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Abstract: Connecting derivative pricing with tail risk management has become urgent for financial
practice and academia. This paper proposes a novel option pricing model based on the exponential
generalized beta of the second kind (EGB2) distribution. The newly proposed model is of generality,
simplicity, robustness, and financial interpretability. Most importantly, one can detect tail risk signals
by calibrating the proposed model. The model includes the seminal Black–Scholes (B−S) formula
as a limit case and can perfectly “replicate” the option prices from Merton’s jump-diffusion model.
Based on the proposed pricing model, three tail risk warning measures are introduced for tail risk
signals detection: the EGB2 implied tail index, the EGB2 implied Value-at-Risk (EGB2-VaR), and
the EGB2 implied risk-neutral density (EGB2 R.N.D.). Empirical results show that the new pricing
model can yield higher pricing accuracy than existing models in normal and crisis periods, and three
model-based tail risk measures can perfectly detect tail risk signals before financial crises.
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1. Introduction

The latest empirical research studies have shown that financial asset returns are
asymmetrically distributed and information regarding tail risks are missing when using
conventional Gaussian type asset pricing formulas [1,2]. For example, investors under-
estimate left tail risk and under-insure against very low oil prices in crude oil derivative
markets [2]. Motivated by the leptokurtic feature of asset returns and excessive losses
caused by financial crises, the literature began to link tail risk management with derivative
pricing [3–5]. In this regard, option-trading-based strategies were introduced, and novel
options were designed for tail risk hedging. Meanwhile, several non-Gaussian distributions
were adopted for revising conventional option pricing models.

Next, we first start to give a brief review of tail risk hedging and existing option pricing
models dealing with tail risks and leptokurtic features, and then discuss the practical
limitations and design insufficiency of those pricing models closely related to our proposed
work in this paper.

Regarding tail risk hedging using options, the seminal works were due to Bhansali
(2008, 2014) [6,7], providing a valuable benchmark for developing option-based tail risk
hedging strategies. Based on their framework, offensive tail risk management [8], active
tail risk management [9], behavioral insight [10], tail risk hedging in a low-rate environ-
ment [11], and hedging robustness during extreme events such as COVID-19 [12] were
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further investigated. Furthermore, novel options were also designed for tail risk hedging
purposes [13].

For the leptokurtic features, extreme losses and fat-tail phenomena were considered
by using non-Gaussian distributions to model underlying asset returns in option pric-
ing models. The typical distributions include: (1) generalized distributions, such as GB
class [14–16], generalized extreme value (GEV) [17], and generalized logistic (GLO) [18];
(2) asymmetric distributions, such as skewed-t [19], variance gamma [20], Weibull [21], and
distorted lognormal distribution [22]; and (3) mixture distribution such as the mixture of
Gaussian and heavy-tailed model [23].

To detect tail risk signals via an option pricing model, a natural choice for the underly-
ing asset’s modeling is GEV distribution. In this regard, Markose and Alentorn (2011) [17]
proposed a GEV option pricing model, from which one can obtain implied volatility and
implied tail index simultaneously by using option price data. However, empirical study
shows that the GEV pricing model did not perform well during many time periods (Kim
and Kim, 2014 [18]). One reason may be that using the GEV to fit losses could cause the
over-fitting problem. According to Fisher–Tippett theorem [24], it is the block maxima
of returns and/or losses rather than returns and/or losses per se that follow the GEV
distribution. This is the so-called “domain of attraction” principle, based on which it is
to conclude that directly pre-assuming the daily losses to be a GEV distribution may not
be either mathematically or practically reasonable (in the empirical result of Markose and
Alentorn (2011) [17], the implied tail indexes vary from positive to negative back and forth
frequently, which may also imply the GEV setting can be questionable, thereby making
their results suffering an over-fitting problem in some market circumstances).

Besides the GEV distribution, attention was also paid to the GB class distributions. In
particular, the generalized beta of the second kind (GB2) and the exponential generalized
beta of the second kind (EGB2) distributions show promising potential. For example,
McDonald and Bookstaber (1991) [14] proposed a GB2 option pricing model in the literature.
Based on the equilibrium conditions proposed by Cox and Ross (1976) [25], the GB2 option
pricing model can obtain a closed-form solution by using GB2 cumulative distribution
function (C.D.F.). However, in the explicit expression of the theoretical option prices, there
exists a term ST , which means that the theoretical option prices can only be determined
when the underlying asset price at the maturity date T is known; but, such an assumption
is practically not implementable. The reason is, based on the payoff functions of vanilla
options, if ST is given, the option prices are known, which means that we do not need
additional information or a pricing formula in this case. In addition, Fischer (2000) [17]
proposed an Esscher-EGB2 option pricing model, where the underlying price process is
modeled by an exponential EGB2-Lévy motion. By using the Esscher transformation,
pricing formulas are given. There are some problems with the formula in practice. The
final expression of the pricing model involves a Fourier inversion formula. Moreover, it
is composed of complex numbers, meaning one must implement numerical methods to
obtain the theoretical prices. In the pricing and risk management realms, the numerical
method makes the pricing formula relatively complicated and less feasible. Another GB2
pricing model was proposed by Mirfendereski and Rebonato (2001) [16], which has a
straightforward closed-form pricing formula. However, one essential assumption of “zero
risk-free rate” makes the model not applicable in the non-zero rate real world.

Whereas the existing studies do provide a valuable basis for related research, we
note that there are still many gaps in this field. First, many of the non-Gaussian option
pricing models can be too “ad hoc” to be applicable in the real world. By merely focusing
on specific market situations or strongly relying on “too-strong” pre-assumptions, one
may lose the feasibility and generality of the pricing models, thereby making it of less
pricing accuracy and robustness. In addition, we note that many existing non-Gaussian
option pricing models do not entail the benchmark Black–Scholes (B−S) model [26] or any
Gaussian models as special cases, which also hinders the models’ universality and financial
interpretability. Second, many existing models may suffer from simplicity and feasibility
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issues. For instance, the model based on the Lévy process may include complex numbers
in its resulting formula, which means that one has to use numerical methods to obtain
theoretical option prices. Meanwhile, the models that adopt time-changed motions or jump-
diffusion processes are mathematically complicated, which may add lots of computational
burdens and difficulties in practice. Last but not least, most of the existing research mainly
paid attention to the pricing but rarely discussed the connection with risk analysis. For
example, in the seminal B−S formula, one can “detect” the overall market risk level
by directly looking at the option price and calculating the corresponding B−S implied
volatility. However, similar discussions are relatively scarce for non-Gaussian distribution-
based models.

This paper proposes a novel option pricing model based on the exponential general-
ized beta of the second kind (EGB2) distribution, which fills the current gaps by introducing
the following novelties. First, the newly proposed EGB2 option pricing (EGB2OP) model is
of great generality, interpretability, and robustness. It contains the seminal B−S model as a
limit case and can replicate option prices generated from the jump-diffusion model, thereby
making it robust in varying market seniors. The resulting pricing formulas are analog to
the form of the B−S model while providing additional financial interpretability for each
parameter (See Section 3.3). With a B−S analogous pricing formula, the newly proposed
model preserves the B−S model’s interpretability characteristics and adds capacity for char-
acterizing the tail behavior and asymmetry in price changes. Second, the proposed model is
of great simplicity. It does not include complex numbers, “too-strong” pre-assumptions, or
complicated mathematical processes, thereby making it computationally cheaper. This may
offer an attractive competitive advantage in terms of practical utilization. Finally, based
on the proposed model, tail risk signals can be directly detected or “implied” from option
prices. Based on our pricing model, we propose three model-based risk measures, which
may offer powerful implications for both investors and policymakers. Just like one can “de-
tect” the overall market risk signal via the B−S formula by looking at the implied volatility,
people can directly “detect” the tail risk signal via the EGB2OP model by looking at the
implied tail index. To the authors’ best knowledge, to date, there is no model equivalent to
the one proposed by this paper. It is worth noting that the reason why our EGB2OP model
is of generality, robustness, and satisfactory pricing and risk reporting performances is not
because it includes more than one parameter, but because of the interpretable structure of
the model per se. As a matter of fact, as reviewed before, there are many option pricing
models in the literature having many or even more parameters, and they may not be able
to obtain satisfactory properties.

The rest of the paper is organized as follows. Section 2 provides a brief review of the
EGB2 distribution. The EGB2OP model is proposed in Section 3. Section 4 provides the
simulation experiments that compare the pricing performance and flexibility of the B−S
model and EGB2OP model. Section 5 uses simulation examples to examine the ability of the
EGB2OP model to “replicate” Merton’s jump-diffusion model and compare their pricing
performances under various market scenarios. Section 6 provides the empirical results
using China’s option market data. Three EGB2OP model-based measures are designed for
detecting tail risk signals in Section 7. Section 8 concludes the paper. Additional derivations
and examples are presented in the Appendix A.

2. Review of the EGB2 Distribution

The exponential generalized beta of the second kind (EGB2) distribution is proposed
by McDonald and Xu (1995) [27], which is a generalization of both logistic distribution and
beta distribution. The standardized density function (with neither location parameter nor
scale parameter) of EGB2 is given by Equation (1):

f (x; p, q) =
exp(px)

B(p, q)[1 + exp(x)]p+q , x ∈ R (1)
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where B(·, ·) is an incomplete beta function, and p > 0 and q > 0 are shape parameters
or tail parameters governing the left tail and right tail of the distribution, respectively.
Introducing location parameter a and scale parameter b > 0 leads to a four parameters
p.d.f. as Equation (2):

f (x; a, b, p, q) =
exp(p x−a

b )

bB(p, q)[1 + exp( x−a
b )]p+q , x ∈ R, (2)

and denote its corresponding distribution function as EGB2(x; a, b, p, q) or EGB2(a, b, p, q)
for a short notation. When a = 0 and b = 1, it is denoted as EGB2(x; p, q).

Tail Parameters and Tail Behavior. According to McDonald (1991) [28], the relative
gap between the left tail parameter p and the right tail parameter q has essential meaning
for capturing tails’ behavior. If p > q, the distribution is positively skewed. If p < q, the
distribution is negatively skewed. If p = q, the distribution is symmetric. In general, the
smaller the value of q, the more the distribution is skewed to the right; the smaller the
value of p, the more the distribution is skewed to the left. In the empirical literature, it has
been shown that the extreme behaviors of asset returns (losses) are highly asymmetrical,
especially during extreme events [29]. Thus, it would be of practical significance to trace
tail behaviors on both tails.

Special Cases. According to McDonald and Xu (1995) [27], EGB2 goes in limit to
Weibull when p→ 1 and q→ ∞, to standard logistic when p = q = 1, to EGG or lognormal
when q→ ∞, to BR2 or EBR2 when p = 1, and to normal when p→ ∞ and q→ ∞. To see
more special cases for EGB2, refer to the partial EGB distribution tree by McDonald and Xu
(1995) [27].

The Moments. In the literature [27,28,30], the characteristic function and moment-
generating function of X are given by

ϕX(t) = MX(it) = exp(at)
B(p + bit, q− bit)

B(p, q)
= exp(at)

Γ(p + bit, q− bit)
Γ(p, q)

, (3)

and

MX(t) = exp(at)
B(p + bt, q− bt)

B(p, q)
,−p < bt < q, (4)

respectively, from which we can obtain the moments of the EGB2 distributions.
The first moment of EGB2 is

M1 = E(X) = a + b[ϕ(p)− ϕ(q)], (5)

where ϕ(·) is the digamma function, given by

ϕ(x) =
d ln[Γ(x)]

dx
=

Γ′(x)
Γ(x)

.

The second to fourth moments of EGB2 are

M2 = Var(X) = b2[ϕ′(p) + ϕ′(q)], (6)

M3 = b3[ϕ′′(p)− ϕ′′(q)], (7)

M4 = b4[ϕ′′′(p) + ϕ′′′(q) + 3[ϕ′(p) + ϕ′(q)]2]. (8)
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To further capture the tail behavior, one can define the standardized third (skewness) and
fourth (kurtosis) moments as:

S(X) =
M3

M3/2
2

=
ϕ′′(p)− ϕ′′(q)

[ϕ′(p) + ϕ′(q)]3/2 , (9)

K(X) =
M4

M4/2
2

=
ϕ′′′(p) + ϕ′′′(q) + 3[ϕ′(p) + ϕ′(q)]2

[ϕ′(p) + ϕ′(q)]2
. (10)

These quantities will be used in the subsequent computations.
The Relationship with GB2 [27,31]. Compared to the conventional relationship be-

tween normal and lognormal, the EGB2 distribution has a similar connection to the gener-
alized beta of the second kind (GB2) distribution. If X ∼ GB2(a, b, p, q), then the variable
Y = log(X) ∼ EGB2(a, b, p, q).

In the literature, EGB2 distribution has been widely used in empirical studies, such as
the modeling of income distribution [27], stock returns [32], future markets’ sentiment [33],
currency exchange rates [34,35], and carbon emission inequality [36].

3. Derivations of the EGB2 Option Pricing Model
3.1. The EGB2 Option Pricing Model for Calls

According to Harrison and Pliska (1981) [37], the equilibrium European call option
price can be written as:

Ct(K) = e−r(T−t)
∫ ∞

K
(ST − K)g(ST)dST , (11)

where r is a risk free rate parameter, g(.) is the pricing kernel, t is the present time, T is the
time at maturity, ST is the underlying stock/asset price at time T.

We start from (11) to derive our new EGB2 option pricing formula. Define the negative
log-returns of the underlying asset over time interval [t, T] as follows:

Lt,T = ln(St)− ln(ST) ∼ EGB2(at,T , bt,T , pt,T , qt,T),

i.e., the density function for losses is given by:

f (Lt,T) =
exp(p Lt,T−at,T

bt,T
)

bt,T B(pt,T , qt,T)[1 + exp( Lt,T−at,T
bt,T

)]pt,T+qt,T
. (12)

Since ∣∣∣∣∂Lt,T

∂ST

∣∣∣∣ = ∣∣∣∣− 1
ST

∣∣∣∣ = 1
ST

,

the risk-neutral density (R.N.D.) for underlying price at time T is given by:

g(ST) =

∣∣∣∣∂Lt,T

∂ST

∣∣∣∣ f (Lt,T) =
exp(p LT−at,T

bt,T
)

bt,TST B(pt,T , qt,T)[1 + exp( Lt,T−at,T
bt,T

)]pt,T+qt,T
. (13)

Inserting Equation (13) into (11), we have

Ct(K) = e−r(T−t)
∫ ∞

K
(1− K/ST)

exp(p Lt,T−at,T
bt,T

)

bt,T B(pt,T , qt,T)[1 + exp( Lt,T−at,T
bt,T

)]pt,T+qt,T
dST . (14)
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By changing the variable, let

γ =
Lt,T − at,T

bt,T
=

ln(St/ST)− at,T

bt,T
, (15)

then the upper bound of the integral in Equation (14) becomes −∞ and the lower bound of
the integral becomes

H =
ln(St/K)− at,T

bt,T

and
dγ = − 1

bt,TST
dST ,

i.e.,
dST = −bt,TSTdγ,

and by Equation (15) we have
ST = −Ste−at,T−bt,Tγ.

Then, Equation (14) becomes

Ct(K) = e−r(T−t)
∫ H

−∞
(ST − K)

exp(pt,Tγ)

B(pt,T , qt,T)[1 + exp(γ)]pt,T+qt,T
dγ. (16)

We have ∫ H

−∞
ST

exp(pt,Tγ)

B(pt,T , qt,T)[1 + exp(γ)]pt,T+qt,T
dγ

=Ste−at,T

∫ H

−∞

exp((pt,T − bt,T)γ)

B(pt,T , qt,T)[1 + exp(γ)]pt,T+qt,T
dγ

=Ste−at,T
B(pt,T − bt,T , qt,T + bt,T)

B(pt,T , qt,T)

·
∫ H

−∞

exp((pt,T − bt,T)γ)

B(pt,T − bt,T , qt,T + bt,T)[1 + exp(γ)](pt,T−bt,T)+(qt,T+bt,T)
dγ

=Ste−at,T
B(pt,T − bt,T , qt,T + bt,T)

B(pt,T , qt,T)
EGB2(H; pt,T − bt,T , qt,T + bt,T),

(17)

where pt,T > bt,T has to be satisfied to guarantee the input of beta function is positive (in
real data, this condition is almost always satisfied. See Section 5).

Inserting Equations (17) into (15), we obtain a closed form for the EGB2 call op-
tion price:

Ct(K) =Ste−at,T−r(T−t) B(pt,T − bt,T , qt,T + bt,T)

B(pt,T , qt,T)
EGB2(H; pt,T − bt,T , qt,T + bt,T)

− Ke−r(T−t)EGB2(H; pt,T , qt,T).
(18)

Denote that
G1 = EGB2(H; pt,T − bt,T , qt,T + bt,T),

G2 = EGB2(H; pt,T , qt,T),

and

B =
B(pt,T − bt,T , qt,T + bt,T)

B(pt,T , qt,T)
,

the Equation (18) can be simplified as

Ct(K) = Ste−at,T−r(T−t)B · G1 − Ke−r(T−t)G2, (19)
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which is the EGB2OP formula for the European call option.

3.2. The EGB2 Option Pricing Model for Puts

Starting from the put option formula from Harrison and Pliska (1981) [37], and then
following the same lines of derivations in Section 3.1, we can obtain a closed-form formula
for EGB2 put option price as

Pt(K) =Ke−r(T−t)[1− EGB2(H; pt,T , qt,T)]

−Ste−at,T−r(T−t) B(pt,T − bt,T , qt,T + bt,T)

B(pt,T , qt,T)
[1− EGB2(H; pt,T − bt,T , qt,T + bt,T)].

(20)

Denote
G3 = 1− EGB2(H; pt,T , qt,T),

G4 = 1− EGB2(H; pt,T − bt,T , qt,T + bt,T),

then the put option pricing formula can be expressed as

Pt(K) = Ke−r(T−t)G3 − Ste−at,T−r(T−t)B · G4. (21)

3.3. The B−S Model as Limit Cases of the EGB2 Option Pricing Model

According to McDonald and Xu (1995) [27], when p, q→ ∞, the EGB2 density f (x; a, b, p, q) in
(2) has the following limit (for convenience, the time subscript of each EGB2 parameter is
omitted in this subsection):

f (x; a, b, p, q)→ fN(x; a, b),

where the limit fN(x; a, b) = 1√
2πb2 exp(− (x−a)2

2b2 ) is a normal p.d.f with the location and
scale parameter being a and b, respectively.

To connect the B−S pricing model to the EGB2OP model, we consider taking a = a(δ,b)
p,q

such that

a(δ,b)
p,q = − ln

EGB2(H(δ,b)
p,q + (b + δ); p− b, q + b)

EGB2(H(δ,b)
p,q ; p, q)

− r(T − t) + ln
B(p− b, q + b)

B(p, q)
, (22)

where H(δ,b)
p,q = log(St/K)− a(δ,b)

p,q )/b, and δ is a tuning parameter for (22) to hold. (18) can
then be expressed as

Cδ
t,p,q(K) =StEGB2(H(δ,b)

p,q + (b + δ); p− b, q + b)

− Ke−r(T−t)EGB2(H(δ,b)
p,q ; p, q).

(23)

We now consider the limit of (22) and (23). Set q/p → C1 when p → ∞, q → ∞.
When C1 = 1, EGB2 is symmetric in both tails, i.e., both p and q are large. It is easy to
see that the limits of EGB2(H; p − b, q + b) and EGB2(H; p, q) are N(H), where N(·) is
the cumulative distribution function (C.D.F.) of the standard normal distribution. Using
Stirling’s approximation, we can prove that B(p−b,q+b)

B(p,q) tends to Cb
1 when p→ ∞, q→ ∞.

For b > 0 and a suitable choice of δ, taking a = a(δ,b) such that

a(δ,b) = − ln
N(H(δ,b) + (b + δ))

N(H(δ,b))
− r(T − t) + b ln(C1), (24)

where H(δ,b) = (log(St/K)− a(δ,b))/b. It is apparent that the right-hand side of (24) is the
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limit case of (22), and the existences of a(δ,b) and δ are easy to check. Suppose q/p → C1
when p→ ∞, q→ ∞. The call price formula Ct(K) in (18) has the following limit:

C(δ)
t (K) = StN(H(δ,b) + (b + δ))− Ke−r(T−t)N(H(δ,b)). (25)

Recall that the B−S formula has the following expression:

CBS
t (K) = StN(d1)− Ke−r(T−t)N(d2) (26)

with d2 =
ln(St/K)+r(T−t)− 1

2 σ2(T−t)
σ
√

T−t
and d1 =

ln(St/K)+r(T−t)+ 1
2 σ2(T−t)

σ
√

T−t
= d2 + σ

√
T − t.

We have the following Theorem 1.

Theorem 1. For any given r, σ, St, T, and K, suppose there exists a C1 as the limit of q/p when
p→ ∞, q→ ∞. Then, there exist a(δ,b), b > 0, δ satisfy the following two equations:

b + δ = σ
√

T − t,

H(δ,b) =
ln(St/K) + r(T − t)− 1

2 σ2(T − t)
σ
√

T − t
,

(27)

and Equation (24), and furthermore (25) and (26) are equivalent.

The proof of Theorem 1 is by solving a system of linear equations in (27) and (24)
to determine C1. From Theorem 1, we can conclude that the B−S formula CBS

t (K) is a

special case of C(δ)
t (K), which is a special limit class of the EGB2OP call price Ct(K) in

(18) under the condition (27). Then, it is clear that the EGB2OP call price Ct(K) in (18)
covers a much wider range of prices than the B−S formula CBS

t (K), and it is a much more
flexible pricing formula than the B−S formula. A comparison in Figure 1 and empirical
studies and an event study further confirm this claim. In Figure 1, we plot the B−S prices
and the limit EGB2OP prices C(δ)

t (K) on three options’ moneyness types: at-the-money
(ATM, St = K = 5), in-the-money (ITM, St = 5.5, K = 5), and out-of-the-money (OTM,
St = 4.5, K = 5) with varying b values. In each panel, the EGB2OP prices are computed by
δ ranging from 0.1 to 0.9 by a step size of 0.01. Without loss of generality, we set T− t = 1
and r = 0.03. The figure reveals that the B−S call prices are within the range of the C(δ)

t (K).
As a result, the B−S call prices can be approximated by an EGP2OP model with the optimal
choices of a, b, p, q.

(a)

Figure 1. Cont.



Mathematics 2023, 11, 3194 9 of 32

(b)

(c)

Figure 1. Comparisons of C(δ)
t (K) with different δ and CBS

t (K) on three options’ moneyness types
ATM, ITM, and OTM with varying b values on the horizontal axis. The blue curves are the theoretical
B−S prices and the green intervals are the sets of all possible EGB2OP prices, accordingly. As can be
seen from the figure, the B−S price lines are almost always right in the middle of the EGB2 prices
belt in each case, which gives a sense that the EGB2OP price indeed goes to a limit of the B−S

price. (a) Comparisons of C(δ)
t (K) with different δ and CBS

t (K) for ATM Options; (b) Comparisons of

C(δ)
t (K) with different δ and CBS

t (K) for ITM Options; (c) Comparisons of C(δ)
t (K) with different δ

and CBS
t (K) for OTM Options.

For all moneyness types, given δ, C(δ)
t (K) and the B−S price are both increasing

functions of b. This can be intuitively explained by the fact that b is the scale parameter.
Larger values in b imply a greater risk of the underlying asset, and thus the increased
expense of the option. Given H and b, the EGB2OP limit price C(δ)

t (K) is monotonically

increasing in δ. Among them, there exists one δ satisfying that C(δ)
t (K) = CBS

t (K). This
interesting result reveals the EGB2OP model’s ability to price a wide range of options.
Meanwhile, as can be seen from the Figure 1, the B−S price lines are almost always right in
the middle of the corresponding EGB2 prices belt for each case, which gives a sense that
the EGB2OP price indeed goes to a limit of the B−S price. This is an intuitive illustration of
Theorem 1.
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Similarly, using the same arguments of call options, we show that the B−S formula for
puts is a limit case of the EGB2OP model for puts.

For the limit cases above, we add the following two additional interpretations and
remarks. Considering that a is a location parameter, it means that there can be a price
shift in the EGB2OP model compared with the B−S model. In (26), b can be interpreted
as the volatility σ in the classical B−S call options formula. Borrowing the idea from
Mirfendereski and Rebonato (2001) [16] we can derive a so-called “equivalent volatility” of
the EGB2OP model by computing

σequivalent =
b√

T − t
.

However, it does not make any comparable sense because the “equivalent volatility” is only
“equivalent” to the B−S implied volatility in the limit case, i.e., if and only if p and q tend
to infinity simultaneously. Otherwise, one should take not only the value of a and b but
also p and q into consideration so as to calculate the standard deviation of the underlying
return distribution. In real data, the calibrated p and q typically range from 0.5 to 3.5
and seldom go above 10. Therefore, computing σequivalent and comparing it with the B−S
implied volatility regardless of the finite (and often not large) value of tail parameters p
and q is reckless and meaningless. For comparison purposes, one should compute the
standard deviation of underlying return distribution by calibrating EGB2OP models (see
Section 6.3).

B = B(p−b,q+b)
B(p,q) indicates the changing of numeraire. Compared to the intuition behind

the B−S model, the term B = B(p−b,q+b)
B(p,q) is used to change the numeraire from a riskless

bond into an underlying risky asset. In the EGB2OP Formulas (19) and (21), B · G1 and
B · G4 are EGB2 probabilities based on underlying risky asset as numeraire, and G2 and
B · G3 are EGB2 probabilities based on riskless bond.

4. Simulation Study: Comparison of the EGB2OP Model and the B−S Model

To highlight the flexibility of the EGB2OP model and the fact that the B−S model
can be a particular limit case of the EGB2OP model, we simulate option prices with one
of the pricing models and approximate the prices with the other one. We examine the
pricing accuracy by computing RMSE and MAE for each case. To illustrate the difference
between the approximations and the simulated prices, we show Price to Price plots (p-p
plots, simulated benchmark model price in y-axis to calibrated price by an alternative
model in x-axis) for each example (Without loss of generality, we only undertake simulation
studies for call options. The conclusion with puts remains the same as calls because of
Put-Call Parity, a model-free identity).

4.1. Approximating B−S Prices with Different Strike Prices Using the EGB2OP Model

The following two examples are undertaken by different benchmark model parameters,
i.e., with different B−S implied volatilities of σ ( σ = 0.15 in Example 1, and σ = 0.30 in
Example 2) so as to justify the robustness of our results.

Example 1. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity T − t = 30; risk-free rate r = 0.03; volatility
σ = 0.15.

Example 2. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity T − t = 30; risk-free rate r = 0.03; volatility
σ = 0.30.

The resulting p-p plots of Examples 1 and 2 are displayed in Figure 2a,b, and the plots
for option prices with different Ks are displayed in Figure 2c,d. In Figure 2a,b, almost all
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the points lie on the line of 45 degrees, meaning that the EGB2OP model does provide
an excellent approximation for B−S prices. Figure 2c,d present the option prices of the
B−S and the EGB2OP models with different strike prices. In both figures, the calibrated
EGB2 price curve (red line) and the B−S price curve (blue line) are completely coincident,
indicating that the EGB2OP model can generate the prices, which are generated by the
B−S model.

More simulation examples for approximating B−S prices using the EGB2OP model
are shown in Appendixes A.1 and A.3.

(a) (b)

(c) (d)

Figure 2. Resulting plots for Examples 1 and 2. (a) Price to Price plot with the B−S model using
σ = 0.15; (b) Price to Price plot with the B−S model using σ = 0.3; (c) Option prices with different
strike prices with the B−S model using σ = 0.15; (d) Option prices with different strike prices with
the B−S model using σ = 0.30.

4.2. Approximating EGB2OP Prices with Different Strike Prices Using the B−S Model

Following the last subsection, we now simulate option prices from the EGB2OP model
with different strike prices K and use the B−S model to approximate the simulated prices.
Different benchmark model parameters undertake the following two examples. Without
loss of generality, we simulate option prices with different right tail parameters qt,T in the
following examples (qt,T = 2 in Example 3, and qt,T = 1 in Example 4). For comparison
purposes, we fix the other basic pricing parameters, St, K, T, and r are the same as in the
last subsection.

Example 3. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity T− t = 30; risk-free rate r = 0.03; parameters
at,T = 0, bt,T = 0.1, pt,T = qt,T = 2.
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Example 4. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity T− t = 30; risk-free rate r = 0.03; parameters
at,T = 0, bt,T = 0.1, pt,T = 2, qt,T = 1.

The resulting p-p plots for Examples 3 and 4 are displayed in Figure 3a,b, the plots
for option prices with different Ks are displayed in Figure 3c,d. In Figure 3a, where
pt,T = qt,T = 2 (i.e., the distribution for underlying return is symmetric), not all the points
lie on the line of 45 degrees, especially for those with high prices. In Figure 3b, where
pt,T = 2, qt,T = 1 (i.e., the distribution for underlying losses is skewed to the right, meaning
that big losses or a crisis are quite possible), almost all the points deviate from the line of
45 degrees. Figure 3b,d present the option prices of the B−S and the EGB2OP models with
different strike prices. In Figure 3b, there is a difference between the calibrated B−S price
curve (blue line) and the benchmark EGB2 price curve (red line). In Figure 3d, where a
financial crisis is reasonably possible, a big gap between B−S price curve (blue line) and
the benchmark EGB2 price curve (red line) can be seen. These results indicate that the B−S
model cannot approximate EGB2 prices very well. Therefore, the greater the asymmetry
of underlying returns or losses, the worse the results of approximation provided by the
B−S model.

(a) (b)

(c) (d)

Figure 3. Resulting plots for Example 3 and Example 4. (a) Price to Price plot with EGB2 qt,T = 2;
(b) Price to Price plot with the EGB2OP using qt,T = 1; (c) Option prices with different strike prices
when the EGB2OP using qt,T = 2; (d) Option prices with different strike prices with the EGB2OP
using qt,T = 1.

More simulation examples for approximating EGB2 prices using the B−S model are
shown in Appendixes A.2, A.4, and A.5. In Appendix A.4, we simulate option prices from
the EGB2OP model with different strike price K, towards different “tail parameters” p and
q, and then use the B−S model to approximate the simulated prices. In Appendix A.5, we
generate option price data from the EGB2OP model by changing only one “tail parameter”
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(p or q) together with different strike price K and time to maturity T. All the simulation
results provide consistent conclusions that: (1) The EGB2 option pricing model can provide
a very good approximation to B−S prices with different K, T, the scale parameter σ, but
the opposite is not true. (2) Generally speaking, the more asymmetric the underlying
distribution, the larger the pricing error of the B−S model can be. For the scenario of
extreme financial risks or an extreme bull market, the B−S model cannot approximate
EGB2OP prices well.

5. Simulation Study: Comparison of the EGB2OP Model and Merton’s
Jump-Diffusion Model

The aim of this section is to highlight the ability of the EGB2OP model to replicate
(or approximate) Merton’s jump-diffusion model prices under varying market scenarios.
We firstly calibrate Merton’s jump-diffusion model using option price data during three
time spans: (1) a financial crisis period (1 July 2015–31 August 2015); (2) a market rebound
period (1 January 2016–29 February 2016); and (3) a normal market period (1 April 2018–31
May 2018). Each time, we simultaneously calibrate four parameters in Merton’s pricing
model: the variance rate σJD, the frequency of jumping λ, the expectation of jumping,
and the variance of jumping. Based on the resulting parameters, we conduct Monte
Carlo simulations to generate the Merton option prices under these three market scenarios
(Without loss of generality, we only generate call option prices in this study. The situations
of puts are similar due to Put-Call Parity and thus omitted). Finally, we calibrate the
EGB2OP model using the simulated Merton option prices and examine the approximation
performance by checking the p-p plots, RMSEs, MAEs, and economic meanings of the
calibrated EGB2OP parameters. In addition, the pricing performance of Merton’s jump-
diffusion model during three selected periods is also compared with those of the EGB2OP
model (detailed empirical results are shown in Section 6). All calibrations in this section
are performed by minimizing SSEs between the theoretical prices and the observed (or
simulated) prices, which is introduced in Section 6.2.

Example 5. In this Monte Carlo experiment, each jump-diffusion process is set to have 100,000
paths and 100 nodes. The theoretical prices of Merton’s model are computed by taking the average of
the option values over all paths. For comparative purposes, we set St = 10, r = 0.03, and T = 365
(days, i.e., 1 year) in each scenario, and examine various moneyness options with strike prices K
ranging from 9 to 11 by step size 0.05, i.e., K = [9, 9.05, 9.10, · · · , 10.90, 10.95, 11].

The resulting p-p plots are shown in Figure 4. The RMSEs in three scenarios (financial
crisis, market rebound, and normal market) are 0.0127, 0.0007, and 0.0040. The corre-
sponding MAEs are 0.0249, 0.0019, and 0.0260, respectively. Generally speaking, the points
in each p-p plot are close to the 45-degree line, and the resulting RMSEs and MAEs are
acceptable, meaning that the EGB2OP model has excellent abilities to approximate (or to
“replicate”) Merton option prices when K is changing. Among these scenarios, the EGB2OP
model provides the best approximation toward Merton’s prices during a market rebound
and ideal approximations in a normal market. Admittedly, some of the points in panel
(a) of Figure 4 are slightly apart from the 45-degree line. However, this does not mean
that the EGB2OP model cannot capture the price change of jump-diffusion models during
market turmoils. We can notice that the p-p points in panel (a) of Figure 4 wraps around
the 45-degree line and does not contain abrupt change, which means the tiny gaps between
the EGB2OP prices and Merton prices are probably computational and negligible.

The real-data pricing performances are compared in Table 1. As shown, the EGB2OP
model can provide less RMSE and MAE than Merton’s jump-diffusion model in all the
scenarios. This means that the jump-diffusion model may not be as practical as the EGB2OP
model. In addition, we should note that this comparative analysis is merely in terms of
pricing (i.e., the in-sample performance) rather than prediction (i.e., the out-of-sample
performance). If predicting ability is considered, the EGB2OP model may outperform all
types of jump-diffusion models, as the jump-diffusion setting may entirely model tail risks
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(i.e., the jumps) stochastically and thus exclude the ability to predict the future. Conversely,
the EGB2OP model may detect possible tail risk signals using real data and thus can be used
to “report” financial crises. In this regard, this paper proposes three EGB2OP model-based
risk reporting tools. See Section 7 for a more detailed tail risk prediction application.

(a)

(b)

(c)

Figure 4. Comparisons of the simulated option prices from Merton’s Jump-Diffusion Model and the
calibrated EGB2OP model prices in varieties of market environments: (a) financial crises; (b) rebound;
and (c) normal market.
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Table 1. Monthly RMSEs and MAEs of the EGB2OP and Merton jump-diffusion (J-D) models over
three selected time spans.

Periods RMSEEGB2 RMSEJ−D MAEEGB2 MAEJ−D

Financial Crisis 0.0129 0.9960 0.0246 0.4174
Market Rebound 0.0005 0.5560 0.0056 0.1662
Normal Market 0.0021 0.0040 0.0072 0.1060

6. Empirical Studies
6.1. Data Description

This section reports the empirical pricing performance of the newly proposed EGB2OP
model with reference to the benchmark Black–Scholes model using real data. The data
used in this study are the daily closing prices of the SSE 50 ETF (Exchange Traded Funds)
call and put options published by the Shanghai Stock Exchange in China. The underlying
asset for SSE 50 ETF option is the SSE 50 ETF (trading code: 510050) issued by China Asset
Management Co. Ltd. in 2004. To date, the SSE 50 ETF Options are the second-largest
option product in the world in terms of trading volume and are very liquid. These options
are listed at expiry dates for the near-month, second-near-month, and the following two
near-seasons. The expiry date of the SSE 50 ETF option is the fourth Wednesday of the
expiration month. The minimum quote unit is 0.0001 Chinese Yuan (RMB). All the options
are traded with a contract multiplier of 10,000.

The period of this study is from 16 April 2015 to 28 August 2018. We exclude the
observations (1) with zero traded volume on a given day; (2) with time to maturity of less
than one week; and (3) violate vertical arbitrage condition. The risk-free rates are the bond
markets-based yearly risk-free returns provided by the RESSET database. Except for the
risk-free rate, all data used in this study come from the Wind database.

The daily close prices and log-returns of SSE 50 ETF during the sample period are
displaced in Table 2. As can be seen from the table, the underlying asset experienced
significantly greater extreme losses in terms of mean (−0.00065), minimum (−0.04567), and
lower quarter quartile (−0.00460) in the year 2015 than any other year. During the second
half of 2015, there was a notable crisis in the Chinese financial investment industry called
the “stock disaster” period in the A-share stock market. The descriptive statistical analysis
of the underlying assets implies that we need to pay special attention to the out-of-sample
risk warning performance of the proposed EGB2OP model during the “stock disaster”
period (the second half of 2015) in the empirical analysis. In this regard, we conduct an
event study in Section 7.3.

Table 2. Descriptive Statistical Analysis of the SSE 50 ETF Daily Close Prices and Daily Log-returns.

Variable, Year mean max min 0.25Quantile 0.75Quantile

Price, 2015 2.62319 3.42700 1.88600 2.33900 3.00600
Price, 2016 2.19357 2.46000 1.91500 2.11200 2.28125
Price, 2017 2.58310 3.06700 2.29600 2.35675 2.76725
Price, 2018 2.72626 3.18000 2.39000 2.57100 2.88400
Price, Full

Sample 2.50453 3.42700 1.88600 2.27900 2.72800

Return, 2015 −0.00065 0.03514 −0.04567 −0.00460 0.00528
Return, 2016 −0.00010 0.01686 −0.02707 −0.00198 0.00202
Return, 2017 0.00040 0.01267 −0.01090 −0.00147 0.00241
Return, 2018 −0.00030 0.01307 -0.02058 −0.00398 0.00299
Return, Full

Sample −0.00011 0.03514 −0.04567 −0.00239 0.00259
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6.2. Methodology

In this paper, we use the probability method to calibrate parameters for the EGB2
option pricing model. For comparison, we also calibrate the B−S model in the same way.
The model parameters are estimated by minimizing the sum of squared errors (SSEs)
between theoretical prices (of the EGB2OP model or the B−S model) and the real market
option prices for each day with the following objective functions:

min
θ

SSECall(t, T) = min
θ

∑
K
[Ct(K, T)− Ĉt(K, T)]2 , ∀t, T, (28)

min
θ

SSEPut(t, T) = min
θ

∑
K
[Pt(K, T)− P̂t(K, T)]2 , ∀t, T, (29)

where θ represents the parameter(s) of the objective model. For example, θ = (at,T , bt,T , pt,T ,
qt,T) for the EGB2OP model, and θ = σ for the B−S model. Using this method, all parame-
ters are risk-neutral parameters and thus can be used to obtain risk-neutral distribution for
underlying returns or losses.

Theoretically, if there exists a corresponding future product for an objective option,
one can use future prices to simplify the above calibration procedure. To use this method,
we need the following martingale condition:

Ft = Et
Q(ST), (30)

where Ft is the future price at time t for the corresponding option (with the same underlying
asset and the same time to maturity). Unlike the normal case where the mean of the
distribution happens to be the location parameter µ, the mean of the EGB2 distribution
is a function of both the location parameter at,T and the scale parameter bt,T , as well as
the shape parameters pt,T and qt,T . According to McDonald(1991), the mean of an EGB2
distribution can be obtained by its moment-generating function and the first moment in (5).

Based on Equations (5) and (30), using the future prices, the location parameter can be
expressed as a function of the forward moneyness and other EGB2 parameters for every
given time t:

at,T = ln(St/Ft)− bt,T [ϕ(pt,T)− ϕ(qt,T)]. (31)

The procedure above is analogous to risk-neutral valuation in the B−S model by replacing at,T
with the risk-free rate of r. Thus, the parameters to be estimated in Equations (28) and (29)
become θ = (bt,T , pt,T , qt,T). One only needs to calibrate three parameters, and therefore,
the computational burden can be reduced.

To evaluate the pricing performance of each model, the Root Mean Square Error
(RMSE) and Maximum Absolute Error (MAE) are computed. The RMSE is defined as

RMSE(t) =

√
SSE(t, T)

N
, (32)

where SSE(t, T) is the SSE for calls or puts calculated by Equations (28) or (29). N represents
the number of observations for the given option on a given day. The MAE is defined as

MAE(t) =

√
maxK |Ct(K, T)− Ĉt(K, T)|

N
(33)

for calls, and

MAE(t) =

√
maxK |Pt(K, T)− P̂t(K, T)|

N
(34)

for puts.
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6.3. Empirical Results
6.3.1. Pricing Performance

To demonstrate the pricing performance of the EGB2OP model, we first report the
average daily RMSE and MAE for both calls and puts (see Table 3) Then, as a reference and
comparison, the pricing results of the B−S formulas are also reported.

As is shown in Table 3, the EGB2OP model yields smaller RMSE and MAE than the
corresponding B−S results for both calls and puts in each year as well as overall. The
dynamics of RMSE and MAE for both models are displayed in Figure 5a and Figure 5b,
respectively. For these results, one can find: (1), the EGB2OP model outperforms the B−S
model in terms of RMSE and MAE almost all the time; (2), in 2015, there is not much
difference between the RMSEs and MAEs of the EGB2OP and the B−S pricing models for
both calls and puts, although the EGB2OP still provides smaller RMSE and MAE than the
B−S. However, after 2015, the RMSEs and MAEs of the EGB2OP are significantly smaller
than those of the B−S. One reason for this could be the structural and financial policy
change in China’s stock market in early January 2016, after the “stock disaster” period
in 2015.

Table 3. Daily Average RMSE and MAE for the EGB2OP and B−S pricing models.

Type, Year RMSEEGB2 RMSEB−S MAEEGB2 MAEB−S

Call, 2015 0.01231 0.02619 0.02427 0.03334
Call, 2016 0.00075 0.02499 0.00717 0.03614
Call, 2017 0.00070 0.03001 0.00704 0.03015
Call, 2018 0.00150 0.02026 0.00839 0.01785

Call, Full Sample 0.00576 0.02680 0.01320 0.03020
Put, 2015 0.01871 0.02206 0.02862 0.03079
Put, 2016 0.00053 0.01072 0.00585 0.02057
Put, 2017 0.00051 0.01276 0.00578 0.01677
Put, 2018 0.00398 0.01131 0.01269 0.02026

Put, Full Sample 0.00511 0.01387 0.01211 0.02623

(a) (b)

Figure 5. Empirical Results: (a) The RMSEs dynamics for the EGB2OP and B−S models; (b) The
MAEs dynamics for the EGB2OP and B−S models.

6.3.2. Implied Moments

In this subsection, we report the dynamics of the EGB2OP model implied moments for
both calls and puts. For the second moment, the dynamics of the B−S implied volatilities
are shown as a reference and comparison, while for higher moments, only the results of the
EGB2OP model are reported.

The EGB2OP implied standard deviation and the B−S implied volatility for the next-
month, the near-season, and the next-season are shown in Figure 8a, Figure 8b, and
Figure 8c, respectively. The standard deviations of the EGB2OP are computed by computing
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the square root of the Equation (6). As shown, the EGB2OP standard deviations share the
same term structure with the B−S implied volatilities. In turmoil time (2015 and 2018), the
EGB2OP standard deviations are very close to the corresponding B−S implied volatilities.
But in stable markets (2016 and 2017), the EGB2 standard deviations are relatively lower
than the corresponding B−S implied volatilities. Such results mean that the EGB2OP model
provides a consistent measure for the second moments of underlying returns/losses of the
B−S in the bull markets or bear markets but provides a smaller value than the B−S in stable
markets. However, one point of view we shall highlight here is that the EGB2OP model
provides significantly lower RMSEs and MAEs than the B−S model in the periods when
markets are stable, indicating that the B−S implied volatility could be too conservative in
stable periods.

Higher-order moments such as implied skewness and kurtosis (see Equations (9) and (10))
for the next-month, the near-season, and the next-season, are exhibited in Figure 7. In
the sample period, the skewnesses range from ±2 and usually lie between ±1.5, signifi-
cantly different from zero. The kurtoses range from 3 to 9, usually between 4 to 7, larger
than 3, which happens to be the kurtosis of normal distribution. The empirical results
for the third and fourth moments indicate that the underlying returns/losses may not
follow the normality since the EGB2OP implied skewness and kurtosis always depart from
0 and 3, respectively.

(a)

(b)

Figure 6. Cont.
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(c)

Figure 6. The EGB2 implied standard deviation and B−S implied volatility for the contracts of the:
(a) next-month; (b) near-season; (c) next-season.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Implied results for the third and fourth moments: (a) The EGB2 implied skewness for the
next-month; (b) The EGB2 implied kurtosis for the next-month; (c) The EGB2 implied skewness for
the near-season; (d) The EGB2 implied kurtosis for the near-season; (e) The EGB2 implied skewness
for the next-season; (f) The EGB2 implied kurtosis for the next-season.

7. Model-Based Instruments for Tail Risk Signals Detection

Asset pricing and risk analysis are two sides of a coin. Serving as one of the novelties
of this paper, this section proposes three model-based instruments to detect tail risk signals
from option prices. The first instrument is the tail risk index, which can directly measure tail
risk constructed using EGB2 parameters. The second instrument is the EGB2 implied Value
at Risk (EGB2-VaR), which quantifies the extent of possible financial losses underlying the
EGB2 setting. Via daily calibration of the pricing models, dynamic tail risk signals curves
can be obtained using these two instruments. In Sections 7.1 and 7.2, we demonstrate
their powerful tail risk detection and early warning abilities by using real data. The third
tool is the EGB2 implied risk-neutral density, which detects tail risk signals in a static
way. In Section 7.3, we conduct an event study using the data during the 2015 “stock
disaster” in China’s market and demonstrate that the EGB2 implied R.N.D. do provide
timely beforehand warnings showing asymmetry in underlying’s losses.

7.1. The EGB2 Implied Tail Risk Index

The tail risk index proposed in this subsection is analogous to the B−S volatility
but reflects returns’ asymmetry and market views towards tail risks (the newly proposed
measure is termed “implied tail risk index”, or for short, “tail index”). The tail index is
constructed using EGB2OP model parameters. Thus, once the model is calibrated, the
implied tail (risk) index can be obtained.

The EGB2OP implied tail index η (or ηc
t,T for call options and η

p
t,T for put options)

defined as:

ηc
t,T =

pc
t,T − qc

t,T

qc
t,T

(35)

and

η
p
t,T =

pp
t,T − qp

t,T

qp
t,T

(36)

where pc
t,T and qc

t,T are the implied left tail parameter and the implied right tail parameter
based on the calibration results of time t with maturity date T. One can obtain the EGB2OP
implied tail indexes dynamics for both calls and puts by calibrating each day’s EGB2 option
pricing model. Ideally, the EGB2 implied tail indexes ηc

t,T and η
p
t,T should be able to reflect

the investors’ opinions about tail risks by trading options. If the tail index is positive, i.e.,
the implied left tail parameter pt,T is larger than the implied right tail parameter qt,T for
losses, the underlying R.N.D. for losses in the future is skewed to the right, and the tail
probability for big loss is much larger than big gain. When ηt,T is positive and extremely
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large, it is a warning for a bear market or financial crisis. If the tail index is negative, the
implied left tail parameter pt,T is smaller than the implied right tail parameter qt,T , i.e., the
underlying R.N.D. for losses is skewed to the left, and the tail probability for big gain is
larger than a big loss. When ηt,T is negative and close to −1, it is an indicator of a bull
market, and investors are optimistic about the future in terms of “small probability to win
a big deal”. The construction of the tail index and the interpretation of the parameters p
and q also demonstrate the financial interpretability of the EGB2OP model.

Figure 8 exhibits dynamics of the model-based EGB2 implied tail indexes for the
next-month, the near-season, and the next-season. For illustrative purposes, we display
the underlying price dynamic in each panel as well. As can be seen from the figures, the
tail index ηt,T is not far away from 0 except for the time when the markets are at risk. For
example, there is a period when implied tail indexes are very large from August 2015 to
October 2015, which happens to be a “stock disaster” period in China. The tail indexes
were over 3200 for both calls and puts at that time, indicating a financial crisis. Such a
warning was meaningful for tail risk management at that time. For studying the use of the
EGB2 implied tail indexes and the implied R.N.D. for tail risk warning, we undertake an
event study in the next subsection.

(a)

(b)

Figure 8. Cont.
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(c)

Figure 8. The EGB2 implied tail indexes for: (a) the next-month; (b) the near-season; (c) the next-season.

7.2. The EGB2 Implied Value at Risk

The second model-based risk measuring instrument is the EGB2 implied Value at Risk
(EGB2-VaR). Compared to the method for computing conventional Value at Risk (VaR), the
EGB2-VaR is defined as the upper α quantile of R.N.D. of the underlying losses:

VaREGB2
α (X) = sup{x ∈ R : FX(x) < 1− α} (37)

where FX is the Cumulative Distribution Function (C.D.F.) of R.N.D Equation (13) using
calibrated parameters. Theoretically, a higher value of EGB2-VaR means a stronger signal
for tail risk warning.

The implied EGB2-VaR dynamics when α = 0.05 are shown in Figure 9. As shown,
both the implied EGB2-VaR for calls and puts reach substantial values from August 2015
to October 2015, which can be seen as signals of tail risk warning. Similarly, the implied
EGB2-VaR for the near-season and the next-month calls also puts signal crisis warnings in
January 2018 and April 2018. Those results are evidence that EGB2-VaR can be a powerful
tool for tail risk signals detection.

7.3. Event Study and the EGB2 Implied Risk-Neutral Density

In practice, the essential element for an option pricing model to reflect the market
view and predict the future is the risk-neutral density (R.N.D.). If a model does provide a
good mirror of the market’s view, the ex-ante predicting performance is crucial. This paper
assumes that it is the negative logarithmic losses rather than the underlying prices that
follow the EGB2 distribution. This assumption, in turn, yields the EGB2 model-based R.N.D.
for losses, which has great flexibility for capturing tail behavior and fat tail phenomena
of markets. In this subsection, we undertake an event study for a bear market time and
use one-day-ex-ante R.N.D. The B−S R.N.D.s are also provided in this study as a reference
and comparison.

The maximum daily losses for the underlying asset (SSE 50 ETF, trading code: 510050)
over our sample period is on the date of 24 August 2015. To examine the one-day-ex-ante
prediction performance, we display the EGB2OP implied R.N.D. for loss, and the B−S
implied R.N.D. for profit/loss in the last trading date, 21 August 2015. For illustrative
reasons, we choose the next-month as an example because it provides the best sensitivity.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. The EGB2 implied VaR for the: (a) next-month calls; (b) next-month puts; (c) near-season
calls; (d) near-season puts; (e) next-season calls; (f) next-season puts.

The R.N.D. for losses implied by the EGB2OP calls and puts are shown in Figure 10a
and Figure 10b, respectively. As a comparison, the R.N.D. for returns implied by the B−S
model are shown in Figure 10c,d for calls and puts. As shown in Figure 10a,b, one day
before the extreme crisis came for both calls and puts, the EGB2OP implied R.N.D. of
losses were already exhibiting significantly positive skewness and fat tails on the right,
which implies that large losses are possible, but high returns are almost impossible. Such
results could be an effective warning of the negative sentiment in the market about the
ongoing crisis. However, according to Figure 10c,d, the B−S implied R.N.D. for returns
are symmetric for both calls and puts without exhibiting any fat-tail features. Based on the
B−S pricing results, one can hardly infer or obtain the market view about the upcoming
crisis. Those results evidence that the EGB2 R.N.D. is an ideal static measure for detecting
tail risk signals.
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(a) (b)

(c) (d)

Figure 10. Implied R.N.D. for losses one day before crisis: (a) EGB2 Call; (b) EGB2 Put; (c) B−S Call;
(d) B−S Put.

8. Conclusions, Implications, and Future Research Directions
8.1. Conclusions and Implications

This paper proposes a novel option pricing model based on the EGB2 distribution,
which includes the B−S formula as a limit case and can perfectly “replicate” Merton’s
option prices. The generality and interpretability guarantee that the proposed model can
capture price behaviors in both peace market periods and financial crises. The pricing
accuracy is shown by an empirical study using China’s options data.

We note that the reason why the proposed model has the above ideal properties is
because of the powerful structure of the EGB2 distribution per se, rather than the utilization
of many parameters. First of all, the EGB2 distribution includes normal and many other
distributions as limit cases, which makes it possible for the EGB2OP model to perfectly
“replicate” the B−S and Merton’s prices, demonstrating its generality. In addition, due
to the flexibility provided by the two tail parameters, the pricing model can guarantee
its pricing abilities in both asymmetrical (crises) and symmetrical (normal) cases, which
indicates its robustness.

Based on our option pricing model, three tail risk measures (EGB2 tail risk index, EGB2-
VaR, and EGB2 R.N.D.) are proposed, all of which are shown to be powerful indicators of
tail risks. In practice, investors and policymakers can detect potential tail risk signals by
tracing the dynamics of the EGB2-tail risk index and EGB2-VaR. Extremely large values in
EGB2 tail indexes and EGB2-VaR are timely warning signals for upcoming crises.

In practice, the proposed EGB2OP model and three model-based tail risk signals
detecting tools may offer important implications for policymakers, portfolio managers,
and derivatives traders. From a macro level, policymakers can effectively understand the
”market view” of tail risks from the option market to take the lead in using preventive
policies before the financial crisis (such as providing timely capital liquidity and market
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liquidity to the market) macro-level tail risk hedging. At the micro level, portfolio managers
can fully use the three tail risk detection tools for portfolio optimization to avoid huge
losses (liquidation risks) in a rapidly changing market situation. Meanwhile, since the
proposed option pricing model results in better pricing accuracy, it would also be beneficial
for asset management companies to conduct more accurate asset pricing when trading
derivatives and issuing OTC derivatives.

8.2. Further Study Directions

The proposed EGB2OP model and three model-based tail risk signals detecting in-
struments might offer a novel benchmark for detecting tail risk signals from option prices,
based on which many further studies can be conducted in the future.

First, extending the proposed EGB2OP model into a more general form would be
of academic significance. The proposed model is a static model with only a single asset.
To make it more general, one can modify the EGB2OP model into a dynamic version by
modeling four model parameters with time-series approaches or extend the model into a
multi-assets case using multivariate statistical methods.

Second, from an applied perspective, it would be of practical significance to link the
EGB2OP model with risk hedging. In this regard, novel EGB2OP model-based Greeks and
corresponding tail risk hedging strategies can be further investigated.

Last but not least, this study might offer more hints and implications for complicated
option pricing research. In this paper, the proposed model targets the vanilla option, which
is the simplest type of option. But it would be necessary to consider tail risk effects and
leptokurtic features of asset returns when dealing with more complicated option pricing
issues. In the future, EGB2OP model-based pricing algorithms can be further proposed for
pricing exotic products such as barrier options, backdating options, and Asian options.
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Appendix A. Additional Examples for Simulation Studies

Appendix A.1. Approximating the B−S Prices with Different Strike Price and Time to Maturity
Using the EGB2OP Model

We show the results by providing p-p plots, pricing bias plots, and reporting the RMSE
and MAE. The pricing bias for a single given option is given by

PricingBias = CEGB2
t (K)− CBS

t (K),

where CEGB2
t (K) and CBS

t (K) are the EGB2OP prices and the corresponding B−S prices,
respectively.
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Example A1. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity ranges from 20 to 60 days by step size 5, i.e.,
T − t = [20, 25, 30, 35, 40, 45, 50, 55, 60]; risk-free rate r = 0.03; volatility σ = 0.15.

Example A2. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity ranges from 20 to 60 days by step size 5, i.e.,
T − t = [20, 25, 30, 35, 40, 45, 50, 55, 60]; risk-free rate r = 0.03; volatility σ = 0.3.

The resulting p-p plot and pricing bias plot for Example A1 are displayed in the left
panel of Figure A1, i.e., Figure A1a and Figure A1c, respectively. In Figure A1a, almost
all points lie on the line of 45 degrees, meaning that the EGB2OP model does provide
very good approximations for B−S prices. In Figure A1c, the pricing biases are no more
than ±3× 10−4. Moreover, the RMSE and MAE for Example A1 are 1.6770× 10−8 and
1.3464× 10−6, respectively.

The resulting p-p plot and pricing bias plot for Example A2 are displayed in the right
panel of Figure A1, i.e., Figure A1b and Figure A1d, respectively. The RMSE and MAE for
Example A2 are 5.3797× 10−8 and 2.2038× 10−6, respectively. We can easily find that as σ
change from 0.15 to 0.3, the basic conclusions remain the same as those of Example A1. The
results above indicate that the EGB2OP model can provide very good approximation to
B−S prices with different K as well as different T.

(a) (b)

(c) (d)

Figure A1. Resulting plots for Examples A1 and A2 (a) Price to Price plot with different K and T
in Example A1; (b) Price to Price plot with different K and T in Example A2; (c) Pricing bias with
different K and T in Example A1; (d) Pricing bias with different K and T in Example A2.

Appendix A.2. Approximating the EGB2OP Prices with Different Strike Prices and Time to
Maturity Using the B−S Model

Following the last subsection, we simulate option prices from the EGB2OP model with
different strike price K towards different time to maturity T, then use the B−S model to
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approximate these prices. We show our results by providing p-p plots, pricing bias plots,
and reporting the RMSE, MAE for each case.

Example A3. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity ranges from 20 to 60 days by step size 5,
i.e., T − t = [20, 25, 30, 35, 40, 45, 50, 55, 60]; risk-free rate r = 0.03; at,T = 0, bt,T = 0.1,
pt,T = qt,T = 2.

Example A4. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity ranges from 20 to 60 days by step size 5, i.e.,
T − t = [20, 25, 30, 35, 40, 45, 50, 55, 60]; risk-free rate r = 0.03; at,T = 0, bt,T = 0.1, pt,T = 2,
qt,T = 1.

The resulting p-p plots of Examples A3 and A4 are displayed in Figure A2a,b. The
pricing bias plots are displayed in Figure A2c,d. In Figure A2a, where pt,T = qt,T = 2 (i.e.,
the distribution for underlying return is symmetric), not all the points are on the line of
45 degrees, especially for those with high prices. In Figure A2b, where pt,T = 2, qt,T = 1
(i.e., the distribution for underlying losses is skewed to the right, meaning that big losses
or crisis is quite possible), almost all the points deviate from the line of 45 degrees. In
Figure A2c,d, the pricing biases range from −0.01 to 0.01 and −0.04 to 0.01, respectively.
In Example A3, the RMSE and MAE are 6.1191× 10−5 and 1.2232× 10−4, respectively. In
Example A4, the RMSE and MAE are 0.0292 and 0.0020, respectively. The results of RMSE
and MAE are much larger than corresponding results in Examples A1 and A2. Such results
indicate that, the B−S model cannot approximate the EGB2OP prices well, especially for
cases of tail risks or crises.

(a) (b)

(c) (d)

Figure A2. Resulting plots for Examples A3 and A4 (a) Price to Price plot with different K and T
in Example A3; (b) Price to Price plot with different K and T in Example A4; (c) Pricing bias with
different K and T in Example A3; (d) Pricing bias with different K and T in Example A4.
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Appendix A.3. Approximating B−S prices with Different Implied Volatilities Using the
EGB2OP Model

The parameters that reflect investors’ opinions about the future are the scale and
shape parameters of the underlying distribution. In the B−S model, the only undetermined
parameter is the scale parameter or “implied volatility” σ. In the EGB2OP model, the
undetermined parameters are at,T , bt,T , pt,T , and qt,T . As reviewed in Section 2, the gap
between the left tail parameter pt,T and the right tail parameter qt,T can have an essential
impact on the skewness of the underlying return’s distribution. Therefore, it is natural to
ask questions: (1) Can the EGB2OP model approximate B−S prices as “implied volatility”
σ changes? (2) Can the B−S model approximate EGB2OP prices as the tail parameters pt,T
and qt,T change? We try to answer these two questions.

We simulate option prices from the B−S models with different strike prices of K,
towards different time to maturity T and different “implied volatility” σ. Then we use
the EGB2OP model to approximate the prices generated by the B−S model and report the
RMSE, MAE, and p-p plot.

Example A5. Underlying price St = 5; strike prices K range from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturities are chosen by 1,2,3,4 month, i.e., T − t =
[30, 60, 90, 120](days); risk-free rate r = 0.03; volatility ranges from 0.1 to 0.3 by step size 0.05, i.e.,
σ = [0.1, 0.15, 0.2, 0.25, 0.3].

The resulting p-p plot, RMSE, and MAE plots in Example A5 are displayed in the left
panel of Figure A3, i.e., Figure A3a, Figure A3c and Figure A3e, respectively. In Figure A3a
almost all the points lie on the line of 45 degrees, meaning that the EGB2OP model does
provide very good approximations to B−S prices. In Figure A3c,e, the RMSE and MAE are
no more than ±2.5× 10−4 and ±4× 10−3, respectively. As we can see in the figures, both
RMSE and MAE increase at σ and T. The results indicate that as uncertainty increases, the
pricing bias also goes up.

Appendix A.4. Approximating EGB2OP Prices with Different EGB2 Shape Parameters Using the
B−S Model

In this section, we simulate option prices from the EGB2OP model with different
strike price K, towards different “tail parameters” p and q. Then we use the B−S model to
approximate the simulated prices. To characterize the effect of distribution asymmetry on
pricing performance, we consider such a case that the “tail parameters” p and q can change
simultaneously and figure out how RMSE and MAE change with those shape parameters.
In the following example, we set T − t to be 30, and let both tail parameters p and q vary.

Example A6. Underlying price St = 5; strike prices K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; T − t = 30 (days); risk-free rate r = 0.03; at,T = 0, bt,T = 0.1;
both tail parameters p and q range from 1 to 3 by step size 0.1, i.e., pt,T = [1, 1.1, 1.2, · · · , 2.8, 2.9, 3],
qt,T = [1, 1.1, 1.2, · · · , 2.8, 2.9, 3].

The resulting p-p plot, RMSE, and MAE plots in Example A6 are displayed in the
right panel of Figure A3, i.e., Figure A3b, Figure A3d and Figure A3f, respectively. In
Figure A3b, just some points lie on the line of 45 degrees, meaning that the B−S model
cannot approximate EGB2OP prices well. In Figure A3d,f, the RMSE and MAE are around
0.2 and 0.1, respectively. The minimum of RMSE and MAE are obtained when p = q.
This result means that the B−S model cannot generate EGB2OP prices for underlying
asymmetric distribution. The more asymmetric the distribution, the larger the pricing error
of the B−S model can be.
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(a) (b)

(c) (d)

(e) (f)

Figure A3. Resulting plots for Examples A5 and A6. (a) Price to Price plot with different K, T, and σ

in Example A5; (b) Price to Price plot with different K, pt,T , and qt,T in Example A6; (c) The RMSE
for Example A5; (d) The RMSE for Example A5; (e) The MAE for Example A5; (f) The MAE for
Example A6.

Appendix A.5. Examples for Approximating the EGB2OP Prices with Different Strike Prices, Time
to Maturity, and Only One Shape Parameter Using the B−S Model

In this section, we simulate option prices from the EGB2OP model with different strike
prices K towards different time to maturity T, as well as only one tail parameter p or q.

Example A7. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity is chosen to be 1,2,3,4 month, i.e., T − t =
[30, 60, 90, 120] (days); risk-free rate r = 0.03; at,T = 0, bt,T = 0.1; tail parameter qt,T ranges from
1 to 3 by step size 0.1, respectively, i.e., q = [1, 1.1, 1.2, · · · , 2.8, 2.9, 3], and the left tail parameter
pt,T = 2.
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Example A8. Underlying price St = 5; strike price K ranges from 4 to 6 by step size 0.1, i.e.,
K = [4, 4.1, 4.2, · · · , 5.8, 5.9, 6]; time to maturity is chosen to be 1,2,3,4 month, i.e., T − t =
[30, 60, 90, 120](days); risk-free rate r = 0.03; at,T = 0, bt,T = 0.1; right tail parameter qt,T = 2,
left tail parameter pt,T range from 1 to 3 by step size 0.1, i.e., pt,T = [1, 1.1, 1.2, · · · , 2.8, 2.9, 3].

Figure A4 displays the resulting p-p plot, RMSE and MAE plots for Examples A7 and A8.
In Figure A4a,b, there are very few points lie on the line of 45 degrees, meaning that B−S
model provides a poor approximation to EGB2OP prices. In Figure A4c,d, the RMSEs of
both examples range from about 0.01 to about 0.16. In Figure A4e,f, the MAEs of both
examples range from about 0.01 to about 0.09. Both RMSEs and MAEs are larger than those
in Example A8. As we can see in the pictures, both RMSEs and MAEs reach their lowest
points when p = q. The results indicate that the more asymmetric the distribution, the
larger the pricing error of the B−S model.

(a) (b)

(c) (d)

Figure A4. Cont.
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(e) (f)

Figure A4. Resulting plots for Examples A7 and A8. (a) Price to Price plot with different K, T, and
qt,T in Example A7; (b) Price to Price plot with different K, T, and pt,T in Example A8; (c) The RMSE
for Example A7; (d) The RMSE for Example A8; (e) The MAE for Example A7; (f) The MAE for
Example A8.
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