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Abstract: The Chavy–Waddy–Kolokolnikov model for the description of bacterial colonies is consid-
ered. In order to establish if the mathematical model is integrable, the Painlevé test is conducted for
the nonlinear ordinary differential equation which corresponds to the fourth-order partial differential
equation. The restrictions on the mathematical model parameters for ordinary differential equations
to pass the Painlevé test are obtained. It is determined that the method of the inverse scattering trans-
form does not solve the Cauchy problem for the original mathematical model, since the corresponding
nonlinear ordinary differential equation passes the Painlevé test only when its solution is stationary.
In the case of the stationary solution, the first integral of the equation is obtained, which makes it pos-
sible to represent the general solution in the quadrature form. The stability of the stationary points of
the investigated mathematical model is carried out and their classification is proposed. Periodic and
solitary stationary solutions of the Chavy–Waddy–Kolokolnikov model are constructed for various
parameter values. To build analytical solutions, the method of the simplest equations is also used.
The solutions, obtained in the form of a truncated expansion in powers of the logistic function, are
represented as a closed formula using the formula for the Newton binomial.
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1. Introduction

Bacteria often have to exist in environments that hinder their growth. As a result, they
have developed an essential set of complex responses to external stimuli, such as moving
towards or away from certain nutrients or light to increase the availability of resources
required. The most well-studied among these phenomena is chemotaxis, which is the
directed movement of motile bacteria in reaction to chemical gradients. Mathematical
modelling of chemotaxis began with the work of Keller and Segel [1–3]. They presented
four strongly coupled parabolic partial differential equations, describing the cellular slime
population aggregation. The model was derived based on the macroscopic perspective,
in which the whole population with respect to the population density at one place and
one time is directly considered. The Keller–Segel model demonstrates the important
properties of self-aggregation, blow-up in the limit of high concentrations and spatial
pattern formation [4–8]. There are various approaches to chemotaxis and therefore, many
other models for its description [9].

Another form of organism adaptation is phototaxis, which is an oriented motion with
respect to light direction. Phototactic bacteria optimize the conditions for photosynthesis
by moving towards light. In the field of mathematical modelling, phototaxis has received
much less attention than chemotaxis. In [10], based on the continuity equation, a model
for the prediction of the blue algae density at any time outside, inside and on the border
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of the light trap as a result of phototactic activity was derived. The paper [11] contains
the model of phototactic behaviour of the cellular slime mould Dictyostelium discoideum
based on a partial differential equation model and hybrid cellular automata. However,
these models do not account for group dynamics as an associated factor to the motion
mechanism. In a recent series of works, Levy et al. took this factor into consideration in
developing two models of the motion of the cyanobacteria Synechocystis sp. [12–16]. The
first model they derived was based on a cellular automaton and extended by introducing
a model in which the location of each bacterium at a given time, the surface memory
and the excitation of each bacterium were considered as stochastic processes [12,13]. The
individual bacterium excitation was supposed to change based on the neighbouring bacteria
excitation. The paper [14] was devoted to the derivation of a PDE system as the limit of
many particle systems interacting stochastically. However, these papers did not describe
the dynamics in areas with a low-to-medium cell density, where cells usually move quasi-
randomly in the direction of surrounding cells and with no observable bias towards the
light source. Their second model followed the time-discrete dynamics of the system of
particles interacting according to a certain set of rules involving random terms [15,16]. The
rules for local interactions in that model were based on experimental observations [17,18].

It is of great importance to explore mathematical models in biology, since biological
processes can be applied in various fields of medicine and other sciences. For example, the
paper [19] examined the effects of cortisol on the immune response to HIV by numerically
integrating the mathematical chemotaxis model. In [20,21], a mathematical model of tumour
invasion of tissue was proposed based on the chemotactic mechanism. The extended and
modified versions of the SIR and SIER models for describing coronaviruses were presented
and solved in [22]. The paper [23] explored a congenital syndrome characterised by
gonadal dysgenesis. The technological application of phototaxis to photobioreactors and
micropropellers was discussed in [24–26].

In the paper [27], a simplified equivalent of the model from [17,18] was presented and
the following novel parabolic partial differential equation was derived in the continuum
limit approximation

ut + uxx + uxxxx − α
∂

∂x

(ux uxx

u

)
= 0, (1)

where u(x, t) is a function describing the concentration of bacteria, x and t are independent
variables, and α is a parameter of the mathematical model that is determined by the formula

α =
c (2 d + 1)(d + 1)2

(c [1 + d (d2 + 2 d + 3)]− 2a)
,

where c is the speed with which the bacterium moves after the new orientation switch,
d is the sensing radius of the bacterium, and a is the speed with which the bacterium moves
one bin according to its orientation.

One can see that Equation (1) has the form of the conservation law and at some
additional constraints for derivatives ux and uxx, we have

∞∫
−∞

u dx = Constant.

Equation (1) is a recently obtained equation, which has been explored very little from
the analytical point of view. As far as we know, there has been only one paper [28] which
devoted itself to the analytical solutions of Equation (1). However, that work did not
provide any results about the integrability of the explored mathematical model and did
not present the first integral of the equation, which can also be a useful tool for finding its
exact solutions and plotting its phase portraits. Thus, the goal of this paper was to study
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the analytical properties of Equation (1) and to construct its new exact solutions, since they
might be useful in practical applications of phototaxis.

This paper is structured as follows. In Sections 2 and 3, we employ the Painlevé test
to study the integrability of Equation (1). In that section, we also demonstrate that the
pole order of the general solution and the values of the Fuchs indices in the expansion
of the general solution in the Laurent series are determined by the parameter value α of
Equation (1). Considering the travelling wave reduction of Equation (1), we obtain that an
analytical solution exists for the stationary case with the exception of the case when α = 0
and α = 3. In Section 5, we present the phase-plane analysis of the nonlinear ordinary
differential equation which corresponds to Equation (1). In Section 6, we find the stationary
solutions of Equation (1) using the direct transformations and calculations for some values
of parameter α. The application of special methods for the construction of the solitary
waves of Equation (1) is presented in Section 7.

2. Painlevé Test for the Reduced Chavy–Waddy–Kolokolnikov Model

The Painlevé test can be used to obtain information about the integrability of partial
differential equations. Based on the conjecture by Ablowitz, Ramani and Segur, we can
apply the Painlevé test to the reduced Equation (1). One can observe that Equation (1)
admits the two following operators

X1 =
∂

∂t
, X2 =

∂

∂x
.

As a result of this symmetry, we can search the solution of Equation (1) as follows:

u(x, t) = w(z), z = x− C0 t, (2)

where C0 is the speed of the wave travelling along the x axis.
Substituting (2) into Equation (1) yields the nonlinear ordinary differential equation

after integration

wzzz w− α wz wzz + w wz − C0 w2 − C1 w = 0, (3)

where C1 is an arbitrary constant.
In the case where α = 0, Equation (1) is linear

wzzz + wz − C0 w− C1 = 0. (4)

Equation (4) passes the Painlevé test by definition [29–31]. The general solution of
Equation (4) exists and has three arbitrary constants. In particular, the real solution of
Equation (4) is expressed by the following formula:

w(z) =
C1

C0
+ C(1)

r exp

 ((108 C0 + 12
√

81C2
0 + 12)2/3 − 12) z

6 (108 C0 + 12
√

81C2
0 + 12)1/3

,

where C(1)
r is an arbitrary constant.

With the aim of determining the integrability of Equation (3) at α 6= 0, we use the
Painlevé test [32–34]. There are three steps in the Painlevé test. The first one is to determine
the first term in the expansion of the general solution in the Laurent series [35–37]. One can
see that the leading members’ equation corresponding to Equation (3) is as follows:

wzzz w− α wz wzz = 0.

In the first step, substituting (see [32–34])

w(z) =
a0

ξ p , ξ = z− z0,
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(where z0 is a constant) into Equation (2), and equating to zero expressions at different
powers of ξ, we have that a0 is an arbitrary constant, and the order of the pole of the
solution in the complex plane is

p =
2

α− 1
, α 6= 1.

We obtain that Equation (3) passes the first step of the Painlevé test when 2
α−1 = N1 is

an integer.
In the second step, taking into account the formula [32–34]

w(z) = a0 ξ−p + aj ξ j−p, p =
2

α− 1
, ξ = z− z0,

where z0 is an arbitrary constant, yields the subsequent Fuchs indices for three branches of
the solution

j1 = −1, j2 = 0, j3 =
2(α + 1)
(α− 1)

.

It is known that the equation passes the second step of the Painlevé test if all its
Fuchs indices have integer values. In this case, the study of Equation (1) can be continued.
We have that the Fuchs index j1 = −1 corresponds to the arbitrary pole value z0. The Fuchs
index j2 = 0 corresponds to the arbitrary value a0. Therefore, it is left to find an arbitrary
constant corresponding to j3.

At the third step we look for the arbitrary constant corresponding to the third Fuchs
index j3. This Fuchs index has to also be integer j3 = N2 for the equation to pass the
Painlevé test. It follows that the integers N1 and N2 have to satisfy the constraint

N2 − 2 N1 = 2.

In the case where N1 = 1, we obtain N2 = 4 and α = 3. The Laurent series of the
general solution at C0 = 0 is written as

y1(z) =
a0

(z− z0)
− a0

12
(z− z0) + a4 (z− z0)

3 + . . . . (5)

We again obtain three arbitrary constants z0, a0 and a4.
Assuming N1 = 2, we obtain N2 = 6 and α = 2. In this instance, the Laurent series of

the general solution at C0 = 0 is as follows:

y2(z) =
a0

(z− z0)
2 −

a0

12
+

a0

240
(z− z0)

2 − C1

30
(z− z0)

3 + a6 (z− z0)
4 + . . . . (6)

One can see that there are three arbitrary constants z0, a0 and a6 in the expansion (6).
In the case where N1 = 3, we have N2 = 8 and α = 5

3 . Using the third step of
the Painlevé test, at C0 = 0 and C1 = 0, we obtain the Laurent series of the following
general solution

y3(z) =
a0

(z− z0)
3 −

a0

12(z− z0)
+

17 a0

4320
(z− z0)−

457 a0

3265920
(z− z0)

3 + a8 (z− z0)
5 + . . . .

(7)

Assuming N1 = 4, we find N2 = 10 and α = 3
2 . We have the Laurent series of the

general solution at C0 = 0 of the form
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y4(z) =
a0

(z− z0)
4 −

a0

12 (z− z0)
2 +

11 a0

2880
− 31 a0 (z− z0)

2

241920
− C1 (z− z0)

3

168
+

41 a0 (z− z0)
4

11612160
+

17 C1 (z− z0)
5

20160
+ a10 (z− z0)

6 + . . . .

(8)

In this case, we obtain the arbitrary constants z0, a0 and a10.
At N1 = 5, we have N2 = 12 and α = 7

5 . We also obtain the Laurent series of the
general solution at C0 = 0 and C1 = 0 of the form

y5(z) =
a0

(z− z0)
5 −

a0

12(z− z0)3 +
3 a0

800 (z− z0)
− 367 a0

3024000
(z− z0)+

11513 a0

3628800000
(z− z0)

3 − 18979 a0

266112000000
(z− z0)

5 + a12 (z− z0)
7 + . . . .

(9)

In the case where N1 = 6, we obtain N2 = 14 and α = 4
3 . In the third step of the

Painlevé test, we obtain the following expansion in the Laurent series of the general solution
at C0 = 0

y6(z) =
a0

(x− x0)
6 −

a0

12 (x− x0)
4 +

a0

270 (x− x0)
2 −

191 a0

1632960
+

289 a0 (x− x0)
2

97977600
− C1 (x− x0)

3

450
− 491 a0 (x− x0)

4

7759825920
+

+
C1 (x− x0)

5

6600
+

27257 a0 (x− x0)
6

22697490816000
− 7303 C1 (x− x0)

7

486486000
+

a14 (x− x0)
8 + . . . .

(10)

The expansion (10) of the general solution of Equation (3) in the Laurent series contains
three arbitrary constants as well.

Thus, we obtain that Equation (3) passes the Painlevé test under some constraints on
the parameter C0 and in some cases on C1. We also find that the pole order of the general
solution depends on the parameter values of Equation (3). In the particular cases of integer
poles, the Laurent series of the general solutions of Equation (3) have the forms (5)–(10).
Thus, we obtain that for the values α = N2

N1
− 1 of the mathematical model, Equation (3)

passes the Painlevé test and the necessary condition for the integrability of this equation
is fulfilled.

3. Painlevé Test for the Nonlinear Ordinary Differential Equation of the Second Order

In this section we consider the analytical properties of Equation (3) in the case where
C1 = 0. In this and subsequent sections, we use MAPLE software to conduct symbolic
computations. One note that Equation (3) in the case where C1 = 0 takes the form

Yxx + (3− α)Y Yx + (1− α)Y3 −Y− C2
0 = 0,

where w(x) is determined as the logarithmic derivative

Y(x) =
wx

w
. (11)

The leading members’ equation for Equation (3) is written as follows:

Yxx + (3− α)Y Yx + (1− α)Y3 = 0. (12)

Substituting Y = b0 (x− x0)
r into Equation (12), we obtain that the pole of the general

solution of Equation (12) is of the first order with r = −1, and there are two branches of the
expansion of the general solution in the Laurent series with b1 = 1 and b2 = −2.
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Let us consider Equation (12) at α = 3

Yxx − 2 Y3 + Y− C2
0 = 0. (13)

Equation (13) can be written as the first-order equation

Y2
x − 2 Y4 + Y2 − C2

0 Y = Ca, (14)

where Ca is an arbitrary constant. Equation (14) passes the Painlevé test, and its solution is
expressed via the Weierstrass or Jacobi elliptic functions (see [38]).

The Fuchs indices of the two branches of the general solution are given by the following
expressions

j1 = −1 j2 = 1 + α,

which is the result of the second step of the Painlevé test. Therefore, Equation (12) passes
the Painlevé test in the general case at α ∈ N.

We consider various values of the parameter α at the third step of the Painlevé test.
Assuming α = 1, we obtain that a2 cannot be taken as an arbitrary coefficient because the
compatibility condition is not satisfied. In the case where α = 2, Equation (3) passes the
Painlevé test at C0 = 0. We conduct the third step of the Painlevé test for integer values of
α ≤ 15. The result obtained is that Equation (3) passes the Painlevé test only in the cases of
α = 0 and α = 3. We can find the analytical solution of Equation (3) in the general case at
C0 = 0 by conducting the Painlevé test.

It is known that the Painlevé property is only the necessary condition for the exis-
tence of the general solution of nonlinear ordinary differential equations, so we cannot
claim that Equation (3) at C0 = 0 has a general solution. The study of all cases of inte-
grability of Equation (3) at C0 = 0 was carried out in the work [30]. However, it should
be noted that for C0 = 0, Equation (3) has an expansion of the general solution into the
Laurent series with one arbitrary constant and therefore can possess some exact solutions.
In Section 6, we present these stationary solutions.

4. First Integral of the Nonlinear Ordinary Differential Equation Corresponding
to the Chavy–Waddy–Kolokolnikov Model

The performed analysis of the Painlevé property showed that the equation passed
the Painlevé test at C0 = 0. This means that there exist analytical solutions of Equation (3)
at C0 = 0. Some exact solutions of Equation (1) can be found using the method of the
logistic function [39–42].

In this Section, we find the first integral of the nonlinear ordinary differential equation
corresponding to Equation (1). Assuming ut = 0, we have u(x) = w(z) and Equation (1)
has the form

u uxxx − α ux uxx + u ux + C1 u = 0. (15)

In the case where C1 = 0, integrating Equation (15) gives

2 u uxx − (α + 1) u2
x + u2 − C2 = 0, (16)

where C2 is an arbitrary constant.
Let us consider Equation (16) at α 6= 1. Multiplying Equation (16) by u−

3+α
2 yields

an equation of the form [39]

Wxx −
(α− 1)

4
W +

C2 (α− 1)
4

W
3+α
α−1 = 0, (17)

where W(x) is written as
W(x) = u(x)

1−α
2 . (18)
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Equation (17) has a first integral of the form

W2
x −

(α− 1)
4

W2 +
C2 (α− 1)2

4(α + 1)
W

2(α+1)
α−1 = C3, (19)

where C3 is an arbitrary constant.
Substitution of (18) into Equation (19) yields the nonlinear first-order ordinary differ-

ential equation corresponding to the first integral of Equation (16) in the form of

u2
x −

1
α− 1

u2 − 4 C3

(α− 1)2 uα+1 +
C2

α + 1
= 0. (20)

The solution of Equation (20) can be expressed in the quadrature form∫ du√
(α− 1) u2 + 4 C3 u1+α − C2(α−1)2

(α+1)

=
x− x0

α− 1
,

where x0 is the constant of integration.

5. Phase-Plane Analysis of the Nonlinear Ordinary Differential Equations Corresponding
to the Chavy–Waddy–Kolokolnikov Model

To visualize the results from the previous section, we analyse the stability of equilib-
rium points of (16) and explore the bifurcations of its phase portraits using the first integral
obtained. Firstly, we rewrite (16) in the form

ux = v, vx =
C2 − u2 + (α + 1)v2

2u
. (21)

Letting dx = 2udξ gives the associated regular system [43] of (21) in the following form:

uξ = 2uv, vξ = C2 − u2 + (α + 1)v2. (22)

The system of Equations (22) at α 6= 1 and α 6= −1 has the same first integral (20)
as (21), which was found in the previous section:

H(u, v) =
1

4uα+1

(
(α− 1)2v2 − (α− 1)u2 +

C2(α− 1)2

α + 1

)
.

The first integral of (22) for α = −1 takes the form

H(u, v) =
v2

2
+

u2

4
− C2 ln |u|

2
.

Systems (21) and (22) have the same orbits, for the exception of the neighbourhood
of the straight line u = 0. The vector field direction defined by the system (21) is changed
to the inverse defined by (22), when the phase points intersect the singular straight line.
Let us list all the possible equilibrium points of the regular system (22)

P1,2 = ±(
√

C2, 0), P3,4 =

(
0,

√
− C2

α + 1

)
, O = (0, 0).

According to the theory of two-dimensional dynamical systems, the distributions and
properties of the equilibrium points of (22) are as follows:

1. When C2 > 0 and α + 1 ≥ 0, the system (22) has two equilibrium points P1,2, which
are of the centre stability type. The solutions of the system in the vicinities of these
equilibrium points are periodic (Figure 1 on the left- and right-hand sides).
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2. When C2 > 0 and α + 1 < 0, the system (22) still has two centres P1,2. Moreover,
two saddle points P3,4 appear. The solutions of the system (22) in the vicinities of the
centres are periodic. The saddle points are connected to each other by the heteroclinic
orbit (Figure 2 on the left-hand side).

3. When C2 = 0 and α + 1 6= 0, the centres P1,2 and the saddle points P3,4 vanish.
The system (22) has one trivial equilibrium point O, which is degenerate with two
zero eigenvalues. This point is connected to itself by the homoclinic orbit (Figure 2 on
the right-hand side)

4. When C2 = 0 and α+ 1 = 0, the system (22) has a line of equilibria {P = (0, v0)| v0 ∈ R}
which are linearly stable for v0 < 0 and unstable for v0 > 0. Each pair of points
Pv = (0, v) and P−v = (0,−v) are connected to each other by a heteroclinic orbit
(Figure 3 on the left-hand side).

5. When C2 < 0 and α + 1 > 0, the system (22) has a pair of stable and unstable nodes
P3,4 (Figure 3 on the right-hand side). In this case, a saddle-node bifurcation for the
equilibrium points P3,4 occurs, as the value of C2 decreases and crosses zero, while
the value of α + 1 increases and crosses zero.

6. When C2 < 0 and α + 1 ≤ 0, the nodes P3,4 vanish, and system (22) does not have any
equilibrium points.

This discussion above yields the bifurcations of the phase portraits of the regular
system (22) as presented in Figures 1–3. Corresponding to the phase portraits given are
curves defined by H(u, v) = h = const where h is varied. From the analysis of the first
integral and the phase portraits, we can see that there exist bounded periodic solutions
(Figures 1 and 2 on the left-hand side and Figure 3 on the left-hand side) and solitary waves
(Figure 2 on the right-hand side). In the next sections, we search explicit expressions for
these orbits by means of various methods.

Figure 1. Phase portraits of (16) for α = 3, C2 = 2 (left-hand side) and α = −1, C2 = 2
(right-hand side).



Mathematics 2023, 11, 3203 9 of 17

Figure 2. Phase portraits of (16) for α = −3, C2 = 2 (left-hand side) and α = 3, C2 = 0
(right-hand side).

Figure 3. Phase portraits of (16) for α = −1, C2 = 0 (left-hand side) and α = 3, C2 = −2
(right-hand side).

6. Stationary Solutions of the Chavy–Waddy–Kolokolnikov Model

Using the results from the previous sections, we can look for exact solutions of
Equation (1). In this section, we find a number of new solutions of Equation (3) taking into
account direct calculations.

In the case where α = 3, Equation (20) is written in the form

u2
x − C3 u4 − 1

2
u2 +

C2

4
= 0.

The solution of Equation (20) is expressed by the Jacobi elliptic function [40,41,44]

u(x) =
√

X1 sn
{√

C3 X2 (x− x1),
X1

X2

}
,

where x1 is an arbitrary constant, and X1,2 solve the following algebraic equation

X2 − 1
2 C3

X +
C2

4 C3
= 0,

and have the form
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X1,2 =
1±
√

1− 4 C2 C3

4 C3
.

Assuming C2 = 1
4 C3

yields X1 = X2, so the solution u(x) can be expressed by
the formula [42,45,46]

u(x) =
√

C3 tanh
{√

C3 (x− x1)
}

.

In the case where C2 = 0 and α = 3, Equation (20) can be written as follows:

u2
x −

1
2

u2 − C3 u4 = 0. (23)

The solution of Equation (23) at C3 < 0 is a solitary wave of the form (see [47])

u(x) =
[

e
x−x1√

2 − C3

2
e−

x−x1√
2

]−1
.

Assuming α = 2 in Equation (20), we obtain an equation of the form

u2
x − u2 − 4 C3 u3 +

C2

3
= 0. (24)

The general solution of Equation (24) is expressed via the Weierstrass elliptic function
by the formula

u(x) = ℘
{√

C3 (x− x2), g2, g3

}
− 1

12 C3
,

where the invariants g2 and g3 are as follows:

g2 =
1

12C2
3

, g3 =
C2

3 C3
− 1

216 C3
3

.

In the case where C2 = 0 and C3 6= 0, we obtain the solitary wave solution of
Equation (24) in the form

u(x) =
1

C3

[
tanh2

{
(x− x2)

2

}
− 1
]

.

In the case where α = 5, Equation (20) is written as

u2
x −

C3

4
u6 − 1

4
u2 +

C2

6
= 0. (25)

Introducing the following change of variables

u(x) =
1√

V(x)

in Equation (25) yields

V2
x +

2 C2

3
V3 −V2 − C3 = 0,

which has the general solution expressed by the formula [48]

V(x) = ℘

{√
−C2

6
(x− x2), G2, G3

}
+

1
2 C2

,

where ℘(z, G2, G3) is the Weierstrass elliptic function, x2 is an arbitrary constant, and G2,
G3 are the invariants of the form
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G2 =
1

2 C2
, G3 = C3 +

1
6 C2

2
.

The stationary solution of Equation (1) at α = 5 is determined by the formula

u(x) =

[
℘

{√
−C2

6
(x− x2), g2, g3

}
+

1
2 C2

]− 1
2

.

In fact, we can find a number of solutions of Equation (1) taking into account
Equations (19) and (20). In particular, assuming C2 = 0 in Equation (17), we obtain the
general solution of the linear equation of the second order as follows:

W(x) = C4 exp

{√
α− 1
2

x

}
+ C5 exp

{
−
√

α− 1
2

x

}

and the stationary solution u(x) given by

u(x) =

[
C4 exp

{√
α− 1
2

x

}
+ C5 exp

{
−
√

α− 1
2

x

}] 2
1−α

. (26)

At α > 1, the solution (26) describes the stationary solitary wave of Equation (1).
The right-hand side of Figure 4 illustrates the stationary solitary wave of Equation (1).
The left-hand side represents a periodic solution at α < 1.

At C3 = 0, the solution of Equation (19) can be written as follows:

W(x) =

 4 (α2 − 1)e
(x−x3)√

α−1

C2 (α− 1)3 + 4(α + 1)e
2(x−x3)√

α−1


α−1

2

,

where x3 is an arbitrary constant.
In the case where C2 = 0, Equation (19) is expressed by

W2
x −

(α− 1)
4

W2 − C3 = 0. (27)

The solution of Equation (27) is determined by the formulas

W(x) =
1

2
√

α− 1

[
exp

{
±
√

α− 1
2

(x− x4)

}
− 4 C3 exp

{
±
√

α− 1
2

(x− x4)

}]
,

where x4 is an arbitrary constant.
Now, let us consider Equation (15) at α = 1 and C1 = 0

u uxxx − ux uxx + u ux = 0. (28)

The first integral of Equation (28) can be written as follows:

u uxx − ux
2 +

1
2

u2 = C6,

where C6 is an arbitrary constant.
At C6 = 0, the solution of Equation (28) is expressed in the form of the solitary wave

u(x) = C7 exp
{
− (x− x5)

2

4

}
,

where C7 and x5 are arbitrary constants.
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Figure 4. The real part of the stationary solution (26) of Equation (1) at α = 0.2, C4 = 1.2 and
C5 = 1.2 (left-hand side) and the function (26) of Equation (1) at α = 2.0, C4 = 1.2 and C5 = 1.2
(right-hand side).

7. Application of the Simplest Equation Method for Finding Exact Solutions of the
Chavy–Waddy–Kolokolnikov Model

We can also find solutions of Equation (1) in the solitary wave form by applying the
special method presented in the paper [42]. The essence of this method is that the solution
is sought using lower-order equations. The Riccati equation or the equation for an elliptic
function are usually taken as such simpler equations. Let us demonstrate this approach by
looking for the solution of Equation (16) at α = 3

2 .
The pole value of the general solution is p = 4. Taking into account this value,

we look for the solution of Equation (16) of the form (see [40–42,49–68])

u(x) = A0 + A1 Q(x) + A2 Q(x)2 + A3 Q(x)3 + A4 Q(x)4, (29)

where Aj (j = 0, 1, 2, 3, 4) are the unknown constants, and Q(z) is a solution of the
Riccati equation

Qx = k(Q2 −Q). (30)

The general solution of Equation (30) takes the form

Q(x) =
1

1 + exp {k(x− z1)}
, (31)

where z1 is an arbitrary constant.
Solution (31) also solves the following nonlinear ordinary differential equation

Qx = 2 k2 Q3 − 3 k2 Q2 + k2 Q.

Substituting expression (29) into Equation (16) at α = 3
2 , we obtain the polynomial

in Q(x). Equating the coefficients of this polynomial to zero and solving the resulting
system of algebraic equations yields

A3 = −2 A4, A2 =

(
14 k2 − 1

)
A4

12 k2 , A1 =

(
2 k2 − 1

)
A4

12 k2 ,

A0 = −
(
4 k4 + 20 k2 − 11

)
A4

2880 k4 , C2 = 0,

k1,2 = ±
√

2
2

, k3,4,5,6 = ± 1
20

√
−310∓ 30 i

√
31.

(32)
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Taking into account expressions (32), we obtain the solitary wave solutions of
Equation (16) at C2 = 0. Two of these solutions are

u(x) =
A4(

1 + exp
{√

2
2 (x− z1)

})2 −
2 A4(

1 + exp
{√

2
2 (x− z1)

})3 +

A4(
1 + exp

{√
2

2 (x− z1)
})4 .

(33)

In the case where α = 4
3 , we obtain p = 6, and the solitary wave solution can be found

as follows:

u(x) = A0 + A1 Q(x) + A2 Q(x)2 + A3 Q(x)3 + A4 Q(x)4+

+A5 Q(x)5 + A6 Q(x)6,

where Aj (j = 0, 1, 2, 3, 4, 5, 6) are constants, and Q(z) is the solution of the Riccati
Equation (30) as well.

Using the same algorithm, we obtain the following constraints:

A5 = −3 A6, A4 =

(
39 k2 − 1

)
A6

12 k2 , A3 = −
(
9 k2 − 1

)
A6

6 k2 ,

A2 =

(
279 k4 − 105 k2 + 4

)
A6

1080 k4 , A1 = −
(
9 k4 − 15 k2 + 4

)
A6

1080 k4 ,

A0 =

(
54 k6 + 189 k4 + 504 k2 − 191

)
A6

1632960 k6 ,

k1,2 = ±
√

3
3

, k3,4 = ± i
21

√
357, k5,6,7,8 = ±1

3

√
∓i
√

26− 5.

The solitary wave solutions of Equation (16) at k = k1,2 can be written as follows:

u(x) =
3 A6(

1 + e
√

3
3 (x−x0)

)4 −
A6(

1 + e
√

3
3 (x−z2)

)3 −
3 A6(

1 + e
√

3
3 (x−z2)

)5 +

A6(
1 + e

√
3

3 (x−z2)

)6 .
(34)

Assuming α = 5
4 , we obtain the order of the pole p = 8. In that case, the exact solution

of Equation (15) at C1 = 0 and (16) at C2 = 0 can be found in the form

u(x) = A0 + A1 Q(x) + A2 Q(x)2 + A3 Q(x)3 + A4 Q(x)4 + A5 Q(x)5+

A6 Q(x)6 + A7 Q(x)7 + A8 Q(x)8.

By applying the same algorithm, we obtain the solitary wave solution as follows:

u(x) =
A8(

1 + e
1
2 (x−x0)

)4 −
4 A8(

1 + e
1
2 (x−x0)

)5 +
6 A8(

1 + e
1
2 (x−x0)

)6−

4 A8(
1 + e

1
2 (x−x0)

)7 +
A8(

1 + e
1
2 (x−x0)

)8 .
(35)
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One can note that using the binomial formula, we can present the solution (35)
of Equation (15) as

u(x) =
A8(

1 + e
x−x0

2

)4

(
1− 1

1 + e
x−x0

2

)4

. (36)

The solutions (33) and (34) can also be written in such a form. This observation
suggests that the solution of Equations (15) and (16) can be found in the form

u(x) =
C e

(x−x0)√
α−1(

1 + e
√

α−1(x−x0)
) 2

α−1
, (37)

where C and x0 are arbitrary constants. Solution (37) satisfies Equation (15) at C1 = 0
and (16) at C2 = 0 for arbitrary values of parameter α. This solution is similar to solution
(26) of Equation (1). In Section 2, we obtained, that Equation (15) passed the Painlevé
test at C0 = 0 and C1 = 0 in the case where α = 1 + N2

N1
, where N1 ∈ N and N2 ∈ N.

However, we can see that there exist analytical solutions (26) and (37) of Equation (1)
at an arbitrary value of the parameter α, which are expressed by the multifunction.

8. Conclusions

In this article, the Chavy–Waddy–Kolokolnikov mathematical model for the descrip-
tion of bacterial density, which consists of a fourth-order partial differential Equation (1),
was investigated. The major focus of this work was to look for possible analytical so-
lutions to Equation (1). For this purpose, we carried out the Painlevé test to determine
the integrability of the mathematical model. Applying the Painlevé test to a nonlinear
ordinary differential equation obtained from the original Chavy–Waddy–Kolokolnikov
mathematical model allowed us to establish that the Cauchy problem for a partial differen-
tial equation could not be solved by the method of the inverse scattering transform, so the
original equation was not integrable. Using the Painlevé test, we found the conditions for
the parameter of the mathematical model α under which stationary analytical solutions
of the Chavy–Waddy–Kolokolnikov equation could be found. In this work, for the first
time, the first integral of a nonlinear ordinary differential equation corresponding to the
original mathematical model was obtained and a classification of the phase portraits of the
corresponding dynamical system was given, which illustrated the possibility of finding
stationary bounded analytical solutions. By means of direct transformations, stationary ana-
lytical solutions to the nonlinear Chavy–Waddy–Kolokolnikov partial differential equation
were obtained for various parameter values of the mathematical model. The application
of the method of simplest equations for constructing analytical solutions of the stationary
equation made it possible to find analytical solutions for integer values of the model pa-
rameter. However, using the Newton binomial formula, partial sums were presented as a
formula for an arbitrary parameter α of the mathematical model.
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