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Abstract: Digital education is very important and valuable because it is a subpart of artificial intelli-
gence, which is used in many real-life problems. Digital education is the modern utilization of digital
techniques and tools during online purchasing, teaching, research, and learning and is often referred
to as technology-enhanced learning or e-learning programs. Further, similarity measures (SM) and
complex fuzzy (CF) logic are two different ideas that play a very valuable and dominant role in the
environment of fuzzy decision theory. In this manuscript, we concentrate on utilizing different types
of dice SM (D-SM) and generalized dice SM (GD-SM) in the environment of a CF set (CFS), called CF
dice SM (CFD-SM), CF weighted dice SM (CFWD-SM), CF generalized dice SM (CFGD-SM), and CF
weighted generalized dice SM (CFWGD-SM), and also derived associated outcomes. Furthermore, to
evaluate or state the supremacy and effectiveness of the derived measures, we aim to evaluate the
application of artificial intelligence in digital education under the consideration of derived measures
for CF information and try to verify them with the help of several examples. Finally, with the help of
examples, we illustrate the comparison between the presented and existing measures to show the
supremacy and feasibility of the derived measures.

Keywords: artificial intelligence; digital education; complex fuzzy logic; generalized dice similarity
measures; decision-making

MSC: 03B52; 68T27; 94D05; 03E72; 28E10

1. Introduction

In recent years, artificial intelligence has emerged as an indispensable tool utilized by
a multitude of companies, such as YouTube, Amazon, and Netflix, as well as within search
engines, translation companies, online marketing and advertisements, and education.
Scholars and businesses are no strangers to using it. In essence, artificial intelligence acts as
a substitute for the lengths with which human intelligence can reach and exists to complete
the same tasks that humans can. The term “artificial intelligence” concerns technology
that can imitate “human” cognitive skills, ranging from “learning” to “problem solving”.
Its wide-ranging possibilities have altered the future landscape of education, learning,
and teaching as techniques change to incorporate such advanced technology. Artificial
intelligence can be utilized to improve aspects of education as well as aid in the future
understanding of the brain and cognition.

Clustering analysis, or clustering algorithms, which allow companies to mine invalu-
able discrete data to pool information on customers, the population, and transactions,
amongst other targets, is one of these powerful tools within artificial intelligence. Cluster-
ing analysis can also take the form of an evaluative statistical technique. Information is
organized into collectives, or clusters, centered on careful associations, which would prove
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an extraordinarily difficult activity for scholars to arrange such masses of data based on
similar attributes.

Much inspection of clustering analysis has utilized classical information, but various
problems are yet to be resolved. One major issue involves the loss of masses of information
in the process of forming clusters. Addressing this, Zadeh [1] established the main theory
of fuzzy sets (FS) in 1965 by altering the function of the classical set and inventing a novel
function termed the membership grade, where the derived values fit into the unite interval
[0, 1]. Furthermore, Mahmood and Ali [2] modified the theory of FS and derive the theory
of fuzzy superior mandelbrot information. Akram et al. [3] merged the theory of FS with
N-soft information and originated the novel theory of fuzzy N-soft information. The theory
of multi-fuzzy N-soft information emerged from work conducted by Fatimah and Alcan-
tud [4] that combined the multi-fuzzy set theory with the N-soft set theory. Furthermore, a
non-iterative reasoning technique under the consideration of fuzzy cognitive function was
invented by Al Farsi et al. [5], Karimi et al. [6] examined the perceptual computer for hierar-
chical portfolio consideration in the presence of type-2 fuzzy information, and Tian et al. [7]
evaluated the canonical triangular interval type-2 fuzzy linguistic distribution assessment.

Through the various usages of fuzzy information across multiple fields and scholars,
the important question of what occurs when the range of FS is altered requires an answer.
Ramot et al. [8] hence manipulated the range of FS and, in using the unit disc in lieu of
the unit interval, generated the notion of complex fuzzy set (CFS). CFS possesses only
one grade, but the resultant value is in the form of a complex number where real and
unreal parts are contained in the unit interval [0, 1]. Further, Liu et al. [9] established
methods to ascertain distances and values, which were titled cross-entropy measures based
on CFS. Newly created complex fuzzy N-soft sets by Mahmood and Ali [10] fused CFS
with N-soft information. Following on from this, the theory of a complex multi-fuzzy set
was discovered by A-Qudah and Hassan [11], while Tamir et al. [12] created the theory of
similarity measures reliant on complex fuzzy logic and CFSs. Moreover, Ghorbani et al. [13]
exposed the semantic interoperability based on type-2 fuzzy sets; Jan et al. [14] evaluated
the evaluation of digital systems for complex fuzzy soft information and their applications;
Yahya et al. [15] derived the S-box based on image encryption for complex fuzzy frank
operators; and Zeeshan et al. [16] evaluated the distance function for complex fuzzy soft
information and their application in signals.

Similarity measures (SMs) play an essential role in evaluating the closeness be-
tween any two pieces of information, and based on their supremacy and advantages,
certain people have utilized them in the environment of different fields. For instance, Lee-
Kwang et al. [17] derived SMs for fuzzy information. In addition, Xuecheng [18] evaluated
entropy, distance, and SMs for fuzzy information, while Wang [19] proffered two new SMs
regarding fuzzy information. Beg and Ashraf [20] identified SMs for FSs; Chen et al. [21]
contrasted a multitude of SMs for fuzzy information; Couso et al. [22] assessed the SMs and
dis-SMs for fuzzy information; and Zhang and Fu [23] gleaned SMs based on three types
of FSs. Moreover, Guo et al. [24] exposed the cosine SMs for CFS and their importance in
robustness, whereas Hu et al. [25] conducted work on the theory of distance, similarity,
and continuity with regard to complex fuzzy information and its application in digital
education. In response to the aforementioned discoveries, it became evident that it was
a complex challenge to develop new SMs based on CFS, and thus the core theme of the
following analysis should be to discern the various forms of D-SMs [26] and GD-SMs for
CFS. Before proposing the derived techniques, we have three major queries:

1. How do we invent new similarity or distance measures based on complex fuzzy logic;
2. How do we evaluate the problem of digital education based on distance or similarity

measures for complex fuzzy logic;
3. How do we evaluate the best optimal form of the collection of finite values.

Evaluating or addressing the above queries is a very challenging task for young re-
searchers because the structure of a complex fuzzy set is very complicated and ambiguous.
Many scholars have derived the different types of measures based on fuzzy sets, but the
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dice and generalized dice similarity measures are more formal and valuable for depict-
ing uncertain and unreliable information in genuine life problems. Therefore, the major
advantages and disadvantages of the proposed work are stated in Table 1.

Table 1. Advantages and disadvantages of the proposed work.

Advantages of the Proposed Measures Disadvantages of the Proposed Measures

1. Similar measures based on fuzzy sets are
the special cases of the proposed theory.

2. Similarity measures based on complex
fuzzy sets are the special cases of the
proposed theory.

3. With the help of proposed measures, we
can easily find the interrelationship
between any two fuzzy or complex
fuzzy numbers.

4. Dice similarity measures based on fuzzy
sets and complex fuzzy sets are the
special cases of the proposed work.

5. The presented measures can also use for
evaluating two-dimension information.

1. The proposed measures have failed to
depict the data which contained
membership and
non-membership grades.

2. The proposed measures have failed to
aggregate the collection of information
into a singleton set.

3. The proposed measures will be the
special cases of these measures which
will be proposed based on complex
intuitionistic fuzzy sets and
their extensions.

In the presence of the above information, it is clear that the proposed measures have
many advantages. Moreover, we used the proposed measures and tried to evaluate the
problem of digital education in northern areas based on their attributes. Therefore, the aim
is to utilize them within the realms of digital education and artificial intelligence. Some
important theories presented are listed below:

1. To expose the theories of CFD-SM and CFWD-SM and evaluate their valuable conclusions;
2. To examine the theory of CFGD-SM and CFWGD-SM and discuss the overarching themes;
3. To evaluate the problems of education with the help of artificial intelligence in digital

education in the presence of the presented measures;
4. To contrast the proposed discussions with numerical evidence to conclude the superi-

ority and effectiveness of the suggested methods.

The main structure of this analysis is of the form:

1. In Section 2, the concepts of D-SM and CFS and their operational laws will be reviewed;
2. In Section 3, the theories of CFD-SM, CFWD-SM, CFGD-SM, and CFWGD-SM will be

introduced;
3. In Section 4, the discussion will tackle the problems of artificial intelligence in digital

education, relying on assessed methods for complex fuzzy set theory;
4. In Section 5, the suggested measures will be evaluated using numerical evidence

alongside the existing measures;
5. In Section 6, the conclusion will be featured.

2. Preliminaries

The main influence of this section is to revise the existing theory of dice similarity
measures for the collection of positive integers, which is used for evaluating the interrela-
tionship between any two positive numbers. Moreover, we stated the idea of fuzzy sets and
complex fuzzy information and their operational laws. We also explained all parameters
in Table 2.
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Table 2. Meaning of all parameters used in this manuscript.

Parameter Meanings Parameter Meanings

V1 Representation of vector ξξ f Fuzzy sets

xj, yj Element of vectors X Universal set

ξξcf Complex fuzzy sets x Element of a universal set

ΞR(x)+iΞI(x)
Complex membership
grade (Cartesian form) ΞR(x) The real shape of

membership grade

Ξ’
R(x)e

i2π(Ξ’
I(x))

Complex membership
grade (Polar form) ΞI(x) The imaginary shape of

membership grade

Ξ’
R(x)

Amplitude term of
membership grade Ξ′I(x) Phase term of

membership grade
=
θ≥1 Scaler

Definition 1 [19]. For any two vectors V1 = (x1, x2, . . . , xn) and V2 = (y1, y2, . . . , yn), D-SM
is given by

D− SM(V1, V2) =
2V1·V2

‖V1‖2
2 + ‖V2‖2

2

=
2∑n

j=1 xjyj

∑n
j=1 x2

j + ∑n
j=1 y2

j
(1)

where V1·V2 = ∑n
j=1 xjyj and ‖V1‖2

2 = ∑n
j=1 x2

j , ‖V2‖2
2 = ∑n

j=1 y2
j represent the inner product

and Euclidean norm under the consideration of vectors V1 and V2. The theory of D-SM is undefined
for xj = yj = 0.

Further, we also need to recall the basic idea of FS.

Definition 2 [1]. Under the presence of universal set X, the FS is given by

ξξ f = {(ΞR(x)) : x ∈ X} (2)

where the term ΞR(x) represent the membership function and defined it from universal set X to
unit-interval [0, 1]. Furthermore, we are also able to write the short form and call it a fuzzy number
(FN), ξξ f−j =

(
x, Ξ′Rj

)
, j = 1, 2, . . . , n. Furthermore, we discussed some operational laws for

complex fuzzy information.

Further, we also need to recall the basic idea of CFS and their valuable laws under the
consideration of algebraic information, such as algebraic t-norm and t-conorm.

Definition 3 [5]. Under the presence of universal set X, the CFS is given by

ξξc f = {(ΞR(x) + iΞI(x)) : x ∈ X} =
{(

Ξ′R(x)ei2π(Ξ′I(x))
)

: x ∈ X
}

(3)

where the terms ΞR(x) and ΞI(x) represent the real and imaginary part of the complex-valued
membership function and the terms Ξ′R(x) and Ξ′I(x) represent amplitude and phase grade of the

membership function, and Ξ′R(x) =
(
Ξ2

R(x) + Ξ2
I (x)

) 1
2 and Ξ′I(x) = tan−1 ΞI(x)

ΞR(x) . Here, we are

also able to write the short form and call it C-FN, ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n.

Furthermore, we discussed some operational laws for complex fuzzy information.

Definition 4 [5]. For C-FNs, ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n, we have

ξξc f−1 ∪ ξξc f−2 =
(

x, max
(

Ξ′R1
, Ξ′R2

)
ei2π(max(Ξ′I1

,Ξ′I2 ))
)

(4)
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ξξc f−1 ∩ ξξc f−2 =
(

x, min
(

Ξ′R1
, Ξ′R2

)
ei2π(min(Ξ′I1

,Ξ′I2 ))
)

(5)

ξξc
c f−j =

(
x, 1− Ξ′Rj

e
i2π(1−Ξ′Ij

)
)

(6)

ξξc f−1 ⊕ ξξc f−2 =
(

x,
(

Ξ′R1
+ Ξ′R2

− Ξ′R1
Ξ′R2

)
ei2π(Ξ′I1

+Ξ′I2−Ξ′I1
Ξ′I2 )
)

(7)

ξξc f−1 ⊗ ξξc f−2 =
(

x,
(

Ξ′R1
Ξ′R2

)
ei2π(Ξ′I1

Ξ′I2 )
)

(8)

=
θξξc f−j =

x,

(
1−

(
1− Ξ′Rj

)=
θ
)

e
i2π(1−(1−Ξ′Ij

)
=
θ )

 (9)

ξξ
=
θ
c f−j =

x,
(

Ξ′Rj

=
θ
)

e
i2π(Ξ′Ij

=
θ )

 (10)

Now we aim to extend the theory of D-SM and GD-SM based on CFS and also try to
describe their valuable results and properties.

3. Generalized Dice Similarity Measures for Complex Fuzzy Sets

In this section, we examined the ideas of CFD-SM, CFWD-SM, CFGD-SM, and
CFWGD-SM. Moreover, some valuable results are also discussed in detail.

Definition 5. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and ξξ∗c f−j

=

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, D-SM1 is denoted and defined as:

CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

1
n

n

∑
j=1

2
(

Ξ′Rj
Ξ∗′Rj

+ Ξ′Ij
Ξ∗′Ij

)
(

Ξ′Rj

2 + Ξ′Ij

2
)
+
(

Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (11)

Further, D-SM 1 given in Equation (11) satisfies the following properties:

1. 0 ≤ CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
≤ 1.

2. CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= CFD− SM1

(
ξξ∗c f−j, ξξc f−j

)
.

3. CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Example 1. For C-FNs ξξc f =
(

x, 0.7ei2π(0.9)
)

and ξξ∗c f =
(

x, 0.3ei2π(0.5)
)

, then by using the

theory in Equation (11) that is D-SM 1, we have

CFD− SM1
(

ξξc f , ξξ∗c f

)
= 1

1

1
∑

j=1

2(0.7∗0.3+0.9∗0.5)
(0.72+0.92)+(0.32+0.52)

= 2(0.21+0.45)
(0.49+0.81)+(0.09+0.25)

= 2(0.66)
(1.30)+(0.34)

= 1.32
1.64

= 0.8048.
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Theorem 1. CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
satisfies the properties of similarity measures.

Proof. Recall that

CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

1
n

n

∑
j=1

2
(

Ξ′Rj
Ξ∗′Rj

+ Ξ′Ij
Ξ∗′Ij

)
(

Ξ′Rj

2 + Ξ′Ij

2
)
+
(

Ξ∗′Rj

2
+ Ξ∗′Ij

2
)

By definition, it is clear that CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
≥ 0, and(

Ξ′Rj

2
+ Ξ′Ij

2
)
+
(

Ξ∗′Rj

2
+ Ξ∗′Ij

2
)
≥ 2

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
But according to the inequality, we know that a2 + b2 ≥ 2ab, thus, 0 ≤ CFD −

SM1
(

ξξc f−j, ξξ∗c f−j

)
≤ 1.

Further, we prove that CFD − SM1
(

ξξc f−j, ξξ∗c f−j

)
= CFD − SM1

(
ξξ∗c f−j, ξξc f−j

)
;

for this, we use Equation (11), such as:

CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1

n

n
∑

j=1

2
(

Ξ′Rj
Ξ∗′Rj

+Ξ′Ij
Ξ∗′Ij

)
(

Ξ′Rj
2+Ξ′Ij

2
)
+

(
Ξ∗′Rj

2
+Ξ∗′Ij

2
)

= 1
n

n
∑

j=1

2
(

Ξ∗′Rj
Ξ′Rj

+Ξ∗′Ij Ξ′Ij

)
(

Ξ∗′Rj
2
+Ξ∗′Ij

2
)
+

(
Ξ′Rj

2+Ξ′Ij
2
) = CFD− SM1

(
ξξ∗c f−j, ξξc f−j

)
.

Finally, we prove that CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j ; for this,

we consider if ξξc f−j = ξξ∗c f−j, then we prove that CFD − SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1.

Let ξξc f−j = ξξ∗c f−j, which means that Ξ′Rj
= Ξ∗′Rj

and Ξ′Ij
= Ξ∗′Ij

. Then, by using the
information in Equation (11), we have

CFD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1

⇔ 1
n

n

∑
j=1

2
(

Ξ′Rj
Ξ∗′Rj

+ Ξ′Ij
Ξ∗′Ij

)
(

Ξ′Rj

2 + Ξ′Ij

2
)
+
(

Ξ∗′Rj

2
+ Ξ∗′Ij

2
) = 1

⇔ 1
n

n

∑
j=1

2
(

Ξ′Rj
Ξ′Rj

+ Ξ′Ij
Ξ′Ij

)
(

Ξ′Rj

2 + Ξ′Ij

2
)
+
(

Ξ′Rj

2 + Ξ′Ij

2
) = 1

⇔ 1
n

n

∑
j=1

2
(

Ξ′Rj

2 + Ξ′Ij

2
)

(
2Ξ′Rj

2 + 2Ξ′Ij

2
) = 1

⇔ 1
n∑n

j=1

2
(

Ξ′Rj

2 + Ξ′Ij

2
)

2
(

Ξ′Rj

2 + Ξ′Ij

2
) = 1⇔ ξξc f−j = ξξ∗c f−j.�



Mathematics 2023, 11, 3184 7 of 20

Definition 6. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and

ξξ∗c f−j =

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, WD-SM 1 is denoted and defined as:

CFWD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

n

∑
j=1

=
ij

2
(

Ξ′Rj
Ξ∗′Rj

+ Ξ′Ij
Ξ∗′Ij

)
(

Ξ′Rj

2 + Ξ′Ij

2
)
+
(

Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (12)

where
=
ij ∈ [0, 1]. Further, WD-SM 1 is defined in Equation (12) satisfies the following properties:

1. 0 ≤ CFWD− SM1
(

ξξc f−j, ξξ∗c f−j

)
≤ 1.

2. CFWD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= CFWD− SM1

(
ξξ∗c f−j, ξξc f−j

)
.

3. CFWD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Theorem 2. CFWD− SM1
(

ξξc f−j, ξξ∗c f−j

)
satisfies the properties of similarity measures.

Proof. Straightforward.�

Here, it is worth noticing that the theory given in Equation (11) is a special case of

the theory given in Equation (12), because if we put the value of
=
ij =

(
1
n , 1

n , . . . , 1
n

)
in

Equation (12), then we can easily derive the theory in Equation (11). Moreover, from
the information in Equations (11) and (12), we can easily derive the theory of distance
measures such as CFD − DM1

(
ξξc f−j, ξξ∗c f−j

)
= 1− CFD − SM1

(
ξξc f−j, ξξ∗c f−j

)
and

CFWD− DM1
(

ξξc f−j, ξξ∗c f−j

)
= 1− CFWD− SM1

(
ξξc f−j, ξξ∗c f−j

)
.

Definition 7. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and

ξξ∗c f−j =

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, the notion of D-SM2 is denoted and defined as:

CFD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

2∑n
j=1

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
∑n

j=1

(
Ξ′Rj

2 + Ξ′Ij

2
)
+ ∑n

j=1

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (13)

Further, D-SM 2 defined in Equation (13) satisfies the following properties:

1. 0 ≤ CFD− SM2
(

ξξc f−j, ξξ∗c f−j

)
≤ 1.

2. CFD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= CFD− SM2

(
ξξ∗c f−j, ξξc f−j

)
.

3. CFD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Theorem 3. CFD− SM2
(

ξξc f−j, ξξ∗c f−j

)
satisfies the properties of similarity measures.

Proof. Straightforward. �
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Definition 8. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and

ξξ∗c f−j =

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, the notion of WD-SM2 is denoted and defined as:

CFWD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

2∑n
j=1

=
i

2

j

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
∑n

j=1

=
i

2

j

(
Ξ′Rj

2 + Ξ′Ij

2
)
+ ∑n

j=1

=
i

2

j

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (14)

where
=
ij ∈ [0, 1]. Further, WD-SM2 defined in Equation (14) satisfies the following properties

1. 0 ≤ CFWD− SM2
(

ξξc f−j, ξξ∗c f−j

)
≤ 1.

2. CFWD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= CFWD− SM2

(
ξξ∗c f−j, ξξc f−j

)
.

3. CFWD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Theorem 4. CFWD− SM2
(

ξξc f−j, ξξ∗c f−j

)
satisfies the properties of similarity measures.

Proof. Straightforward. �

Furthermore, the information in Equation (13) is the particular case of the infor-

mation in Equation (14), if we use the value of
=
ij =

(
1
n , 1

n , . . . , 1
n

)
. Moreover, from

the information in Equations (13) and (14), we can easily derive the theory of distance
measures such as CFD − DM2

(
ξξc f−j, ξξ∗c f−j

)
= 1− CFD − SM2

(
ξξc f−j, ξξ∗c f−j

)
and

CFWD− DM2
(

ξξc f−j, ξξ∗c f−j

)
= 1− CFWD− SM2

(
ξξc f−j, ξξ∗c f−j

)
.

Definition 9. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and

ξξ∗c f−j =

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, the notion of GD-SM 1 is denoted and defined as:

CFGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

1
n

n

∑
j=1

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
Φ
(

Ξ′Rj

2 + Ξ′Ij

2
)
+ (1−Φ)

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) , Φ ∈ [0, 0.5] (15)

GD-SM 1 defined in Equation (15) satisfies the following properties:

1. 0 ≤ CFGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
≤ 1.

2. CFGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= CFGD− SM1

(
ξξ∗c f−j, ξξc f−j

)
.

3. CFGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Furthermore, we can easily derive two different types of results by using the informa-
tion in Equation (15); for instance, by putting the value of Φ = 0, 1, we obtain

CFGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

1
n

n

∑
j=1

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
(

Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (16)
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CFGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

1
n

n

∑
j=1

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
(

Ξ′Rj

2 + Ξ′Ij

2
) (17)

Which represent the asymmetric and projection similarity measures.

Theorem 5. CFGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
satisfies the properties of similarity measures.

Proof. Straightforward. �

Definition 10. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and

ξξ∗c f−j =

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, the notion of WGD-SM 1 is denoted and defined as:

CFWGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

n

∑
j=1

=
ij

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
Φ
(

Ξ′Rj

2 + Ξ′Ij

2
)
+ (1−Φ)

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (18)

where
=
ij ∈ [0, 1]. Further, the notion defined in Equation (18) satisfies the following properties:

1. 0 ≤ CFWGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
≤ 1.

2. CFWGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= CFWGD− SM1

(
ξξ∗c f−j, ξξc f−j

)
.

3. CFWGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Furthermore, it is easy to derive two special types of results by using the information
in Equation (18); for instance, by putting the value of Φ = 0, 1, we obtain

CFWGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

n

∑
j=1

=
ij

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
(

Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (19)

CFWGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
=

n

∑
j=1

=
ij

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
(

Ξ′Rj

2 + Ξ′Ij

2
) (20)

Which represent the asymmetric and projection similarity measures.

Theorem 6. CFWGD− SM1
(

ξξc f−j, ξξ∗c f−j

)
satisfies the properties of similarity measures.

Proof. Straightforward. �

By putting
=
ij =

(
1
n , 1

n , . . . , 1
n

)
in Equation (18), we obtain the notion given in Equa-

tion (15). Moreover, from the information in Equations (15) and (18), we can easily
derive the theory of distance measures such as CFGD − DM1

(
ξξc f−j, ξξ∗c f−j

)
= 1 −

CFGD − SM1
(

ξξc f−j, ξξ∗c f−j

)
and CFWGD − DM1

(
ξξc f−j, ξξ∗c f−j

)
= 1 − CFWGD −

SM1
(

ξξc f−j, ξξ∗c f−j

)
.
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Definition 11. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and

ξξ∗c f−j =

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, the notion of GD-SM2 is denoted and defined as:

CFGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

∑n
j=1

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
Φ∑n

j=1

(
Ξ′Rj

2 + Ξ′Ij

2
)
+ (1−Φ)∑n

j=1

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (21)

And it satisfies the following properties:

1. 0 ≤ CFGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
≤ 1;

2. CFGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= CFGD− SM2

(
ξξ∗c f−j, ξξc f−j

)
;

3. CFGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Theorem 7. CFGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
satisfies the properties of similarity measures.

Proof. Straightforward. �

Furthermore, we can easily derive two different types of results by using the informa-
tion in Equation (21); for instance, by putting the value of Φ = 0, 1, we obtain

CFGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

∑n
j=1

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
∑n

j=1

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (22)

CFGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

∑n
j=1

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
∑n

j=1

(
Ξ′Rj

2 + Ξ′Ij

2
) (23)

Which represents asymmetric and projection similarity measures.

Definition 12. For C-FNs ξξc f−j =

(
x, Ξ′Rj

e
i2π(Ξ′Ij

)
)

, j = 1, 2, . . . , n and

ξξ∗c f−j =

(
x, Ξ∗′Rj

e
i2π(Ξ∗′Ij )

)
, j = 1, 2, . . . , n, the notion of WGD-SM2 is given by:

CFWGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

∑n
j=1

=
i

2

j

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
Φ∑n

j=1

=
i

2

j

(
Ξ′Rj

2 + Ξ′Ij

2
)
+ (1−Φ)∑n

j=1

=
i

2

j

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (24)

where
=
ij ∈ [0, 1] and it satisfies the following properties.

1. 0 ≤ CFWGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
≤ 1;

2. CFWGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= CFWGD− SM2

(
ξξ∗c f−j, ξξc f−j

)
;

3. CFWGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
= 1⇔ ξξc f−j = ξξ∗c f−j .

Theorem 8. CFWGD − SM2
(

ξξc f−j, ξξ∗c f−j

)
must be justified by the property of similarity

measures.
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Proof. Straightforward. �

Furthermore, we can easily derive two different types of the result by using the
information in Equation (24); for instance, by putting the value of Φ = 0, 1, we obtain

CFWGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

∑n
j=1

=
i

2

j

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
∑n

j=1

=
i

2

j

(
Ξ∗′Rj

2
+ Ξ∗′Ij

2
) (25)

CFWGD− SM2
(

ξξc f−j, ξξ∗c f−j

)
=

∑n
j=1

=
i

2

j

(
Ξ′Rj

Ξ∗′Rj
+ Ξ′Ij

Ξ∗′Ij

)
∑n

j=1

=
i

2

j

(
Ξ′Rj

2 + Ξ′Ij

2
) (26)

Which represent the asymmetric and projection similarity measures.
Data in Equation (21) is the subpart of the theory in Equation (24) if we consider

the value of
=
ij =

(
1
n , 1

n , . . . , 1
n

)
. Moreover, we have also the following ideas: CFGD −

DM2
(

ξξc f−j, ξξ∗c f−j

)
= 1 − CFGD − SM2

(
ξξc f−j, ξξ∗c f−j

)
and CFWGD−

DM2
(

ξξc f−j, ξξ∗c f−j

)
= 1− CFWGD− SM2

(
ξξc f−j, ξξ∗c f−j

)
.

4. Artificial Intelligence in Digital Education

With the aid of suggested methods for CF information, the section below will detail
the real-life utilization of artificial intelligence in the context of digital education. Schools,
colleges, and universities experienced vast problems throughout the pandemic; to assess
these problems, algorithms can be employed to evaluate the position of digital education
in such problems in the context of a global pandemic.

4.1. Algorithm-1

The process of clustering analysis for assessing the problems of digital education
within reality is outlined below. It aims to discern valuable evaluations from variable
information about genuine problems in life. The process below attempts to manage complex
and awkward data.

Step 1: Arrange information and compute a decision matrix, whose very information
will be written in the shape of a complex fuzzy number.

Step 2: In the presence of CFD-SM1, we aim to find the closeness between any two
possible pieces of information and write it in a matrix ξξc f−m =

[
rij
]

m×m.

Step 3: Evaluate the composition of the matrix ξξc f−m such as: ξξ2
c f−m =

ξξc f−m
◦ξξc f−m, where

ξξc f−m
◦ξξc f−m =

(
rij
)

m×m = max
k

{
min

{
rik, rkj

}}
(27)

If the ξξc f−m
◦ξξc f−m ⊆ ξξc f−m, then continues the above process and finds the value

of ξξ4
c f−m = ξξ2

c f−m
◦ξξ2

c f−m, if the ξξ2
c f−m

◦ξξ2
c f−m ⊆ ξξ2

c f−m, similarly continues this
procedure even if we cannot receive the information in the form:

ξξ2k
c f−m

◦ξξ2k
c f−m = ξξk

c f−m (28)

Step 4: After obtaining the ξξ2k
c f−m

◦ξξ2k
c f−m = ξξk

c f−m, we find the α− cutting based on
the information in step 3 based on the below information, such as:

ξξα
c f−m =

{
0 rik ≤ α
1 rik > α

(29)
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Therefore, we try to utilize this information in practical application to enhance the
worth and stability of the derived measures.

Example 2. Here we aim to resolve the education systems of Saudi Arabia and categorize provinces
based on the parameters of evaluation. We consider a clustering approach to categorize/cluster
provinces based on five education-related parameters:

x1: Gross enrollment ratio.
x2: Drop-out rate.
x3: Schools with boys’ toilets.
x4: Percentage of schools with computers.
x5: Percentage of schools with electricity.

The main theme of this demonstration is to utilize digital education in the environ-
ments of different provinces in Saudi Arabia. For this, we consider five different regions:
ξξc f−1, ξξc f−2, ξξc f−3, ξξc f−4 and ξξc f−5. Then, using the proposed algorithm, we evaluate
the problems below.

Step 1: Arrange information and compute a decision matrix whose very information
will be written in the shape of a complex fuzzy number such as:

ξξc f−1 =
{(

x1, 0.9ei2π(0.7)
)

,
(

x2, 0.7ei2π(0.8)
)

,
(

x3, 0.8ei2π(0.1)
)

,
(

x4, 0.5ei2π(0.3)
)

,
(

x5, 0.6ei2π(0.7)
)}

ξξc f−2 =
{(

x1, 0.2ei2π(0.3)
)

,
(

x2, 0.1ei2π(0.3)
)

,
(

x3, 0.1ei2π(0.2)
)

,
(

x4, 0.3ei2π(0.3)
)

,
(

x5, 0.2ei2π(0.4)
)}

ξξc f−3 =
{(

x1, 0.1ei2π(0.2)
)

,
(

x2, 0.2ei2π(0.3)
)

,
(

x3, 0.3ei2π(0.5)
)

,
(

x4, 0.4ei2π(0.4)
)

,
(

x5, 0.5ei2π(0.1)
)}

ξξc f−4 =
{(

x1, 0.7ei2π(0.3)
)

,
(

x2, 0.6ei2π(0.3)
)

,
(

x3, 0.5ei2π(0.4)
)

,
(

x4, 0.4ei2π(0.5)
)

,
(

x5, 0.2ei2π(0.6)
)}

ξξc f−5 =
{(

x1, 0.5ei2π(0.8)
)

,
(

x2, 0.6ei2π(0.7)
)

,
(

x3, 0.7ei2π(0.6)
)

,
(

x4, 0.8ei2π(0.5)
)

,
(

x5, 0.9ei2π(0.4)
)}

Step 2: Under the presence of CFD-SM1, we aim to find the closeness between any two possible
pieces of information and write it in a matrix ξξc f−m =

[
rij
]

m×m, which is listed below:

ξξc f−m =


1

0.604
0.6332
0.8713
0.9069

0.604
1

0.8162
0.7214
0.5935

0.6332
0.8162

1
0.7083
0.7267

0.8713
0.7214

0.7083
1

0.8212

0.9069
0.5935

0.7267
0.8212

1


Step 3: Evaluate the composition of the matrix ξξc f−m such as: ξξ2

c f−m =
ξξc f−m

◦ξξc f−m, where

ξξc f−m
◦ξξc f−m =

(
rij
)

m×m = max
k

{
min

{
rik, rkj

}}
If the ξξc f−m

◦ξξc f−m ⊆ ξξc f−m, then continues the above process and finds the
value of ξξ4

c f−m = ξξ2
c f−m

◦ξξ2
c f−m, if the ξξ2

c f−m
◦ξξ2

c f−m ⊆ ξξ2
c f−m, similarly continues this
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procedure even if we cannot receive the information in the shape: ξξ2k
c f−m

◦ξξ2k
c f−m = ξξk

c f−m.
Therefore, the procedure is continuing as:

ξξ2
c f−m = ξξc f−m

◦ξξc f−m =


1

0.7214
0.7267
0.8713
0.9069

0.7214
1

0.8162
0.7214
0.8162

0.7267
0.8162

1
0.7267
0.7267

0.8713
0.7214

0.7267
1

0.8713

0.9069
0.8162

0.7267
0.8713

1



ξξ4
c f−m = ξξ2

c f−m
◦ξξ2

c f−m =


1

0.8162
0.7267
0.8713
0.9069

0.8162
1

0.8162
0.8162
0.8162

0.7267
0.8162

1
0.7267
0.8162

0.8713
0.8162

0.7267
1

0.9069

0.9069
0.8162

0.8162
0.9069

1



ξξ8
c f−m = ξξ4

c f−m
◦ξξ4

c f−m =


1

0.8162
0.8162
0.9069
0.9069

0.8162
1

0.8162
0.8162
0.8162

0.8162
0.8162

1
0.8162
0.8162

0.9069
0.8162

0.8162
1

0.9069

0.9069
0.8162

0.8162
0.9069

1



ξξ16
c f−m = ξξ8

c f−m
◦ξξ8

c f−m =


1

0.8162
0.8162
0.9069
0.9069

0.8162
1

0.8162
0.8162
0.8162

0.8162
0.8162

1
0.8162
0.8162

0.9069
0.8162

0.8162
1

0.9069

0.9069
0.8162

0.8162
0.9069

1

 = ξξ8
c f−m

Therefore, we proceed to the next steps.
Step 4: After obtaining the ξξ2k

c f−m
◦ξξ2k

c f−m = ξξk
c f−m, we find the α− cutting based on

the information in step 3 based on the below information, such as:

ξξα
c f−m =

{
0 rik ≤ α
1 rik > α

Therefore, the cutting matrix is given in the shape of Table 3.

Table 3. Classifications of different places.

Value of Parameter α Classifications

α∈[0, 0.7267]
{

ξξc f−1, ξξc f−2, ξξc f−3, ξξc f−4, ξξc f−5

}
α ∈ [0.7267, 0.8162]

{
ξξc f−1, ξξc f−2, ξξc f−3, ξξc f−4

}
,
{

ξξc f−5

}
α∈[0.8162, 0.8713]

{
ξξc f−2

}
,
{

ξξc f−1, ξξc f−3, ξξc f−4

}
,
{

ξξc f−5

}
α∈[0.8713,0.9069]

{
ξξc f−1

}
,
{

ξξc f−2

}
,
{

ξξc f−3, ξξc f−4

}
,
{

ξξc f−5

}
α∈[0.9069, 1]

{
ξξc f−1

}
,
{

ξξc f−2

}
,
{

ξξc f−3

}
,
{

ξξc f−4

}
,
{

ξξc f−5

}
4.2. Algorithm-2

In this subsection, we considered five unknown pieces of information on the source
of digital education and one known type of digital education information and tried to
evaluate them with the help of derived measures.

Example 3. For instance, five valuable sources for digital education will be addressed ξξc f−1:
Mobile phone apps; ξξc f−2: virtual reality glasses; ξξc f−3: Holograms; ξξc f−4: website and blogs;
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andξξc f−5: digital books. In assessing such sources, sources will be prioritized by effectiveness
according to various factors, such as x1: feasibility; x2: not time vesting; x3: inexpensive; x4:
time-efficient; andx5: money-saving.

Under the consideration of five features of all digital education, five unknowns are
listed below:

ξξc f−1 =
{(

x1, 0.9ei2π(0.7)
)

,
(

x2, 0.7ei2π(0.8)
)

,
(

x3, 0.8ei2π(0.1)
)

,
(

x4, 0.5ei2π(0.3)
)

,
(

x5, 0.6ei2π(0.7)
)}

ξξc f−2 =
{(

x1, 0.5ei2π(0.9)
)

,
(

x2, 0.6ei2π(0.5)
)

,
(

x3, 0.3ei2π(0.3)
)

,
(

x4, 0.7ei2π(0.4)
)

,
(

x5, 0.6ei2π(0.7)
)}

ξξc f−3 =
{(

x1, 0.2ei2π(0.5)
)

,
(

x2, 0.5ei2π(0.4)
)

,
(

x3, 0.3ei2π(0.6)
)

,
(

x4, 0.7ei2π(0.7)
)

,
(

x5, 0.3ei2π(0.8)
)}

ξξc f−4 =
{(

x1, 0.4ei2π(0.4)
)

,
(

x2, 0.5ei2π(0.3)
)

,
(

x3, 0.6ei2π(0.2)
)

,
(

x4, 0.7ei2π(0.1)
)

,
(

x5, 0.8ei2π(0.3)
)}

ξξc f−5 =
{(

x1, 0.9ei2π(0.1)
)

,
(

x2, 0.8ei2π(0.2)
)

,
(

x3, 0.7ei2π(0.7)
)

,
(

x4, 0.6ei2π(0.4)
)

,
(

x5, 0.5ei2π(0.5)
)}

For evaluating the above dilemma, we use one known information, which is
stated below:

ξξ∗c f =
{(

x1, 1ei2π(1)
)

,
(

x2, 1ei2π(1)
)

,
(

x3, 1ei2π(1)
)

,
(

x4, 1ei2π(1)
)

,
(

x5, 1ei2π(1)
)}

Then, by using the derived measures based on weight vectors 0.2, 0.3, 0.1, 0.3, and 0.1
with Φ = 0.4, the evaluated information is listed in Table 4.

Table 4. Values of different types of measures for the data in Example 3.

Methods ξξcf−1 ξξcf−2 ξξcf−3 ξξcf−4 ξξcf−5

CFD− SM1 0.84069 0.81017 0.76768 0.69719 0.79775

CFWD− SM1 0.16915 0.16624 0.15645 0.13646 0.15556

CFD− SM2 0.90149 0.87207 0.85014 0.62494 0.79033

CFWD− SM2 0.91634 0.88266 0.84685 0.60532 0.74813

CFGD− SM1 0.77952 0.73862 0.69212 0.61963 0.72754

CFWGD− SM1 0.15683 0.15171 0.14142 0.12082 0.14143

CFGD− SM2 0.82285 0.78064 0.7457 0.57299 0.72327

CFWGD− SM2 0.83456 0.79344 0.75018 0.55446 0.68778
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Using the information in Table 4, the ranking results are given in Table 5.

Table 5. Ranking information for the data in Table 4.

Methods Ranking Results

CFD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−5 > ξξc f−3 > ξξc f−4

CFWD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFWD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFGD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−5 > ξξc f−3 > ξξc f−4

CFWGD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−5 > ξξc f−3 > ξξc f−4

CFGD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFWGD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

From the information in Table 5, we noticed that all derived measures are given the
same ranking information, such as: ξξc f−1, where ξξc f−1 represented mobile phone apps,
which are very beneficial and valuable for all students.

4.3. Algorithm-3

In this sub-section, we select five unknown places and one known place and try to
evaluate the best place for digital education in Saudi Arabia under the consideration of
derived measures.

Example 4. Here, we considered five types of places, such as ξξc f−1: Place-1; ξξc f−2: Place-2;
ξξc f−3: Place-3; ξξc f−4: Place-4; and ξξc f−5: Place-5. For evaluating the above problem, we
decided the places needed which kind of digital education was best for their people. For this, based
on the following information, we will be deciding which kind of place needs digital education, such
as: x1: quality of internet services; x2: the price of laptops; x3: quantity of people; x4: feasibility of
employment; and x5: reliability of social impact. Under the consideration of five things in all places,
five unknowns are listed below:

ξξc f−1 =
{(

x1, 0.9ei2π(0.7)
)

,
(

x2, 0.7ei2π(0.8)
)

,
(

x3, 0.8ei2π(0.1)
)

,
(

x4, 0.5ei2π(0.3)
)

,
(

x5, 0.6ei2π(0.7)
)}

ξξc f−2 =
{(

x1, 0.5ei2π(0.9)
)

,
(

x2, 0.6ei2π(0.5)
)

,
(

x3, 0.3ei2π(0.3)
)

,
(

x4, 0.7ei2π(0.4)
)

,
(

x5, 0.6ei2π(0.7)
)}

ξξc f−3 =
{(

x1, 0.2ei2π(0.5)
)

,
(

x2, 0.5ei2π(0.4)
)

,
(

x3, 0.3ei2π(0.6)
)

,
(

x4, 0.7ei2π(0.7)
)

,
(

x5, 0.3ei2π(0.8)
)}

ξξc f−4 =
{(

x1, 0.4ei2π(0.4)
)

,
(

x2, 0.5ei2π(0.3)
)

,
(

x3, 0.6ei2π(0.2)
)

,
(

x4, 0.7ei2π(0.1)
)

,
(

x5, 0.8ei2π(0.3)
)}

ξξc f−5 =
{(

x1, 0.9ei2π(0.1)
)

,
(

x2, 0.8ei2π(0.2)
)

,
(

x3, 0.7ei2π(0.7)
)

,
(

x4, 0.6ei2π(0.4)
)

,
(

x5, 0.5ei2π(0.5)
)}

For evaluating the above dilemma, we use one known information which is
stated below:
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ξξ∗c f =
{(

x1, 0.2ei2π(0.3)
)

,
(

x2, 0.1ei2π(0.3)
)

,
(

x3, 0.1ei2π(0.2)
)

,
(

x4, 0.3ei2π(0.3)
)

,
(

x5, 0.2ei2π(0.4)
)}

Then by using the derived measures based on weight vectors 0.2,0.3,0.1,0.3, and 0.1
with Φ = 0.9, the evaluated information is listed in Table 6.

Table 6. Values of different types of measures for the data in Example 4.

Methods ξξcf−1 ξξcf−2 ξξcf−3 ξξcf−4 ξξcf−5

CFD− SM1 0.60404 0.71062 0.67928 0.65555 0.58463

CFWD− SM1 0.1284 0.13897 0.129 0.13702 0.11595

CFD− SM2 0.68682 0.85532 0.95954 0.43427 0.53639

CFWD− SM2 0.71499 0.81963 0.77573 0.43768 0.49166

CFGD− SM1 0.41026 0.51404 0.46118 0.46157 0.39941

CFWGD− SM1 0.08932 0.10015 0.0874 0.09768 0.07923

CFGD− SM2 0.44364 0.6298 0.67094 0.27817 0.34476

CFWGD− SM2 0.46535 0.59956 0.51394 0.28168 0.31436

Using the information in Table 6, the ranking results are given in Table 7.

Table 7. Ranking information for the data in Table 6.

Methods Ranking Results

CFD− SM1 ξξc f−2 > ξξc f−3 > ξξc f−4 > ξξc f−1 > ξξc f−5

CFWD− SM1 ξξc f−2 > ξξc f−4 > ξξc f−3 > ξξc f−1 > ξξc f−5

CFD− SM2 ξξc f−3 > ξξc f−2 > ξξc f−1 > ξξc f−5 > ξξc f−4

CFWD− SM2 ξξc f−2 > ξξc f−3 > ξξc f−1 > ξξc f−5 > ξξc f−4

CFGD− SM1 ξξc f−2 > ξξc f−3 > ξξc f−4 > ξξc f−1 > ξξc f−5

CFWGD− SM1 ξξc f−2 > ξξc f−4 > ξξc f−1 > ξξc f−3 > ξξc f−5

CFGD− SM2 ξξc f−3 > ξξc f−2 > ξξc f−1 > ξξc f−5 > ξξc f−4

CFWGD− SM2 ξξc f−2 > ξξc f−3 > ξξc f−1 > ξξc f−5 > ξξc f−4

From the information in Table 7, we noticed that all derived measures are given two
different ranking information, such as: ξξc f−2 and ξξc f−3, where ξξc f−2 represented Place 2
in Saudi Arabia, and ξξc f−3 represented Place-3 in Saudi Arabia, which is a very important
and main feature for constructing any utilization of digital education.

5. Comparative Analysis

Comparative analysis will encompass the comparison between pervasive and recently
introduced methods concerning CFS. In this context, pre-existing methods, including Lee-
Kwang et al.’s [10] examination of the theory of SMs with fuzzy information, serve as the
foundation for this. In addition, Xuecheng [11] established the three varying categories
of methodology, such as entropy, distance, and SMs based on fuzzy information, while
Beg and Ashraf [13] outlined the SMs for FSs, and Chen et al. [14] considered a multitude
of SMs based on fuzzy information. Moreover, the work of Couso et al. [15] resulted in
the theory of SMs and dis-SMs with their existing knowledge of fuzzy set theory, whereas
Zhang and Fu [16] showcased their SMs based on FSs. Guo et al. [17], however, focused
on the theory of cosine SMs based on CFS, while Hu et al. [18] evaluated the distance,
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similarity, and continuity information for CFS. The aforementioned comparative analysis
will feature clearly in Table 8 by employing the information collated in Table 4.

Table 8. Comparison: values of different types of measures for the data in Example 4.

Methods ξξcf−1 ξξcf−2 ξξcf−3 ξξcf−4 ξξcf−5

Lee-Kwang et al. [10] ××× ××× ××× ××× ×××
Xuecheng [11] ××× ××× ××× ××× ×××

Wang [12] ××× ××× ××× ××× ×××
Beg and Ashraf [13] ××× ××× ××× ××× ×××

Chen et al. [14] ××× ××× ××× ××× ×××
Couso et al. [15] ××× ××× ××× ××× ×××

Zhang and Fu [16] ××× ××× ××× ××× ×××
Guo et al. [17] 0.71432 0.68064 0.64483 0.40330 0.54611

Hu et al. [18] 0.35481 0.35070 0.34040 0.32080 0.34041

CFD− SM1 0.84069 0.81017 0.76768 0.69719 0.79775

CFWD− SM1 0.16915 0.16624 0.15645 0.13646 0.15556

CFD− SM2 0.90149 0.87207 0.85014 0.62494 0.79033

CFWD− SM2 0.91634 0.88266 0.84685 0.60532 0.74813

CFGD− SM1 0.77952 0.73862 0.69212 0.61963 0.72754

CFWGD− SM1 0.15683 0.15171 0.14142 0.12082 0.14143

CFGD− SM2 0.82285 0.78064 0.7457 0.57299 0.72327

CFWGD− SM2 0.83456 0.79344 0.75018 0.55446 0.68778

Using the information in Table 8, the ranking results are given in Table 9.

Table 9. Ranking information for the data in Table 8.

Methods Ranking Results

Lee-Kwang et al. [10] Not applicable

Xuecheng [11] Not applicable

Wang [12] Not applicable

Beg and Ashraf [13] Not applicable

Chen et al. [14] Not applicable

Couso et al. [15] Not applicable

Zhang and Fu [16] Not applicable

Guo et al. [17] ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

Hu et al. [18] ξξc f−1 > ξξc f−2 > ξξc f−5 > ξξc f−3 > ξξc f−4

CFD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−5 > ξξc f−3 > ξξc f−4

CFWD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFWD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFGD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−5 > ξξc f−3 > ξξc f−4

CFWGD− SM1 ξξc f−1 > ξξc f−2 > ξξc f−5 > ξξc f−3 > ξξc f−4
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Table 9. Cont.

Methods Ranking Results

CFGD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

CFWGD− SM2 ξξc f−1 > ξξc f−2 > ξξc f−3 > ξξc f−5 > ξξc f−4

It is important to bring to the reader’s attention that the ranked results in Table 9 are
identical for all suggested measures as well as for the research conducted by Guo et al. [17]
and Hu et al. [18]. With all measures collected from work guided by complex fuzzy infor-
mation, the most appropriate conclusion is ξξc f−1. However, methods originating from
the research of Lee-Kwang et al. [10], Xuecheng [11], Wang [12], Beg and Ashraf [13],
Chen et al. [14], Couso et al. [15], and Zhang and Fu [16] were unsuccessful as a result of
the fact they emerged from computed data based on fuzzy information as per the unique
situation of the obtained measures.

Hence, such measures are considerably more generalized than the methods derived
from various other scholars [10–18]. Thus, the measures utilized in this paper encom-
pass many employment opportunities in artificial intelligence, machine learning, and
problem solving.

6. Conclusions and Future Studies

Fuzzy set theory has a lot of applications in artificial intelligence, machine learning,
and neural networks, but in many situations, the theory of fuzzy set has not worked
effectively. For instance, if someone provides two-dimensional information instead of
one-dimensional information, then the theory of fuzzy set has failed. For evaluating such
types of problems, the theory of complex fuzzy theory is very effective and dominant in
managing such types of problems. The major influence of this manuscript is stated below:

1. We derived the theory of complex fuzzy dice similarity measures and assessed the
significant outcomes;

2. We derived the theory of complex fuzzy weighted dice similarity measures and
assessed the significant outcomes;

3. We evaluated the idea of complex fuzzy generalized dice similarity measures;
4. We evaluated the idea of complex fuzzy weighted generalized dice similarity mea-

sures;
5. The issues within digital education were assessed using the obtained measures;
6. The contrasts between existing and suggested methods were showcased to highlight

the flexibility and viability of the obtained and derived measures.

In the upcoming times, we aim to utilize the above measures in the environment of
artificial intelligence, machine learning, game theory, and road signals. Further research
regarding these concepts should evolve the suggested themes using the work of vari-
ous disciplines, including soft expert sets [27], complex multi-fuzzy soft expert sets [28],
m-polar fuzzy soft expert sets [29], Q multi-fuzzy soft expert sets [30], fuzzy soft expert
sets [31], generalized fuzzy soft expert sets [32], cubic soft expert sets [33], complex fuzzy
soft sets [34], data-driven fuzzy active disturbance rejection control [35], and enhanced
p-type control [36]. Combined efforts can only be effective in the fields of artificial intel-
ligence, neural networks, problem-solving, software engineering, computer science, and
game theory.
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