents the property of orthogonality for the monic Hermite polynomials.

As a consequence, we have the following result:

Corollary 1. For any τ ∈ C, with <(τ) > −1, the following formulae hold:

∫ ∞

0
x2n+τ Hτ(x)e−x2

dx =

√
π

22n+1
Γ(2n + τ + 1)

Γ(n + 1)
, (11)

∫ ∞

−∞
x2n|x|τ Hτ(|x|)e−x2

dx =

√
π

22n
Γ(2n + τ + 1)

Γ(n + 1)
. (12)
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Theorem 1. For any τ ∈ C, with <(τ) > −1, the linear functional GH(τ) has the following
integral representation:

〈GH(τ), p〉 = 1√
π Γ(τ + 1)

∫ ∞

−∞
p(x)|x|τ Hτ(|x|)e−x2

dx, p ∈ P, (13)

where Hτ is the Hermite function (of degree τ).

Proof. Due to the Equation (1) and Corollary 1,

(
GH(τ)

)
2n =

(τ + 1)2n

n!22n =
Γ(2n + τ + 1)

22nΓ(n + 1)Γ(τ + 1)

=
1√

π Γ(τ + 1)

∫ ∞

−∞
x2n|x|τ Hτ(|x|)e−x2

dx,

(
GH(τ)

)
2n+1 = 0 =

1√
π Γ(τ + 1)

∫ ∞

−∞
x2n+1|x|τ Hτ(|x|)e−x2

dx.

Therefore, one has

(
GH(τ)

)
n =

1√
π Γ(τ + 1)

∫ ∞

−∞
xn|x|τ Hτ(|x|)e−x2

dx, n = 0, 1, . . .

Consequently, for any polynomial p ∈ P,

〈GH(τ), p〉 = 1√
π Γ(τ + 1)

∫ ∞

−∞
p(x)|x|τ Hτ(|x|)e−x2

dx.

Observe that if we set n = 0 in (11) we get a new integral representation for the Euler
Gamma function. In fact, for any τ ∈ C, with <(τ) > −1,

Γ(τ + 1) =
2√
π

∫ ∞

0
xτ Hτ(x)e−x2

dx, (14)

Γ(τ + 1) =
1√
π

∫ ∞

−∞
|x|τ Hτ(|x|)e−x2

dx. (15)

4. Integral Representation on the Complex Plane

Theorem 2. For any τ ∈ C, the following identities hold:

(i) ∫
C1

ζ2n+1|ζ|τ Hτ(|ζ|)e−ζ2
dζ = 0, n = 0, 1, . . .

(ii) For any n ∈ N, so that τ + 2n + 1 is not a negative integer, we have

∫
C1

ζ2n|ζ|τ Hτ(|ζ|)e−ζ2
dζ = −

√
π

22n
Γ(2n + τ + 1)

Γ(n + 1)
, n = 0, 1, . . .

where C1 is the following contour in the complex plane (See Figure 1).
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C1

x

y

Figure 1. Path C1.

Proof. We deform C1 into a contour C̃1 consisting of two straight lines and a circle (see
Figure 2).

C̃1

arg(ζ)=0

γ

x

y

Figure 2. Path C̃1.

where γ := {ζ ∈ C : =(ζ) > 0, |ζ| = ε}, being ε > 0.
Now, for each integer n ≥ 0 and τ ∈ C, we define

In(τ) :=
∫

C̃1

ζn|ζ|τ Hτ(|ζ|)e−ζ2
dζ =

∫ ε

∞
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ

+
∫

γ
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ +
∫ −∞

−ε
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ.

So, if <(τ) > −n− 1, after a direct computation, we get

lim
ε→0

∫ ε

∞
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ = −
∫ ∞

0
xn+τ Hτ(x)e−x2

dx,

lim
ε→0

∫ −∞

−ε
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ = −(−1)n
∫ ∞

0
xn+τ Hτ(x)e−x2

dx.

For the middle integral, we obtain∣∣∣ ∫
γ

ζn|ζ|τ Hτ(|z|)e−ζ2
dζ
∣∣∣ =

∣∣∣ ∫ π

0
εneinθετ Hτ(ε)e−ε2e2iθ

εieiθdθ
∣∣∣

≤ εn+<(τ)+1
∫ π

0
|Hτ(ε)|e−ε2 cos(2θ)dθ,

knowing that Hτ(0) = 2τ
√

π/Γ( 1−τ
2 ), it is straightforward to see that

lim
ε→0

∫
γ

ζn|ζ|τ Hτ(|ζ|)e−ζ2
dζ = 0.

Therefore, for each n ≥ 0 and τ ∈ C, such that <(τ) > −n− 1, we have

In(τ) = −
(
(−1)n + 1

) ∫ ∞

0
xn+τ Hτ(x)e−x2

dx.

Then, I2n+1(τ) = 0 for all n ≥ 0. Notice that for the proof of i), we assumed <(τ) >
−n− 1, but the integral converges exponentially when τ → ∞, and therefore it exists for
all τ. Hence, (i) holds through analytic continuation for any τ ∈ C.

On the other hand, using (11), it follows that

I2n(τ) = −
√

π

22n
Γ(2n + τ + 1)

Γ(n + 1)
.
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Hence, (ii) holds, for the same reason already quoted and by analytic continuation of
τ ∈ C, except when 2n + τ + 1 is a negative integer, where the function Γ is undefined.

As a consequence, we have the following result.

Theorem 3. For any τ ∈ C, with −τ 6∈ N, the linear functional GH(τ) has the following integral
representation:

〈GH(τ), p〉 = − 1√
πΓ(τ + 1)

∫
C1

p(x)|x|τ Hτ(|x|)e−x2
dx, p ∈ P, (16)

where Hτ is the Hermite function (of degree τ).

Using an analog idea allows us to formulate another integral representation for the
gamma function in the complex plane by using a different contour.

Theorem 4. For any τ ∈ C, with −τ 6∈ N, the Euler’s Gamma function satisfies the following
integral representation:

Γ(τ + 1) =
2√

π(e2πiτ − 1)

∫
C

ζτ Hτ(ζ)e−ζ2
dζ, (17)

where Cis the following contour in the complex plane (See Figure 3).

C

x

y

Figure 3. Path of integration C.

Proof. We deform C into a contour C̃ consisting of two straight lines and a circle (See
Figure 4):

C̃

arg(ζ)=0

arg(ζ)=2π

|ζ| = ε

x

y

Figure 4. Path of integration C̃.

We let
J(τ) =

∫
C̃

ζτ Hτ(ζ)e−ζ2
dζ

Then

J(τ) =
∫ ε

∞
ζτ Hτ(ζ)e−ζ2

dζ +
∫
|ζ|=ε

ζτ Hτ(ζ)e−ζ2
dζ +

∫ ∞

ε
ζτ Hτ(ζ)e−ζ2

dζ,



Mathematics 2023, 11, 3227 9 of 10

and if <(τ) > −1 in a direct way, we obtain

lim
ε→0

∫ ε

∞
ζτ Hτ(ζ)e−ζ2

dζ = −
√

π

2
Γ(τ + 1),

lim
ε→0

∫ ∞

ε
ζτ Hτ(ζ)e−ζ2

dζ = e2πiτ
√

π

2
Γ(τ + 1).

For the middle integral, we obtain∣∣∣ ∫
|ζ|=ε

ζτ Hτ(ζ)e−ζ2
dζ| =

∣∣∣∣∫ 2π

0
(εeiθ)τ Hτ(εeiθ)e−ε2e2iθ

εieiθdθ

∣∣∣∣
≤ ε<(τ)+1

∫ 2π

0
|Hτ(εeiθ)|e−ε2 cos(2θ)−θ

(
=(τ)+1

)
dθ,

thus,
lim
ε→0

∫
|ζ|=ε

ζτ Hτ(ζ)e−ζ2
dζ = 0.

Finally,

J(τ) = (e2πiτ − 1)
√

π

2
Γ(τ + 1),

hence, the result holds. In the proof, we have assumed that <(τ) > −1, but the integral (17)
converges exponentially at infinity, and therefore it exists for all τ. In fact, through analytic
continuation, the result is valid for every complex τ, except for the negative integers, where
the denominator vanishes.

In addition, from the last representation, we obtain the following:

Γ(τ + 1) =
1

i
√

π sin(πτ)

∫
C
(−ζ)τ Hτ(ζ)e−ζ2

dζ.

In the last result, we show a representation for the reciprocal of Γ(τ + 1).

Theorem 5.
1

Γ(τ + 1)
= −iπ−

3
2

∫
C
(−ζ)−1−τ H−1−τ(ζ)e−ζ2

dζ.

This representation is valid for all τ and C is the same contour as in the previous theorem.

Proof. Based on the last representation, one has

Γ(−τ) =
1

i
√

π sin(πτ)

∫
C
(−ζ)−1−τ H−1−τ(ζ)e−ζ2

dζ

=
Γ(τ + 1)Γ(−τ)

iπ
3
2

∫
C
(−ζ)−1−τ H−1−τ(ζ)e−ζ2

dζ.

This leads to the desired result.

5. Conclusions

We have obtained integral representations of a generalized linear Hermite functional,
which is among the natural extensions of the linear Hermite functional, using the fact
this linear functional is symmetric, i.e., the odd moments associated with this functional
are zero, and also the fact that some hypergeometric representations associated with the
Hermite polynomials are known. Observe that this can also be implemented for other
symmetric classical orthogonal polynomials. Moreover, we have obtained an integral
representation for the generalized linear Hermite functional in the complex plane, and from
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this integral representation, we are able to obtain a novel integral representation for the
Euler Gamma function.

Of course, this method can be applied not only to other (symmetric) classical orthogo-
nal polynomials but to any other symmetric orthogonal polynomial sequence for which a
hypergeometric representation is known. This is something we should do in order to obtain
novel integral representations for other Special functions; for example we could consider
some other generalization for the Hermite linear functional, as well as some Laguerre–Hahn
or semi-classical, orthogonal polynomials (see, e.g., [8,9] and the references therein).
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