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Abstract: This paper investigates some duality results of a mixed type for a class of multiple objective
fractional optimal control problems. More precisely, by considering the Wolfe- and Mond–Weir-type
dualities, we formulate a robust mixed-type dual problem and, under suitable convexity assumptions
of the involved functionals, we establish some equivalence results between the solution sets of the
considered models. Essentially, we investigate robust weak, robust strong, and robust strict converse-
type duality results. To the best of the authors’ knowledge, robust duality results for such problems
are new in the specialized literature.
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1. Introduction

In the research paper [1], Hanson applied the duality theory from mathematical
programming to a new class of functions named invex functions. In this regard, Craven
and Glover [2] established that invex functions are characterized as functions where the
stationary/critical points become global minima. As a generalization of the work of Mond
and Hanson [3], Mond and Smart [4] formulated some sufficiency and duality results in
scalar variational control problems. Also, duality theorems have been stated for linear
fractional variational problems by Aggarwal et al. [5]. Mukherjee and Rao [6] presented
mixed dual problems associated with multiobjective variational problems and established
dualities under ρ-invexity hypotheses. Historically, multiobjective variational problems
governed by equality and inequality restrictions have been of great importance and interest
(including conditions of optimality, dual problems, and various areas of applicability), and
we have only failed to consider the following researchers: Zhian and Qingkai [7], Zalmai [8],
Mititelu [9], Hachimi and Aghezzaf [10], Chen [11], Kim and Kim [12], and Nahak and
Nanda [13]. Gulati et al. [14] studied optimality conditions and the associated duality
for a class of multiobjective control problems. Arana-Jiménez et al. [15] investigated a
necessary and sufficient condition for duality in some multiobjective variational problems.
Khazafi et al. [16] discussed sufficiency and duality for multiobjective control problems
under generalized (B, ρ)-type I functions. Zhang et al. [17] analyzed the sufficiency and
duality for multiobjective variational control problems under G-invexity assumptions.

Recently, Das et al. [18] provided sufficient KKT-type second-order optimality condi-
tions for a class of set-valued fractional minimax problems. Under contingent epi-derivative
and generalized second-order cone convexity hypotheses, the authors formulated some du-
als for the considered problem. Khan and Al-Solamy [19] discussed, for a non-differentiable
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minimax fractional programming problem, the optimality condition for an optimal solution
and a dual model. Mititelu and Treanţă [20] formulated some efficiency conditions in vector
control problems generated by multiple integrals. Sharma [21] presented a higher-order du-
ality for variational control problems. Oliveira and Silva [22] studied sufficient optimality
conditions for some multiobjective control problems. In the last decade, Treanţă [23] and
his collaborators investigated some classes of multi-dimensional multiobjective variational
control problems. In this direction, Treanţă and Mititelu [24] formulated duality results in
multi-dimensional vector fractional control problems by considering (ρ, b)-quasiinvexity
assumptions.

Most optimization problems that occur in practice have several objective functions
that must be optimized simultaneously. This type of problem, of considerable interest,
includes various branches of mathematical sciences, design engineering, and game theory.
Because of the increasing complexity of the environment, the initial data often suffer from
inaccuracy. For example, in the modeling of many processes in industry and economy
in order to make decisions, it is not always possible to have complete information about
the parameters and variables involved. Therefore, an adequate uncertainty framework is
necessary to formulate the model, and new methods have to be adapted or developed to
provide optimal or efficient solutions in a certain sense. In order to tackle the uncertainty in
an optimization problem, robust and interval-valued optimization represents some growing
branches of applied mathematics and may provide an alternative choice for considering
the uncertainty. Over time, several researchers and mathematicians have been interested
to obtain many solution procedures in interval analysis and robust control. In order to
formulate necessary and sufficient optimality conditions and duality theorems for different
types of robust and interval-valued variational problems, various approaches have been
proposed.

In this paper, under the motivation of the above-mentioned research papers and by
considering suitable convexity hypotheses for the involved integral-like functionals, a
mixed-type dual model is developed for the multiple objective fractional optimal control
problem determined by multiple integral functionals defined in Ritu et al. [25]. More
specifically, this paper is essentially a natural continuation of the studies stated in Mititelu
and Treanţă [20] and Ritu et al. [25]. In this regard, by using the robust necessary efficiency
conditions established in Ritu et al. [25], we investigate robust weak, robust strong, and
robust strict converse-type duality results. The limitations of the existing works and the
main credits of this paper are the following: (i) the presence of mixed constraints involving
partial derivatives, (ii) the presence of the uncertainty data both in the cost functionals
but also in the constraint functionals, and (iii) the combination of parametric and robust
approaches to study the considered class of problems.

2. Preliminaries

Let us start with the standard Euclidean spaces Rp,Rq,Rr, and Rn, and a compact
set in Rp, denoted by S. Define the multi-time variable t = (tα), α = 1, p, such that
t ∈ S. Also, consider the space (denoted by A) of state functions with continuous first-
order partial derivatives as λ = (λi) : S → Rq and consider the continuous control
functions in the space B as π = (π j) : S → Rr. Additionally, we use the abbreviations:

Υ := (t, λ(t), π(t)), dt := dt1 · · · dtp, λα(t) :=
∂λ

∂tα
(t). Next, we formulate the rules that are

considered for any two points a, b ∈ Rn:

(i) a < b ⇔ as < bs , ∀s = 1, n ,
(ii) a = b ⇔ as = bs , ∀s = 1, n ,
(iii) a 5 b ⇔ as ≤ bs , ∀s = 1, n ,
(iv) a ≤ b ⇔ as ≤ bs , ∀s = 1, n and as < bs for some s .
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The robust multiple objective fractional optimal control problem is formulated (see,
also, Mititelu and Treanţă [20], Treanţă and Mititelu [24], and Ritu et al. [25]) as:

(P ) min
(λ,π)


∫

S
h(Υ, ς)dt∫

S
z(Υ, γ)dt

:=


∫

S
h1(Υ, ς1)dt∫

S
z1(Υ, γ1)dt

, . . . ,

∫
S

hp
(
Υ, ςp

)
dt∫

S
zp
(
Υ, γp

)
dt




subject to

f (Υ, λα(t), σ) 5 0,

g(Υ, λα(t), δ) := λα(t)−Θα(Υ, δ) = 0, α = 1, p

t ∈ S, λ(t0) = λ0, λ(t1) = λ1,

where
hε : S× A× B× Gε → R, ε = 1, p, h = (h1, . . . , hp),

zε : S× A× B× Qε → R, ε = 1, p, z = (z1, . . . , zp),

fl : J1
(

S,Rq
)
× B× Tl → R, l = 1, m, f = ( f1, . . . , fm),

gs : J1
(

S,Rq
)
× B×Ms → R, s = 1, n, g = (g1, . . . , gn),

are C1-class functionals (almost everywhere); the jet bundle of first-order associated

with S and Rq is stated as J1
(

S,Rq
)

; also, we assume
∫

S
zε(Υ, γε)dt > 0, ε = 1, p, and

ς = (ςε), γ = (γε), σ = (σl), and δ = (δs) represent the uncertainty parameters of the com-
pact convex sets G = (Gε) ⊂ Rp, Q = (Qε) ⊂ Rp, T = (Tl) ⊂ Rm, and M = (Ms) ⊂ Rn.

The robust counterpart for (P ) is introduced as follows:

(RP ) min
(λ,π)

∫
S

max
ς∈G

h(Υ, ς)dt∫
S

min
γ∈Q

z(Υ, γ)dt

:= min
(λ,π)


∫

S
max
ς1∈G1

h1(Υ, ς1)dt∫
S

min
γ1∈Q1

z1(Υ, γ1)dt
, . . . ,

∫
S

max
ςp∈Gp

hp
(
Υ, ςp

)
dt∫

S
min

γp∈Qp
zp
(
Υ, γp

)
dt


subject to

f (Υ, λα(t), σ) 5 0, t ∈ S, σ ∈ T

g(Υ, λα(t), δ) = 0, t ∈ S, δ ∈ M

λ(t0) = λ0, λ(t1) = λ1.

The feasible solution set of (RP ), known as the robust feasible solution set for (P ), is
denoted as follows:

S = {(λ, π) ∈ A× B : f (Υ, λα(t), σ) 5 0,

g(Υ, λα(t), δ) = 0, λ(t0) = λ0, λ(t1) = λ1, t ∈ S, σ ∈ T , δ ∈ M }.

Next, we consider the following parametric scalar optimal control problem corre-
sponding to (P ) as follows:

(Pw ) min
(λ,π)

{ ∫
S

hw(Υ, ςw)dt−Y0
w

∫
S

zw(Υ, γw)dt

}
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subject to

f (Υ, λα(t), σ) 5 0,

g(Υ, λα(t), δ) = 0,

t ∈ S, λ(t0) = λ0, λ(t1) = λ1,∫
S

[
hε(Υ, ςε)−Q0

εzε(Υ, γε)
]
dt ≤ 0, ε = 1, p, ε 6= w.

The robust counterpart associated to (Pw ) is given by:

(RPw ) min
(λ,π)

{ ∫
S

max
ςw∈Gw

hw(Υ, ςw)dt−Q0
w

∫
S

min
γw∈Qw

zw(Υ, γw)dt
}

subject to

(λ, π) ∈ S ,∫
S

[
hε(Υ, ςε)−Q0

εzε(Υ, γε)
]
dt ≤ 0, ε = 1, p, ε 6= w.

Definition 1. A feasible pair (λ̄, π̄) is named as a robust weak optimal solution for (Pw ) if:∫
S

max
ςw∈Gw

hw(Ῡ, ςw)dt−Q0
w

∫
S

min
γw∈Qw

zw(Ῡ, γw)dt

<
∫

S
max

ςw∈Gw
hw(Υ, γw)dt−Q0

w

∫
S

min
γw∈Qw

zw(Υ, γw)dt,

for all feasible pairs (λ, π).

Definition 2. A feasible pair (λ̄, π̄) is named a robust optimal solution in (Pw ) if∫
S

max
ςw∈Gw

hw(Ῡ, ςw)dt−Q0
w

∫
S

min
γw∈Qw

zw(Ῡ, γw)dt

≤
∫

S
max

ςw∈Gw
hw(Υ, γw)dt−Q0

w

∫
S

min
γw∈Qw

zw(Υ, γw)dt,

for all feasible pairs (λ, π).

Definition 3. A vector functional
∫

S
h(Υ, λα(t), ς)dt is said to be convex at (λ̄, π̄) ∈ A× B if

the inequality∫
S

h(Υ, ς)dt−
∫

S
h(Ῡ, ς)dt =

∫
S
(λ− λ̄)hλ(Ῡ, ς)dt +

∫
S
(π − π̄)hπ(Ῡ, ς)dt

+
∫

S
(λα − λ̄α)hλα

(Ῡ, ς)dt

holds for all (λ, π) ∈ A× B.

Definition 4. A feasible pair (λ̄, π̄) ∈ S is named a robust weak efficient solution for (P ) if there
does not exist (λ, π) ∈ S fulfilling∫

S
max
ς∈G

h(Υ, ς)dt∫
S

min
γ∈Q

z(Υ, γ)dt
<

∫
S

max
ς∈G

h(Ῡ, ς)dt∫
S

min
γ∈Q

z(Ῡ, γ)dt
.
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Definition 5. A feasible pair (λ̄, π̄) ∈ S is named a robust efficient solution for (P ) if (λ, π) ∈ S
does not exist satisfying ∫

S
max
ς∈G

h(Υ, ς)dt∫
S

min
γ∈Q

z(Υ, γ)dt
≤

∫
S

max
ς∈G

h(Ῡ, ς)dt∫
S

min
γ∈Q

z(Ῡ, γ)dt
.

Theorem 1 ([25] Robust necessary efficiency conditions for (P )). Let (λ̄, π̄) ∈ S be a robust
weak efficient solution to the considered robust multiple objective fractional optimal control problem
(P ) and maxςw∈Gw hw(Υ, ςw) = hw(Υ, ς̄w), minγw∈Qw zw(Υ, γw) = zw(Υ, γ̄w). Then, the
scalars η̄ = (η̄w) ∈ Rp, the piecewise differentiable functions ρ̄ = (ρ̄l(t)) ∈ Rm

+, θ̄ = (θ̄s(t)) ∈
Rn, and the parameters of uncertainty σ̄ ∈ T , δ̄ ∈ M exist, fulfilling

η̄T
[

hλ(Ῡ, ς̄)−Q0zλ(Ῡ, γ̄)
]
+ ρ̄T fλ(Ῡ, λ̄α(t), σ̄) + θ̄T gλ(Ῡ, λ̄α(t), δ̄)

−Dα

[
ρ̄T fλα

(Ῡ, λ̄α(t), σ̄) + θ̄T gλα
(Ῡ, λ̄α(t), δ̄)

]
= 0,

η̄T
[

hπ(Ῡ, ς̄)−Q0zπ(Ῡ, γ̄)
]
+ ρ̄T fπ(Ῡ, λ̄α(t), σ̄) + θ̄T gπ(Ῡ, λ̄α(t), δ̄) = 0,

ρ̄T f (Ῡ, λ̄α(t), σ̄) = 0, ρ̄ = 0,

η̄ ≥ 0,

for all t ∈ S, excepting the discontinuity points.

3. Main Results: Mixed Robust Duality

In this section, by using the robust necessary efficiency conditions established in
Ritu et al. [25], we investigate robust weak, robust strong, and robust strict converse-type
duality results. More precisely, by considering the Wolfe- and Mond–Weir-type dualities,
we formulate a robust mixed-type dual problem, and, under suitable convexity assumptions
of the involved functionals, we establish some equivalence results between the solution
sets of the considered models. The methodology used is based on several techniques from
the calculus of variations, the Lagrange-Hamilton theory, and the distribution and control
theory, which are appropriate in the study of the considered robust variational control
problems. To the best of the authors’ knowledge, the robust duality results for such types
of problems are new in the specialized literature.

Further, by denoting Π := (t, ι(t), κ(t)), we associate a Wolfe-type robust dual model
for (P ), as follows:

(WD − P ) max
(ι(·),κ(·))

∫
S
{
[

h(Π, ς)−Q0z(Π, γ)
]
+ ρT f (Π, ια, σ)e

+θT g(Π, ια, δ)e}dt

subject to

ηT
[

hλ(Π, ς)−Q0zλ(Π, γ)
]
+ ρT fλ(Π, ια, σ) + θT gλ(Π, ια, δ)

−Dα

[
ρT fλα

(Π, ια, σ) + θT gλα
(Π, ια, δ)

]
= 0, (1)

ηT
[

hπ(Π, ς)−Q0zπ(Π, γ)
]
+ ρT fπ(Π, ια, σ) + θT gπ(Π, ια, δ) = 0, (2)

ι(t0) = λ0, ι(t1) = λ1, (3)

η ≥ 0, eTη = 1, e = (1, ....1) ∈ Rp. (4)
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The corresponding robust counterpart for (WD − P ) is formulated as:

(RWD − P ) max
(ι(.),κ(.))

∫
S
{
[

h(Π, ς̄)−Q0z(Π, γ̄)
]
+ ρT f (Π, ια, σ̄)e

+θT g(Π, ια, δ̄)e}dt

subject to

ηT
[

hλ(Π, ς̄)−Q0zλ(Π, γ̄)
]
+ ρT fλ(Π, ια, σ̄) + θT gλ(Π, ια, δ̄)

−Dα

[
ρT fλα

(Π, ια, σ̄) + θT gλα
(Π, ια, δ̄)

]
= 0,

ηT
[

hπ(Π, ς̄)−Q0zπ(Π, γ̄)
]
+ ρT fπ(Π, ια, σ̄) + θT gπ(Π, ια, δ̄) = 0,

ι(t0) = λ0, ι(t1) = λ1,

η ≥ 0, eTη = 1, e = (1, ....1) ∈ Rp,

for ς ∈ G , γ ∈ Q , σ ∈ T , δ ∈ M .
We denote Dw = {(ι, κ, η, ρ, θ, ς, γ, σ, δ) satisfying conditions (1)–(4)} to be the feasible

solution set to (RWD − P ), and we name it as the robust feasible solution set to (WD − P ).

Definition 6. A feasible point (ῑ, κ̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) ∈ Dw is considered to be the robust weak
efficient solution to (WD − P ), if there does not exist (ι, κ, η, ρ, θ, ς, γ, σ, δ) ∈ Dw satisfying∫

S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]
+ ρT f (Π̄, ῑα, σ̄)e + θT g(Π̄, ῑα, δ̄)e}dt

<
∫

S
{
[

h(Π, ς̄)−Q0z(Π, γ̄)
]
+ ρT f (Π, ια, σ̄)e + θT g(Π, ια, δ̄)e}dt,

where Π̄ := (t, ῑ(t), κ̄(t)).

The Mond–Weir robust dual model (see Mond and Weir [26]) associated with (P ),
considering data uncertainty in both the objective and constraint functionals, is given as
follows:

(MWD − P ) max
(ι(·),κ(·))

∫
S

[
h(Π, ς)−Q0z(Π, γ)

]
dt

subject to

ηT
[

hλ(Π, ς)−Q0zλ(Π, γ)
]
+ ρT fλ(Π, ια, σ) + θT gλ(Π, ια, δ)

−Dα

[
ρT fλα

(Π, ια, σ) + θT gλα
(Π, ια, δ)

]
= 0, (5)

ηT
[

hπ(Π, ς)−Q0zπ(Π, γ)
]
+ ρT fπ(Π, ια, σ) + θT gπ(Π, ια, δ) = 0, (6)

ρT f (Π, ια, σ) = 0, (7)

g(Π, ια, δ) = 0, (8)

ι(t0) = λ0, ι(t1) = λ1, (9)

η ≥ 0, eTη = 1, e = (1, ....1) ∈ Rp. (10)

The corresponding robust counterpart for (MWD − P ) is stated as:

(RMWD − P ) max
(ι(.),κ(.))

∫
S

[
h(Π, ς̄)−Q0z(Π, γ̄)

]
dt

subject to
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ηT
[

hλ(Π, ς̄)−Q0zλ(Π, γ̄)
]
+ ρT fλ(Π, ια, σ̄) + θT gλ(Π, ια, δ̄)

−Dα

[
ρT fλα

(Π, ια, σ̄) + θT gλα
(Π, ια, δ̄)

]
= 0,

ηT
[

hπ(Π, ς̄)−Q0zπ(Π, γ̄)
]
+ ρT fπ(Π, ια, σ̄) + θT gπ(Π, ια, δ̄) = 0,

ρT f (Π, ια, σ) = 0,

g(Π, ια, δ) = 0,

ι(t0) = λ0, ι(t1) = λ1,

η ≥ 0, eTη = 1, e = (1, ....1) ∈ Rp,

for ς ∈ G , γ ∈ Q , σ ∈ T , δ ∈ M .
We denote Dmw = {(ι, κ, η, ρ, θ, ς, γ, σ, δ) fulfilling (5)–(10)} to be the feasible solution

set to (RMWD − P ), and we call it the robust feasible solution set to (MWD − P ).

Definition 7. A feasible point (ῑ, κ̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) ∈ Dmw is named a robust weak efficient
solution to (MWD − P ) if (ι, κ, η, ρ, θ, ς, γ, σ, δ) ∈ Dmw does not exist satisfying∫

S

[
h(Π̄, ς̄)−Q0z(Π̄, γ̄)

]
dt <

∫
S

[
h(Π, ς̄)−Q0z(Π, γ̄)

]
dt.

Next, we associate a mixed robust dual model for (P ), as follows:

(mD − P ) max
(ι(·),κ(·))

∫
S
{
[

h(Π, ς)−Q0z(Π, γ)
]
+ ρT f (Π, ια, σ)e

+θT g(Π, ια, δ)e}dt

subject to

ηT
[

hλ(Π, ς)−Q0zλ(Π, γ)
]
+ ρT fλ(Π, ια, σ) + θT gλ(Π, ια, δ)

−Dα

[
ρT fλα

(Π, ια, σ) + θT gλα
(Π, ια, δ)

]
= 0, (11)

ηT
[

hπ(Π, ς)−Q0zπ(Π, γ)
]
+ ρT fπ(Π, ια, σ) + θT gπ(Π, ια, δ) = 0, (12)

ι(t0) = λ0, ι(t1) = λ1, (13)

η ≥ 0, eTη = 1, e = (1, ....1) ∈ Rp, (14)

ρT f (Π, ια, σ) = 0, (15)

g(Π, ια, δ) = 0. (16)

The corresponding robust counterpart for (mD − P ) is stated as:

(RmD − P ) max
(ι(.),κ(.))

∫
S
{
[

h(Π, ς̄)−Q0z(Π, γ̄)
]
+ ρT f (Π, ια, σ̄)e

+θT g(Π, ια, δ̄)e}dt

subject to

ηT
[

hλ(Π, ς̄)−Q0zλ(Π, γ̄)
]
+ ρT fλ(Π, ια, σ̄) + θT gλ(Π, ια, δ̄)

−Dα

[
ρT fλα

(Π, ια, σ̄) + θT gλα
(Π, ια, δ̄)

]
= 0,

ηT
[

hπ(Π, ς̄)−Q0zπ(Π, γ̄)
]
+ ρT fπ(Π, ια, σ̄) + θT gπ(Π, ια, δ̄) = 0,
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ι(t0) = λ0, ι(t1) = λ1,

η ≥ 0, eTη = 1, e = (1, ....1) ∈ Rp,

ρT f (Π, ια, σ) = 0,

g(Π, ια, δ) = 0,

for ς ∈ G , γ ∈ Q , σ ∈ T , δ ∈ M .
We denote Dm = {(ι, κ, η, ρ, θ, ς, γ, σ, δ) satisfying conditions (11)–(16)} to be the feasi-

ble solution set to (RmD − P ), and we call it as the robust feasible solution set to (mD − P ).

Definition 8. A feasible point (ῑ, κ̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) ∈ Dm is named as a robust weak efficient
solution to (mD − P ), if there does not exist (ι, κ, η, ρ, θ, ς, γ, σ, δ) ∈ Dm fulfilling∫

S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]
+ ρT f (Π̄, ῑα, σ̄)e + θT g(Π̄, ῑα, δ̄)e}dt

<
∫

S
{
[

h(Π, ς̄)−Q0z(Π, γ̄)
]
+ ρT f (Π, ια, σ̄)e + θT g(Π, ια, δ̄)e}dt.

In the following, we establish a robust weak-type duality theorem for (P ).

Theorem 2 (Robust weak duality theorem). Let (λ̄, π̄) and (ῑ, κ̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) be the robust
feasible solutions of (P ) and (mD − P ), respectively. Assume that maxς∈G h(Ῡ, ς) = h(Ῡ, ς̄)

and minγ∈Q z(Ῡ, γ) = z(Ῡ, γ̄). Further, if
∫

S
η̄T
[

h(., ς̄)−Q0z(., γ̄)
]
dt,

∫
S

ρ̄T f (., σ̄)dt and∫
S

θ̄T g(., δ̄)dt are convex at (ῑ, κ̄), then the following inequality cannot hold:

∫
S

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
dt

<
∫

S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]
+ ρ̄T f (Π̄, ῑα, σ̄)e + θ̄T g(Π̄, ῑα, δ̄)e}dt.

Proof. Assume on the contrary that∫
S
{max

ς∈G
h(Ῡ, ς)−Q0 min

γ∈Q
z(Ῡ, γ)}dt <

∫
S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]

+ρ̄T f (Π̄, ῑα, σ̄)e + θ̄T g(Π̄, ῑα, δ̄)e}dt

is fulfilled. Since maxς∈G h(Ῡ, ς)−Q0 minγ∈Q z(Ῡ, γ) = h(Ῡ, ς̄)−Q0z(Ῡ, γ̄), we obtain∫
S

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
dt <

∫
S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]

+ρ̄T f (Π̄, ῑα, σ̄)e + θ̄T g(Π̄, ῑα, δ̄)e}dt

is satisfied. As (λ̄, π̄) is the robust feasible solution to the problem (P ), it implies∫
S
{
[

h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)
]
+ ρ̄T f (Ῡ, λ̄α, σ̄)e + θ̄T g(Ῡ, λ̄α, δ̄)e}dt

<
∫

S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]
+ ρ̄T f (Π̄, ῑα, σ̄)e + θ̄T g(Π̄, ῑα, δ̄)e}dt.

By considering that η̄ ≥ 0 and η̄Te = 1, therefore, the above inequality can be written
as ∫

S
{η̄T

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
+ ρ̄T f (Ῡ, λ̄α, σ̄) + θ̄T g(Ῡ, λ̄α, δ̄)}dt
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<
∫

S
{η̄T

[
h(Π̄, ς̄)−Q0z(Π̄, γ̄)

]
+ ρ̄T f (Π̄, ῑα, σ̄) + θ̄T g(Π̄, ῑα, δ̄)}dt. (17)

Since
∫

S
η̄T
[

h(., ς̄)−Q0z(., γ̄)
]
dt,
∫

S
ρ̄T f (., σ̄)dt and

∫
S

θ̄T g(., δ̄)dt are convex at (ῑ, κ̄),

we have ∫
S
{η̄T

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
− η̄T

[
h(Π̄, ς̄)−Q0z(Π̄, γ̄)

]
}dt =

∫
S
(λ̄− ῑ)η̄T

[
∂h
∂λ

(Π̄, ς̄)−Q0 ∂z
∂λ

(Π̄, γ̄)

]
dt

+
∫

S
(π̄ − κ̄)η̄T

[
∂h
∂π

(Π̄, ς̄)−Q0 ∂z
∂π

(Π̄, γ̄)

]
dt, (18)

∫
S
{ρ̄T f (Ῡ, λ̄α, σ̄)− ρ̄T f (Π̄, ῑα, σ̄)}dt =

∫
S
(λ̄− ῑ)ρ̄T fλ(Π̄, ῑα, σ̄)dt

+
∫

S
(λ̄α − ῑα)ρ̄

T fλα
(Π̄, ῑα, σ̄)dt +

∫
S
(π̄ − κ̄)ρ̄T fπ(Π̄, ῑα, σ̄)dt (19)

and ∫
S
{θ̄T g(Ῡ, λ̄α, δ̄)− ρ̄T g(Π̄, ῑα, δ̄)}dt =

∫
S
(λ̄− ῑ)θ̄T gλ(Π̄, ῑα, δ̄)dt

+
∫

S
(λ̄α − ῑα)θ̄

T gλα
(Π̄, ῑα, δ̄)dt +

∫
S
(π̄ − κ̄)θ̄T gπ(Π̄, ῑα, δ̄)dt. (20)

Adding the inequalities (18)–(20) and using the dual constraints for the dual feasible
solution (ῑ, κ̄, η̄, ρ̄, θ̄, ς̄, σ̄, δ̄), we obtain∫

S
{η̄T

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
+ ρ̄T f (Ῡ, λ̄α, σ̄) + θ̄T g(Ῡ, λ̄α, δ̄)}dt

=
∫

S
{η̄T

[
h(Π̄, ς̄)−Q0z(Π̄, γ̄)

]
+ ρ̄T f (Π̄, ῑα, σ̄) + θ̄T g(Π̄, ῑα, δ̄)}dt,

which is a contradiction to the inequality (17). This completes the proof.

In the following, we establish a robust strong-type duality theorem for (P ).

Theorem 3 (Robust strong duality theorem). Let (λ̄, π̄) be a robust weak efficient solution
to (P ). Consider that maxς∈G{h(Ῡ, ς)− Q0 minγ∈Q z(Ῡ, γ)} = h(Ῡ, ς̄)− Q0z(Ῡ, γ̄) and the
constraint qualification conditions hold for (P ). Then, η̄ ∈ Rp, ρ̄ = (ρ̄l(t)) ∈ Rm

+, θ̄ = (θ̄b(t)) ∈
Rn exist as the piecewise smooth functions, and σ̄ ∈ T , δ̄ ∈ M , ς̄ ∈ G γ̄ ∈ Q as the parameters of
uncertainty such that (λ̄, π̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) is a robust feasible solution to (mD − P ). Moreover,
if Theorem 3.1 holds, then (λ̄, π̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) is a robust weak efficient solution to (mD − P ).

Proof. As (λ̄, π̄) is a robust weak efficient solution to (P ), therefore, by Theorem 1, η̄ ∈ Rp,
ρ̄ = (ρ̄l(t)) ∈ Rm

+, θ̄ = (θ̄b(t)) ∈ Rn exist as the piecewise differentiable functions and
σ̄ ∈ T , δ̄ ∈ M , ς̄ ∈ G γ̄ ∈ Q as the parameters of uncertainty, such that the conditions
(1)–(4) hold at (λ̄, π̄). Hence, (λ̄, π̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) is a robust feasible solution to (mD − P )
and the corresponding objective function values are equal. Suppose conditions (1)–(4)
hold at (λ̄, π̄) and (λ̄, π̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) is not a weak efficient solution to (mD − P ). Thus,
(ι, κ, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) exists satisfying∫

S
{
[

h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)
]
+ ρT f (Ῡ, λ̄α, σ̄)e + θT g(Ῡ, λ̄α, δ̄)e}dt

<
∫

S
{
[

h(Π, ς̄)−Q0z(Π, γ̄)
]
+ ρT f (Π, ια, σ̄)e + θT g(Π, ια, δ̄)e}dt.

From Theorem 1, we obtain∫
S

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
dt
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<
∫

S

[
h(Π, ς̄)−Q0z(Π, γ̄)

]
+ ρT f (Π, ια, σ̄)e + θT g(Π, ια, δ̄)e}dt.

Since maxς∈G{h(Ῡ, ς)−Q0 minγ∈Q z(Ῡ, γ)} = h(Ῡ, ς̄)−Q0z(Ῡ, γ̄), we have∫
S
{max

ς∈G
h(Ῡ, ς)−Q0 min

γ∈Q
z(Ῡ, γ)}dt <

∫
S
{
[

h(Π, ς̄)−Q0z(Π, γ̄)
]
+ ρT f (Π, ια, σ̄)e + θT g(Π, ια, δ̄)e}dt,

which is a contradiction to Theorem 3.1. Hence, (λ̄, π̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) is a robust weak
efficient solution in (mD − P ).

Next, we establish a robust strict converse-type duality result for (P ).

Theorem 4 (Robust strict converse duality theorem). Let (ῑ, κ̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) be a robust
feasible solution in (mD − P ). Consider that maxς∈G{h(Ῡ, ς)−Q0 minγ∈Q z(Ῡ, γ)} = h(Ῡ, ς̄)−
Q0z(Ῡ, γ̄) and

∫
S

η̄T
[

h(., ς̄)−Q0z(., γ̄)
]
dt,
∫

S
ρ̄T f (., σ̄)dt and

∫
S

θ̄T g(., δ̄)dt are strictly convex

at (ῑ, κ̄). If (λ̄, π̄) ∈ S such that ∫
S

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
dt

=
∫

S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]
+ ρ̄T f (Π̄, ῑα, σ̄)e + θ̄T g(Π̄, ῑα, δ̄)e}dt,

then, (λ̄, π̄) is a robust weak efficient solution in (P ).

Proof. As (λ̄, π̄, η̄, ρ̄, θ̄, ς̄, γ̄, σ̄, δ̄) is a robust feasible solution in (mD − P ), on multiplying
the inequality (11) and (12) by (λ̂− ῑ) and (π̂ − κ̄), respectively, and then integrating, we
obtain ∫

S
(λ̂− ῑ){η̄T

[
∂h
∂λ

(Π̄, ς̄)−Q0 ∂z
∂λ

(Π̄, γ̄)

]
+ ρ̄T fλ(Π̄, ῑα(t), σ̄)

+θ̄T gλ(Π̄, ῑα(t), δ̄)− Dα

[
ρ̄T fλα

(Π̄, ῑα(t), σ̄) + θ̄T gλα
(Π̄, ῑα(t), δ̄)

]
}dt

+
∫

S
(π̂ − κ̄){η̄T

[
∂h
∂π

(Π̄, ς̄)−Q0 ∂z
∂π

(Π̄, γ̄)

]
+ ρ̄T fπ(Π̄, ῑα(t), σ̄)

+θ̄T gπ(Π̄, ῑα(t), δ̄)}dt = 0. (21)

Now, we assume on the contrary that (λ̄, π̄) is not a robust weak efficient solution in
(P ). Consequently, (λ̂, π̂) ∈ S exists such that∫

S
{max

ς∈G
h
(
Υ̂, ς

)
−Q0 min

γ∈Q
z
(
Υ̂, γ

)
}dt

<
∫

S
{max

ς∈G
h(Ῡ, ς)−Q0 min

γ∈Q
z(Ῡ, γ)}dt,

or, equivalently, ∫
S

[
h
(
Υ̂, ς̄

)
−Q0z

(
Υ̂, γ̄

)]
dt <

∫
S

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
dt.

By considering the hypothesis,∫
S

[
h(Ῡ, ς̄)−Q0z(Ῡ, γ̄)

]
dt

=
∫

S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]
+ ρ̄T f (Π̄, ῑα, σ̄)e + θ̄T g(Π̄, ῑα, δ̄)e}dt,
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therefore, the above inequality yields∫
S

[
h
(
Υ̂, ς̄

)
−Q0z

(
Υ̂, γ̄

)]
dt <

∫
S
{
[

h(Π̄, ς̄)−Q0z(Π̄, γ̄)
]
+

ρ̄T f (Π̄, ῑα, σ̄)e + θ̄T g(Π̄, ῑα, δ̄)e}dt.

Since η̄ > 0, therefore∫
S

η̄T
[

h
(
Υ̂, ς̄

)
−Q0z

(
Υ̂, γ̄

)]
dt <

∫
S
{η̄T

[
h(Π̄, ς̄)−Q0z(Π̄, γ̄)

]
+

ρ̄T f (Π̄, ῑα, σ̄) + θ̄T g(Π̄, ῑα, δ̄)}dt. (22)

By using the strict convexity property of
∫

S
η̄T
[

h(., ς̄)−Q0z(, , γ̄)
]
dt at (ῑ, κ̄), we have

∫
S
{η̄T

[
h
(
Υ̂, ς̄

)
−Q0z

(
Υ̂, γ̄

)]
− η̄T

[
h(Π̄, ς̄)−Q0z(Π̄, γ̄)

]
}dt

>
∫

S
(λ̂− ῑ)η̄T

[
∂h
∂λ

(Π̄, ς̄)−Q0 ∂z
∂λ

(Π̄, γ̄)

]
dt

+
∫

S
(π̂ − κ̄)η̄T

[
∂h
∂π

(Π̄, ς̄)−Q0 ∂z
∂π

(Π̄, γ̄)

]
dt,

which, together with the inequality (22) and feasibility of (ῑ, κ̄), gives∫
S
(λ̂− ῑ)η̄T

[
∂h
∂λ

(Π̄, ς̄)−Q0 ∂z
∂λ

(Π̄, γ̄)

]
dt

+
∫

S
(π̂ − κ̄)η̄T

[
∂h
∂π

(Π̄, ς̄)−Q0 ∂z
∂π

(Π̄, γ̄)

]
dt < 0. (23)

Again, by the strict convexity property of
∫

S
ρ̄T f (., σ̄)dt at (ῑ, κ̄), we have

∫
S
{ρ̄T f (Υ̂, λ̄α, σ̄)− ρ̄T f (Π̄, ῑα, σ̄)}dt >

∫
S
(λ̂− ῑ)ρ̄T fλ(Π̄, ῑα, σ̄)dt

+
∫

S
(λ̂α − ῑα)ρ̄

T fλα
(Π̄, ῑα, σ̄)dt +

∫
S
(π̂ − κ̄)ρ̄T fπ(Π̄, ῑα, σ̄)dt. (24)

Also, as (λ̂, π̂) and (λ̄, π̄, η̄, ρ̄, θ̄, ς̄, σ̄, δ̄) are robust feasible solutions in (P ) and (mD − P ),
respectively, we obtain ∫

S
ρ̄T f (Υ̂, λ̄α, σ̄)dt−

∫
S

ρ̄T f (Π̄, ῑα, σ̄)dt 5 0,

which, together with inequality (24), results in∫
S
(λ̂− ῑ)ρ̄T fλ(Π̄, ῑα, σ̄)dt +

∫
S
(λ̂α − ῑα)ρ̄

T fλα
(Π̄, ῑα, σ̄)dt

+
∫

S
(π̂ − κ̄)ρ̄T fπ(Π̄, ῑα, σ̄)dt < 0. (25)

Similarly, since
∫

S
θ̄T g(., λα, δ̄)dt is also strictly convex function, we obtain

∫
S
(λ̂− ῑ)θ̄T gλ(Π̄, ῑα, δ̄)dt +

∫
S
(λ̂α − ῑα)θ̄

T gλα
(Π̄, ῑα, δ̄)dt

+
∫

S
(π̂ − κ̄)θ̄T gπ(Π̄, ῑα, δ̄)dt < 0. (26)
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On adding the inequalities (23), (25), and (26), we obtain the following inequality:∫
S
(λ̂− ῑ){η̄T

[
∂h
∂λ

(Π̄, ς̄)−Q0 ∂z
∂λ

(Π̄, γ̄)

]
+ ρ̄T fλ(Π̄, ῑα(t), σ̄)

+θ̄T gλ(Π̄, ῑα(t), δ̄)− Dα

[
ρ̄T fλα

(Π̄, ῑα(t), σ̄) + θ̄T gλα
(Π̄, ῑα(t), δ̄)

]
}dt

+
∫

S
(π̂ − κ̄){η̄T

[
∂h
∂π

(Π̄, ς̄)−Q0 ∂z
∂π

(Π̄, γ̄)

]
+ ρ̄T fπ(Π̄, ῑα(t), σ̄)

+θ̄T gπ(Π̄, ῑα(t), δ̄)}dt < 0,

which contradicts the inequality (21). This completes the proof.

Remark 1. (i) In order to justify the main results derived in the paper, some illustrative applications
and numerical simulations can be consulted by the reader in the recent research work of Jayswal
et al. [27].

(ii) Regarding the future research directions associated with this paper, we could mention the
study of the case where the second-order partial derivatives are presented, as well as the situation
when the involved functionals are not necessarily (strictly) convex.

4. Conclusions

This paper established three robust mixed-type duality theorems, namely, weak,
strong, and strict converse dual. Based on Wolfe- and Mond–Weir-type dualities, we for-
mulated a robust mixed-type dual problem and, under the suitable convexity assumptions
of the involved functionals, we established some equivalence results between the solution
sets of the considered models.
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