
Citation: Degermendzhi, A.;

Abakumov, A. Control Factors for the

Equilibrium Composition of

Microbial Communities in Open

Systems: Theory and Experiments.

Mathematics 2023, 11, 3183. https://

doi.org/10.3390/math11143183

Academic Editors: Efim Ya. Frisman

and Oksana L. Zhdanova

Received: 23 June 2023

Revised: 17 July 2023

Accepted: 18 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Control Factors for the Equilibrium Composition of Microbial
Communities in Open Systems: Theory and Experiments
Andrey Degermendzhi 1 and Alexander Abakumov 2,*

1 Institute of Biophysics, Department of Federal Research Center “Krasnoyarsk Science Center of the Siberian
Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia; nn1947@yandex.ru

2 Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences,
690041 Vladivostok, Russia

* Correspondence: abakumov@dvo.ru; Tel.: +7-91-4702-4192

Abstract: The present paper is a summary of the authors’ theoretical and experimental research
dealing with the patterns of stable equilibrium coexistence of microbial populations in flow systems
interacting through specific density-dependent growth regulators (RFs). The discovered “paradoxical”
lack of dependence of the background steady-state levels (concentrations) of RFs on their input values
is confirmed experimentally and theoretically through the introduced sensitivity coefficients. This
effect has been termed “autostabilization” of RFs. An important theorem (formula) of “quantization”
suggesting the integer value of the sum of all sensitivity coefficients, which is equal to the difference
between the number of RFs and the number of populations of one trophic level, has been proven. A
modification of the “quantization” formula for an arbitrary trophic web is shown. A new criterion
for intra- and inter-population microbial interactions for RFs is proposed—the response of growth
acceleration to a perturbation in population size. This criterion makes it possible to quantify interspe-
cific complex relationships, which has been previously impossible. The relationship between the new
coefficients of inter-population interactions and the accuracy of model verification has been shown
theoretically. Based on this criterion and the autostabilization effect, a method for experimental search
for unknown RFs is proposed.

Keywords: chemostat; modeling; control of community composition; autostabilization effect;
coexistence; new interaction criterion
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1. Introduction

Modern ecology faces a number of challenges, one of which is controlling the species
composition of natural communities. In addition to the fundamental aspect, this is impor-
tant for such practical tasks as the reestablishment of ecological structures after anthro-
pogenic interventions, including ensuring the proper level of self-purification and finding
ways to eliminate “harmful” populations. An open system for continuous cultivation in
which steady state is achieved due to the growth rate (cell division) being equal to the flow
rate (removal as a mortality analog) will serve as the experimental basis for the theoretical
analysis of these problems [1]. An important long-range objective is to use continuous
cultures of, e.g., microalgal communities with controlled composition, in closed human life
support systems to supply humans with oxygen and to remove CO2 and urine [2]. The key
issue of matching the respiratory quotient of the mixed microalgal culture to the respiratory
quotient of humans could be solved by controlling the composition of mixed populations
of algae that have different respiratory quotients [3].

The general principle leading to controlling the species composition of a community
is based on the ecological mechanisms underlying the coexistence of species through
the regulation of population growth and mortality. The theory states that a sufficient
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condition for the coexistence of two species is the prevalence of intraspecific competition
over interspecific competition [4,5]. At the same time, two species competing for a common
resource cannot coexist, which is termed “the competitive exclusion principle” [6,7]. The
“aquatic” analogue of this principle, the “paradox of the plankton” [8], has caused a surge
of theoretical research aimed to find various mechanisms that explain the paradox, i.e., an
“exclusion” from the “exclusion principle” [9–20]. The modes of coexistence considered in
different studies are based on a kind of “separation” of competition in space or time, or
both. Armstrong and McGehee [13] proved in a theoretically rigorous manner that there is
no restriction on the number of coexisting species limited to four resources (substrates) in
the self-oscillation mode. The work [21] showed, using a computer model, that there are
quite exotic mechanisms for regulating the abundance of two species, leading to “chaotic”
coexistence on a single limiting resource. The mechanisms of coexistence proposed by the
theory are possible and may exist in nature, but, unfortunately, most of them have not been
tested experimentally [22]. The theory of coexistence in its classical form corresponds to
mathematical phenomenological models of the form:

.
X = X ∗ g(X, Q), (1)

where Q is a vector of independent factors. Equations similar to (1) can model predatory or
direct interactions between species. The classical studies by R. MacArthur and S. Levin [9],
S. Levin [23], and R. MacArthur [24] proved that in the equilibrium culture containing
several species, their number should not exceed the number of substrates (resources) limit-
ing their growth rate. Thus, the theory states that in equilibrium, out of two populations
limited by the same resource, only one species survives [6]. In the general case, regulation
of type (1) is termed “density-dependent growth control factor” (DDGCF). However, most
experiments and new theoretical approaches deal with DDGCFs that take into account the
specific chemical (biochemical, metabolic) or physical nature of these factors. In order to
distinguish this type of factors from the classical DDGCFs, these metabolic regulators will
be referred to as “regulating factors” (RFs). Depending on the nature of RFs, they influence
the specific growth rate of a particular species, while the dynamics of the RFs is determined
by the activity of the population or populations.

This study is a theoretical and experimental analysis of stability and controllability
of the equilibrium microbial mixture without trophic interactions in perfectly mixed flow
systems with special emphasis on RF dynamics. The specific analysis of RFs has also given
rise to the new rule of estimating relationships between species based on species growth
acceleration in response to a change in the abundance of this or another species. Eventually,
special dynamics of RFs and the “growth acceleration” rule will be of critical importance in
the experimental search for such RFs in communities, which are real “levers” for controlling
species composition.

2. The Rule of Coexistence of Microbial Populations in Continuous Cultures

The classical approach to classifying the interspecific relationships was based
on estimating the “sign” and the “value” of the change in specific growth rate of
one species as a consequence of an increase in the abundance of another species [25].
Equation (1) serves as the mathematical basis for this approach. In other words, values
Bil = ∂gi(X1, . . . , Xn, t)/∂Xl or Bil = sign Bil determine ultimate relationships between
species. The “sign” and the “value” of numbers (Bli, Bil) determine specific types of
relationships: (−1, −1) means competition or antagonism, (+1, 0)—commensalism,
(−1, 0)—amensalism, etc.

The theory of analysis of relationships between microbial species (numbering m, as
an example) in mixed culture should begin with the general model (2) “immersed” in the
open flow system. It is assumed that the specific growth rate (SGR) of each population is
affected by certain RFs, the total number of which in the system is n. The change in the



Mathematics 2023, 11, 3183 3 of 21

level of each RF is caused by the uptake or release of this factor by a definite population or
a group of populations whose total number is m. Then, system (2) has the following form:

.
X = [g(R)− D] ∗ X, (2a)

.
R = D

(
R0 − R

)
+ f (X, R). (2b)

The term f (X, R) in the right-hand part determines the final balance of regulators
in the culture. It is difficult to present the function g as dependent on R in some general
form, although specific cases, e.g., those involving Liebig’s law, are known. However,
even such a general form shows that in the equilibrium mixture, the number of species
is no greater than the total number of RFs (i.e., m ≤ n) [26]. The result of coexistence
obtained here is similar to the results obtained by other authors addressing regulation via
DDGCFs, but the present rule of coexistence includes not only limitation by substrate, but
also a large number of other interspecific relationships. The broader condition of species
coexistence obviously leads to an extended interpretation of Gause’s principle [27]: not
only the single limiting resource–substrate but also any other RF prevents the two species
from living together.

If the list of RFs is extended by including various types of regulation of species
abundance in flow systems (maintenance of absorbance, concentrations of phytopigments,
acidic ions, etc.), the coexistence rule remains valid: the total number of RFs should also
include these types of regulation. The chemical processes in the system do not contradict
this rule either.

Table 1, reproduced from our previous paper [28], summarizes almost all literature
data on experiments with microbial populations coexisting in flow systems, including the
specific RFs responsible for that. The table also shows that the coexistence rule holds true:
the number of populations is lower than the number of RFs. It is important that the RFs are
listed as coexistence mechanisms, and their specific dynamics will be considered below.

Table 1. Different Types of Interactions Providing for Stationary Coexistence of Species in Experimen-
tal Flow Systems.

St. No. Medium Factors (RFs) Coexisting Species Interaction Diagram Ref.

1 2 3 4 5

1 S, glucose,
P, lactate

X1—Lactobacillus plantarum
x2—Proptonibacterium shermanii
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2 S, lactate
P, acetate

X1—Desulfovibrio desulfuricans
X2—Methanobacterium sp. [30]

3 S, manitol
P, fructose

X1—Acetobacter suboyxdans
X2—Saccharomyces carlsbergensis [31]

4
S, 5-methyl-recorcin (orcin)

P1, unknown product
P2, unknown product

X1—Pseudomonas sp.
x2—Gram-positive bacilli
x3—Gram-positive bacilli
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Table 1. Cont.

St. No. Medium Factors (RFs) Coexisting Species Interaction Diagram Ref.

1 2 3 4 5

6

S—parathion (organophosphorus
insecticide)

P1—paranitrophenol
P2—diethyl phosphate

X1—Ps. stutzeri
x2—Ps. aeruginosa

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[34]

7

S—oxygen
P1—methanol

P2—organic matter
P3—organic matter

X1—Pseudomonas sp.
x2—Hyphomicrobium

X3—Flavobacterium sp.
X4—Acinetobacter sp.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[35]

8 S1—n—oxibenzoate
S2—glucose

X1—Klebsiella aerogenes
X2—Pseudomonas aeruginosa

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[36]

9 S—glucose
P—riboflavin

X1—Saccharomyces cerevisiqe
X2—Lactobacillus casei

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[37]

10 S—glucose
P—vitamin

X1—Candida mycoderma
X2—C. tropicalis [38]

11 S—glucose
P—unidentified compound

X1—Flavobacterium breve (F-39)
X2—Fl. ferrugineum (B-21)

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[39]

12 S1—glucose
S2—xylose

x1—Candida mycoderma
X2—C. tropicalis

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[38]

13 S1—glucose
S2—galactose

X1—Candida mycoderma
X2—C. tropicalis [38]

14 S1—glucose
S2—arabinose

X1—Candida scottii
X2—C. tropicalis

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[38]

15 S—glucose
P—H+

Saccharomyces cerevisiae:
X1—haploid
X2—diploid

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

6 

S—parathion (organophospho-
rus insecticide) 

Р1—paranitrophenol 
Р2—diethyl phosphate 

X1—Ps. stutzeri 
Х2—Ps. aeruginosa 

 

[34] 

7 

S—oxygen 
Р1—methanol 

Р2—organic matter 
Р3—organic matter 

X1—Pseudomonas sp. 
Х2—Hyphomicrobiит 

X3—Flavobacterium sp. 
X4—Acinetobacter sp. 

 

[35] 

8 
S1—n—oxibenzoate 

S2—glucose 
X1—Klebsiella aerogenes 

X2—Pseudomonas aeruginosa 

 

[36] 

9 
S—glucose 

P—riboflavin 
X1—Saccharomyces cerevisiqe 

X2—Lactobacillus casei 

 

[37] 

10 S—glucose 
P—vitamin 

X1—Candida mycoderma 
X2—C. tropicalis 

[38] 

11 S—glucose 
P—unidentified compound 

X1—Flavobacterium breve (F-39) 
X2—Fl. ferrugineum (B-21) 

 

[39] 

12 S1—glucose 
S2—xylose 

Х1—Candida mycoderma 
X2—C. tropicalis 

 

[38] 

13 S1—glucose 
S2—galactose 

X1—Candida mycoderma 
X2—С. tropicalis 

[38] 

14 S1—glucose 
S2—arabinose 

X1—Candida scottii 
X2—C. tropicalis 

 

[38] 

15 
S—glucose 

P—H+ 

Saccharomyces cerevisiae: 
X1—haploid 
X2—diploid 

 

[38] 

16 S—substrate 
P—inhibitor 

Bacteria: 
X1—inhibitor-insensitive strain 

X2—sensitive strain 
[40] 

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (𝑋 ) grow (plus 
over the arrow), while its own quantity decreases (minus over the reverse arrow); the substance, P, 
released by species 𝑋  (plus over the arrow), inhibits growth of the second species (𝑋 ) (minus over 
the arrow), etc. 

Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations 
The rule of estimating the relationships between microbial species through certain 

RFs needs to be revised because the growth rate of the “acceptor” population does not 
immediately respond to the change in the size of the “donor” population: its response is 
delayed to after the change in the level of the RF. Therefore, the next objective is to rigor-
ously derive this rule of estimating the relationships. 

[38]

16 S—substrate
P—inhibitor

Bacteria:
X1—inhibitor-insensitive strain

X2—sensitive strain
[40]

For example, Diagram 2 means that the substrate, S, makes SGR of the first species (X1) grow (plus over the
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(plus over the arrow), inhibits growth of the second species (X2) (minus over the arrow), etc.
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Coexistence, Interaction Coefficients, and the New Criterion of Interactions between Populations

The rule of estimating the relationships between microbial species through certain
RFs needs to be revised because the growth rate of the “acceptor” population does not
immediately respond to the change in the size of the “donor” population: its response
is delayed to after the change in the level of the RF. Therefore, the next objective is to
rigorously derive this rule of estimating the relationships.

The purpose of this section is to formulate a new interaction criterion “adapted” to
models that describe the dynamics of the structure of microbial communities. We use the
rather universal description of the coexistence mechanism in the flow system with the RF
role explicitly taken into account as the underpinning for our reasoning.

The type of relationship can be determined from changes in one population in response
to changes in the size of the other. We assume that the biomass of a species (number l)
in the mixture at time t∗ has increased by the amount ∆Xl . Then, the R(t∗) level will not
change immediately at time t∗, and specific growth rate g(R)|t∗ will not change either, as,
according to Equation (2), the perturbation ∆Xl will only cause a change in the first time
derivative R, i.e., a change in

.
R :

.
R|Pl

t∗ = D
(

R0 − R
)
+ f (X1, . . . , Xl + ∆Xl , . . . , Xm, R) (3)

when compared with the unperturbed value,

.
R|Ut∗ = D

(
R0 − R

)
+ f (X1, . . . , Xl , Xl+1, . . . , Xm, R), (4)

where P is the perturbed state and U is the unperturbed state.
Thus, the time derivative of the specific growth rate, i.e., growth acceleration, will be

the parameter of the “acceptor” population” that will “sense” a change in the size of the
“donor” population, and, hence, it should be called the new rule of estimating interspecific
relationships. A formula that does not require system (2) to be solved was derived for
calculating growth acceleration.

Then, the difference between growth accelerations of these two states will be the mea-
sure of the type (the plus sign (stimulation) or the minus sign (inhibition)) and magnitude
of the interactions between species.

Bil =
∂gi
∂t

∣∣∣∣Pl

t∗
− ∂gi

∂t

∣∣∣∣U
t∗

l, i = 1, m. (5)

Graphically, Bil is the difference between slope ratios of tangents to the corresponding
curves of specific growth rates, which can be determined experimentally. Since g ≡ g(R),
the derivative is given by

∂g
∂t

=
∂g
∂R
·∂R

∂t
. (6)

Substituting (3), (4), and (6) into (5) and taking into account the fact that

[∂g/∂R]|Pl
t∗ = [∂g/∂R]|Ut∗ ,

we obtain
Bil =

∂gi
∂R
·

.
R
∣∣∣Pl

t∗
− ∂gi

∂R
·

.
R
∣∣∣U
t∗
=

∂gi
∂R
·
[

f |Pl
t∗ − f |Ut∗

]
.

When the perturbation, ∆Xl , is sufficiently small, the expression
[

f |Pl
t∗ − f |Ut∗

]
can be

replaced by (∂ f /∂Xl)∆Xl , that is:

Bil = ∆Xl
∂gi
∂R
· ∂ f
∂Xl

. (7)
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The value of Bil (7) shows how species number l affects species number i. As a rule,
the following option

f = A(g(R) ∗ X) (8)

is of interest, leading to the interaction coefficients of the form

Bil = ∆Xl gl
∂gi
∂R

al ,

where al denotes the lth column of matrix A.
Since ∆Xl , gl ≥ 0, the type of relationship Bil is determined by the sign of the ex-

pression below, simultaneously simplifying the expression by normalizing Bil per unit of
change in the number and unit of specific growth rate:

Bil = sign Bil =
∂gi
∂R

al .

Coefficients Bli and Bil characterize interactions between two species, and the previ-
ously proposed table of interactions [24] can be also used for the new classification. As is
easy to see, the type of interaction is constant over time in two cases: if specific growth rate
is proportionally related to R and in equilibrium.

Thus, we construct the following matrix of interaction coefficients

B = (Bil)
m
i,l=1

and obtain the formula
B =

∂g
∂R
·A. (9)

3. Sensitivity Coefficients

The presence of the feedback, e.g., in regulation of the growth of monoculture, where
the level of the regulator in the culture changes with the change in the growth rate, and, at
the same time, the regulator influences specific growth rate, causes “paradoxical” regulator
dynamics. The essence of this dynamics is the absence of the relationship(!) between the
background level of the regulator and its input flow (at m = n).

The autostabilization effect can be explained using a simple example of continuous
monoculture (X) controlled by substrate (S). The model has the form

.
X = [g(S)− D]X,

.
S = D

(
S0 − S

)
− g(S)X/Y,

where g(S) = gmS/(ks + S) is specific growth rate of the species; Y is substrate consump-
tion factor; gm is the greatest specific growth rate; ks is coefficient of sensitivity to the growth
limiting substrate. The positive steady-state solution of this equation is: X = Y

(
S0 − S

)
and S = ksD/(gm − D). Hence, substrate concentration (S) does not depend on its input
concentration (S0) in the state of growth limitation. If the autostabilization effect is for-
malized by introducing the coefficient of autostabilization K = ∂S/∂S0, then K = 0, and
concentration S does not depend (!) on input concentration S0.

The autostabilization effect can be illustrated with diverse experimental studies, cul-
tivation of hydrogen-oxidizing bacterium Seliberia carboxydohydrogena Z1062 vs. limited
by dissolved oxygen being a good example (Figure 1). Figure 2 demonstrates that steady-
state concentration of H2 is not related to its input concentration (the ideal line is denoted
by 1) in the limitation zone A, while steady-state biomass concentration grows in direct
proportion to the input level of the limiting hydrogen. The autostabilization coefficient
of the sensitivity coefficient in zone A is approximately equal to zero (slope ratio). The
opposite trend is observed on leaving the limitation zone and entering zone B. This example
explicitly describes the mechanism of autostabilization of the limiting factor and, generally,
any DDGCF type.
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, g/L) in Seliberia carboxydohydrogena
Z1062 vs. chemostat culture (flow rate 0.15 h−1) as dependent on hydrogen fed into the fermenter
(vol.%) [41].

3.1. An Invariant for Sensitivity Coefficients

The problem of sensitivity coefficients will be considered for model (2) at
f (X, R) = A(g(R) ∗ X):

dX
dt

= (g(R)− D) ∗ X (10a)

dR
dt

= D
(

R0 − R
)
+ A(g(R) ∗ X) (10b)

with n number of RFs and m number of species.
The totality of sensitivity coefficients K1, . . . , Kn obeys the law:

Kj =
∂Rj

∂R0
j

, (11)

and
∑n

j=1 Kj = n−m, (12)

where Rj is RF concentration in steady state. Sensitivity coefficients are the characteristics
of RF autostabilization in steady state.
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Formula (12) is a rare law of ecology, invariant to the integral property of the species
mixture in the open flow system, which are connected by an arbitrarily complex network
of biochemical (metabolic) relationships through growth regulators. Its essence is that the
sum of all autostabilization coefficients will always be a natural number, and this can be
found in special flow experiments. A number of specific properties follow from this law:

(1) The value of Kj for each regulator j, in the general case, will be a fractional number both
greater and less than zero, which can change from equilibrium to a new equilibrium
when input levels of regulators are varied;

(2) Although all Kj values are variable and non-integer, summation of them always
produces the same natural number—deduction of the total number of species in the
equilibrium mixture from the total number of regulators;

(3) It allows us to assess the level of our understanding of the completeness of rela-
tionships in a mixture of species: Violation of Formula (12) requires the search for
additional regulators and/or new species.

Let us prove the integrity of the sum of sensitivity coefficients. To obtain the result, we
need the following data.

Definition 1. The term trace of square matrix A, tr A, denotes the sum of its diagonal elements [39].

Lemma 1. For matrices A =
(
aij
)n,m

i,j=1, B =
(
bij
)m,m

i,j=1, C =
(
cij
)m,n

i,j=1 equation,
tr(ABC) = tr(CAB) is satisfied.

Proof. Both matrices in the equation that is being proven are square. The equation is
proven by directly calculating the traces of both matrices, leading to the relation.

tr(ABC) = tr(CAB) = ∑n,m,m
i,j,k=1 aijbjkcki

Next, we proceed to proving the corresponding theorem.
As a preliminary step, we linearize the function of specific growth rate around the

equilibrium: g(R) = GR with matrix G of dimension mxn. �

Theorem 1 of Quantization. Suppose that matrix GA is non-degenerate. Then, the sum of
sensitivity coefficients K = ∑n

j=1 Kj in balanced state is equal to n−m.

Proof. The nontrivial equilibrium solution is determined from equations:

g(R)− D = 0,

D
(

R0 − R
)
+ A(g(R) ∗ X) = 0.

After transformations, we obtain a system of linear algebraic equations:

R− AX = R0, (13a)

GR = D. (13b)

Now we perform a number of transformations. From the Equation (13a), we obtain

R = R0 + AX.

Having substituted this expression into the Equation (13b)

GAX = −GR0 + D,
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we obtain an expression for X:

X = (GA)−1
(
−GR0 + D

)
.

This expression is substituted into Equation (9):

R =
[

Inxn − A(GA)−1 G
]

R0 + A(GA)−1D. (14)

Here, Inxn denotes the identity matrix of the corresponding dimension.
Note that if matrix GA is non-degenerate, the nontrivial equilibrium solution is unique.

Its positivity must be assumed additionally.

Because of the linearity of the last relation, sensitivity coefficients Kj =
∂Rj

∂R0
j

are diagonal

elements of matrix Inxn − A(GA)−1 G from Equation (14).
Then

∑n
j=1 Kj = tr

[
Inxn − A(GA)−1 G

]
=tr[Inxn]− tr

[
A(GA)−1 G

]
= n− tr

[
A(GA)−1 G

]
.

To calculate the second expression in the last formula, we perform auxiliary transfor-
mations. We give the equation:

m = tr[Imxm] = tr
[
(GA)−1(GA)

]
= tr

[
A(GA)−1G

]
.

The last equation is satisfied in accordance with the above lemma.
By substituting the last relation into the previous formula, we obtain

∑n
j=1 Kj = n− tr

[
A(GA)−1 G

]
= n−m. (15)

The theorem has been proven. �

Notes. A necessary condition for the non-degeneracy of the matrix GA is the inequality
n ≥m. This follows from the fact that the rank of non-degenerate matrix must be equal to
m. But, the rank of the product of two rectangular matrices does not exceed the rank of
each of the factors [42]. The non-degeneracy condition is obviously false for n < m.

3.2. The Generalization Taking into Account the “Non-Factor” Species Interaction

Next, we consider a more general case, in which direct, “non-factor”, species interactions
in the community are taken into account. These are mainly the predator–prey interactions.
The construction of the previous theorem does not take them into consideration.

Then, Model (10) is generalized as follows:

dX
dt

= (g(X, R)− D) ∗ X,

dR
dt

= D
(

R0 − R
)
+ A(g(X, R) ∗ X ).

Again, we assume linearization of the function of specific growth rate around
the equilibrium:

g(X, R) = GR + G0 + HX + H0

with matrices G, H of coefficients in specific growth rates of dimensions mxn and mxm,
respectively; vectors G0, H0 have dimension m.

Theorem 2. If matrix GA + H is non-degenerate, the sum of sensitivity coefficients K = ∑n
j=1 Kj

is equal to (n−m) + tr
[
(GA + H)−1H

]
.
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Proof. The nontrivial equilibrium solution is determined from equations:

g(X, R)− D = 0,

D
(

R0 − R
)
+ A(g(X, R) ∗ X ) = 0.

After transformations, we obtain a system of linear algebraic equations:

R− AX = R0 (16a)

GR + HX = D− (G0 + H0). (16b)

The logic of the proof mainly corresponds to the proof of the previous theorem, but
the generalization leads to certain adjustments. From the Equation (16a), we obtain

R = R0 + AX. (17)

By substituting this expression into the Equation (16b)

(GA + H)X = −GR0 + D− (G0 + H0),

we obtain the expression for X:

X = (GA + H)−1
[
−GR0 + D− (G0 + H0)

]
.

Then, we substitute this expression into Equation (17):

R =
[

Inxn − A(GA + H)−1 G
]

R0 + A(GA + H)−1[D− (G0 + H0)]. (18)

Here Inxn denotes the identity matrix of the corresponding dimension. �

Note that if matrix GA + H is non-degenerate, the nontrivial equilibrium solution is
unique. Its positivity must be assumed additionally.

Because of the linearity of the last relation, sensitivity coefficients Kj =
∂Rj

∂R0
j

are diagonal

elements of matrix Inxn − A(GA + H)−1 G from Equation (18).
Then

∑n
j=1 Kj = tr

[
Inxn − A(GA + H)−1 G

]
=tr[Inxn]− tr

[
A(GA + H)−1 G

]
= n− tr

[
A(GA + H)−1 G

]
. (19)

To calculate the second expression in Formula (18), we perform auxiliary transforma-
tions. We give the equation

m = tr[Imxm] = tr
[
(GA + H)−1(GA + H)

]
and transform the last expression:

r
[
(GA + H)−1(GA + H)

]
= tr

[
(GA + H)−1GA + (GA + H)−1H

]
= tr

[
(GA + H)−1GA]+tr[(GA + H)−1H

]
.

We apply the Lemma 1 mentioned above in the first term of the last expression and, as
we start these auxiliary transformations, we obtain

m = tr
[

A(GA + H)−1G]+tr[(GA + H)−1H
]
.



Mathematics 2023, 11, 3183 11 of 21

Hence,
tr
[

A(GA + H)−1G
]
= m−tr

[
(GA + H)−1H

]
.

Having substituted the last expression into Formula (19), we obtain the sought-for formula:

K = ∑n
j=1 Kj = (n−m) + tr

[
(GA + H)−1H

]
. (20)

The theorem has been proven.
Notes.

(1) Matrix B (9) of population interactions in the community through factors coincides
with GA. Formula (20) can be rewritten as

K = (n−m) + tr
[
(B + H)−1H

]
. (21)

(2) If there are no “non-factor” interactions in the community (H = 0), Theorem 2 gives
the result of Theorem 1.

(3) If the factors do not affect the dynamics of the community (B = 0), the sum of sensi-
tivity coefficients is equal to the number of factors, n, suggesting that the community
does not affect the factors either; thus, the community and the factors do not interact.
For the community, the factors taken into account are imaginary and fictitious.

(4) If the effects of “non-factor” interactions and factors in the community are propor-
tional to each other (H = γB at some γ ≥ 0), Formula (21) has the following form:
K = n− 1

1+γ m. Then, the condition K ∈ [n−m, n) is satisfied. One can only assume
that the range of K is the same in the general case as well.

3.3. An Invariant for the Theorem of Quantization in the Case of Distribution of Cells by Growth
Rate and Age

When proving the “quantization” theorem, we assumed that every species of mi-
croorganisms can be characterized by an average biomass growth rate, µi(R), although,
actually, in each population of microorganisms, there is an age distribution: cells of differ-
ent ages, with the corresponding growth parameters, are present simultaneously. In this
regard, one may ask: Will the theorem hold if the specific growth rate of a given species of
microorganisms is the function of the biological age of a given cell?

In this problem, we can introduce age and its relationship to specific growth rate in
Equation (2). For this, we can add the state variable s, which changes from zero to one
during the cell cycle. Then, system (2) is transformed to the form (22a):

∂Xi(s, t)
∂t

+ vi(R)
∂Xi(s, t)

∂s
= −XiD (22a)

dRj

dt
=
(

R0
j − Rj

)
D + ∑m

k=1

∫ 1

0
ajk(s)vj(R)Xk(s, t)ds (22b)

with the boundary condition
Xi(0, t) = 2Xi(1, t). (23)

Next, we consider another possible case of heterogeneity. For each microorganism,
there is some function of distribution by the growth rate, i.e., the same population simulta-
neously contains “fast” and “slow” cells, which move with different velocities along the
phase variable s. For this case, equations describing the growth of cell populations have the
following form:

∂Xi(vi, s, t)
∂t

+ vi(R)
∂Xi(vi, s, t)

∂s
= −Xi(vi, s, t)D, (24a)

dRj

dt
=
(

R0
j − Rj

)
D + ∑n

k=1

∫
v

∫ 1

0
ajk(s)vk(R)yk(vk, s, t)dsdv, (24b)
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where Xi(s, t) is the abundance of species i at time t in state s; ajk(s) is consumption/release
factor of the regulator; vi(R) is the velocity of the ith species of microorganisms moving
along the axis of the state. For equilibrium conditions, Equation (22) will have the following
form: ∂Xi(s)

∂s = − D
vi(R)Xi(s),

Rj = R0
j +

n

∑
k=1

∫ 1

0
ajk(s)

vk(R)
D

Xk(s)ds,

or, taking into account expression (23), after transformations:

2 = exp
(

D
vi(R)

)
,

Rj = R0
j +

1
ln 2

m

∑
k=1

ãjkXk(0),

where

ãjk =
∫ 1

0
ajk(s)Xk(s)ds.

The system of Equation (22), with an accuracy to notations, is equivalent to the system
of Equation (2). Hence, expression (15) is also valid in this, more complex, model, which
takes into consideration cell age dependence of substance transformation. Therefore, in
the equilibrium, Equation (24) can be changed to the form analogous to system (2), thus
proving the validity of the “quantization” theorem.

4. Experiments with Monocultures

In the general case, the growth of a single species can be controlled by several diverse
regulators (RFs) [43–46]. The question naturally arises as to the choice of the criterion for
determining all regulators for the species. The total regulation can be measured using the
value of Bil , when i = l. Then, B ≡ Bii will be termed feedback coefficient. The theoretical
value of feedback Bt can be calculated using Formula (9) if the particular regulators and
their effect on specific growth rate are known. The experimental value of feedback Bex can
be estimated using Formula (5), in experiments with varied abundance of the species and
its growth response to this change, with the culture medium remaining constant:

B =
∂g
∂t

∣∣∣∣P
t∗
− ∂g

∂t

∣∣∣∣U
t∗

,

where P and U are perturbed and unperturbed cultures, respectively.

4.1. Interaction Coefficients and Verification of Models

For simplicity, we assume that we know only one regulator, which we denote as
R1, Bt = ∂g

∂R1
·a1 has been theoretically calculated, and experiments in which Bex has

been determined have been performed. Then, the difference between these two values
(experimental and theoretical)

∆ ≡ Bex −
∂g

∂R1
·a1

will be a measure showing the completeness of our understanding of regulation: If ∆ = 0,
then, with the rare exception of the presence of many regulators with feedback values
equal in absolute value, but with different signs, it is not necessary to look for additional
regulators. This measure, (∆/Bex)100%, can be introduced as the degree of discrepancy
between theory and experiment, and if it is large, more regulators should be searched for.
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How do the coefficients of interactions through factors influence the accuracy of the
models forecasting population dynamics? An exact answer to this question is given below,
with monoculture used as an example.

In classical verification of models, theoretical dynamics of ecosystem variables (species
numbers, chemical composition of the environment, etc.) is fitted to the monitoring data.
However, the lack of knowledge of the regulators negatively affects the process of this
verification. For simplicity, we will explain this using the example of one population.
Consider the number of regulators n influencing the specific growth rate of monoculture
according to the law g = g0 + ∑n

j=1 gjRj. Then, the experimental value of growth self-
regulation is Bex = ∑n

j=1 gjaj (all regulators that determine the response in experiment are

included). The theoretical value is Bt = ∑n−k
j=1 gjaj, implying that we do not see the effect

of the regulators numbering k. Then, the level of the deficit (d) in understanding of self-
regulation can be defined as γd = (Bex − Bt)/Bex = ∑n

j=n−k+1 gjaj/ ∑n
j=1 gjaj, and the level

of completeness (c) of understanding as γc = Bt/Bex (γc + γd = 1). Then, the observed
equilibrium values of the species abundance Xex and the calculated one, Xt, are presented
as Xex =

[
D− g0 −∑n

j=1 ajR0
j

]
/Bex and Xt =

[
D− g0 −∑n−k

j=1 ajR0
j

]
/Bt, respectively.

Finally, Xex/Xt = (Bt/Bex)
[(

∑n
j=1 ajR0

j − D + g0

)
/
(

∑n−k
j=1 ajR0

j − D + g0

)]
, which

suggests that the higher the level of completeness of understanding of self-regulation
(ideally, γc = Bt/Bex = 1), the more accurate the verification will be (ideally, Xex/Xt = 1).

Analysis of steady-state abundance of monoculture with a single RF performed to
estimate its stability to small perturbations using Lyapunov’s method demonstrates that
one of the roots of the characteristic equation is proportional to the FBL coefficient and
fully determines the sign of the root, i.e., with the negative feedback, the system is stable
(the second root is always negative). Thus, the new criterion of interaction—population
growth acceleration—can be widely used in both model verification and theoretical
analysis of stability.

4.2. Experimental Testing of the Method of Searching for Density-Dependent Growth Control
Factors in Microbial Populations Based on the Quantization Theorem

This section presents the first results of testing the proposed method in experiments
with continuous culture of the yeast Candida utilis.

One of the components of the method is determination of sensitivity coefficients (SCs):
a change in steady-state concentration of the factor in response to its change at the entrance
to the chemostat. The value of each SC is within the range of 0 to 1, which corresponds to
the maximal and minimal levels of regulation by the given factor. Theorem 1 (15) makes it
possible to experimentally estimate the completeness of the list of the DDGCFs studied.

The yeast Candida utilis was chosen for experimental testing of the method as a well-
studied microorganism [3]. Glucose concentration in the medium and pH of the medium
in the acidic range were chosen as the hypothetical DDGCFs. The yeast was cultivated in
the 0.5-L chemostat in a Rider mineral medium supplemented with the thiamine and biotin
vitamins at concentrations of 10 mg/L at a temperature of 36 ◦C, without pH titration.

Preliminary acute experiments were conducted in accordance with the conventional
procedure to determine parameters of yeast specific growth rate g as dependent on concen-
trations of the hypothetical DDGCFs:

g = gmax
SKH

(S + KS)(H + KH)
,

where gmax is the maximal g, S and H are current concentrations of glucose and hydrogen
ions, respectively, Ks is half-saturation constant for glucose, and KH is constant of inhibition
by hydrogen ions. The preliminary experiments served to define the ranges of limitation
by the hypothetical factors and perform theoretical analysis of possible SC values.
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To determine SCs, steady states were changed using the following procedure. The
pH of the input medium was changed while the input concentration of glucose remained
the same. If limitation (a change in biomass concentration) was observed, the input
concentration of glucose was changed. The most accurate SC values were obtained at
points based on five steady states achieved by changing input concentrations of both
DDGCFs in both directions relative to the chosen point. At least three steady states were
needed to determine the SCs of two factors. SC values were determined using methods of
numerical differentiation based on input and steady-state values of DDGCF concentrations.

Two sets of experiments were conducted, with flow rates of 0.1 and 0.055 h−1. Charac-
terization of some of the steady states is provided in Table 2 with absolute error indicated
in all tables. At pH values greater than 2.3, the yeast cells were not limited by H+ ions. The
SC value of H+ ion concentrations (in what follows, SC for pH will be used for the sake of
brevity) in this region was 1 within the accuracy of observation or, sometimes, significantly
greater than 1. For example, for steady states 2 and 3, the SC for pH was 1.31 ± 0.07. The
reason for that divergence from the theoretically possible SC values was that coefficients of
transformation of H+ ions tended to increase as the medium was acidified. The SC values
for glucose in that pH range were close to 0, suggesting the highest degree of limitation by
glucose concentration.

Table 2. Characterization of steady states of Candida utilis continuous culture.

State Number Sinput, g/L Sst, mg/L pHinput pHst Xst, mg/L αS, g/g αH, 10−3 M/g

Flow rate 0.1 h−1

1 1 13 ± 2 2.79 2.60 375 ± 20 2.63 ± 0.15 2.37 ± 0.33

2 1 16 ± 4 4.12 3.10 400 ± 10 2.45 ±0.13 1.79 ± 0.07

3 1 20 ± 6 3.15 2.79 390 ± 25 2.54 + 0.16 2.37 ± 0.13

4 2 16 ± 1 3.14 2.62 840 ± 10 2.36 ± 0.12 1.99 ± 0.10

5 0.5 7 ± 2 3.15 2.89 205 ± 10 2.40 ± 0.10 2.83 ± 0.34

6 1 12 ± 1 2.46 2.32 410 ± 10 2.40 ± 0.13 3.19 ± 0.43

7 1.5 19 ± 4 2.37 2.22 590 ± 10 2.51 ± 0.13 3.02 ± 0.41

8 1 10 ± 2 2.38 2.28 415 ± 10 2.38 ± 0.12 2.59 ± 0.38

9 1 16 ± 4 2.32 2.21 410 ± 10 2.41 ± 0.13 3.38 ± 0.54

10 2 21 ± 4 2.37 2.15 ≥920 ≤2.15 ≤2.93

11 2 30 ± 5 2.23 2.09 945 ± 15 2.08 ± 0.11 2.36 ± 0.33

12 2 21 ± 6 2.18 2.02 1070 ± 20 1.85 ± 0.10 2.75 ± 0.42

13 2 25 ± 6 2.14 2.00 980 ± 15 2.02 ± 0.10 2.70 ± 0.45

14 2.5 48 ± 6 2.14 1.90 1290 ± 20 1.90 ± 0.10 2.80 ± 0.58

Flow rate 0.055 h−1

15 2.5 58 ± 5 2.24 2.10 1130 ± 30 2.16 ± 0.06 1.93 ± 0.21

16 2.5 91 ± 10 2.14 2.05 1020 ± 25 2.36 ± 0.07 1.67 ± 0.26

17 2 40 ± 5 2.14 2.07 710 ± 30 2.30 ±0.10 1.79 ± 0.37

Indexes “input” and “st” denote the input and steady state values, respectively. X is biomass concentration; αS and
αH are coefficients of transformation of glucose and hydrogen ions, respectively, by biomass. pH measurement
precision is 0.01 units.

At pH values below 2.3, yeast growth was limited by K+ ions, with the SC values for
pH below 1 and the SC values for glucose greater than 0.

The pH decrease below 2.0 resulted in culture washout, as the flow rate was higher
than the greatest possible growth rate.
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Table 3 shows the SCs of both factors calculated for some of the steady states. The
data listed in the table demonstrate that the “quantization” theorem holds good for
the study system. The sum of SCs is never greater than 1 (the difference between the
number of DDGCFs (two: glucose and pH) and the number of species (one)) within the
accuracy of measurement, which suggests the absence of any other DDGCFs besides the
studied ones. The highest value of total SCs for glucose and pH is 1.10 ± 0.11 and the
lowest is 0.65 ± 0.11. The instance of the SC significantly lower than 1 is accounted for
by variations in coefficients of transformation of the factors. In a population, though, the
sum of the SCs of two DDGCFs, theoretically, cannot be less than 1, as that would upset
the “quantization” theorem.

Table 3. SC values for glucose and pH.

Steady State Sinput, g/L pHinput SC for Glucose SC for pH

1–5 1 3.15 0.00 ± 0.01 1.10 ± 0.10

6–9 1 2.38 0.02 ± 0.02 1.06 ± 0.07

7, 10, 11 2 2.37 0.00 ± 0.01 0.65 ± 0.10

12–14 2 2.14 0.05 ± 0.02 0.71 ± 0.13

13–17 2.5 2.14 0.10 ± 0.03 0.65 ± 0.20

Theoretical analysis showed rather good agreement with experimental results. The
first experimental tests of the method of searching for DDGCFs can be considered successful.
The method of experimental search for regulators based on the “quantization” theorem (15)
will be developed further.

5. Discussion: Coexistence of Microbial Populations and Regulating Factors

In the context of poor experimental conditions of ecological research, the principle
of operation of a chemostat can be considered a perfect laboratory model for studying
microbial communities. The progressive role of flow systems in ecology can be compared
with the importance of models of an ideal pendulum, oscillator, and other idealized
structures in physics. The continuous flow system for cultivation of microorganisms is in
fact a model of an open system with controlled parameters. The flow models nonspecific
mortality, variants of predatory relationships, etc. As a result, the study of mixed microbial
cultures, even under idealized chemostat conditions, will help search for laws and common
properties of communities, which can then be transferred to natural systems [47].

Analysis of mathematical models of mixed microbial flow cultures interacting through
RFs states the rule: In equilibrium, the number of coexisting populations is not more than
the number of RFs, whose input levels control the composition of the community. The
introduction of the stoichiometry of nutrients into the competitive chemostat model enables
the coexistence of two or more species (microalgae) [48]. When considered in detail, this
can be interpreted as the introduction of additional regulators into the community, in
accordance with our result of the correspondence between the number of coexisting species
and the number of regulators.

This law of coexistence is considerably extended, since the number of RFs responsible
for maintaining species equilibrium in the mixed culture can be represented not only by
growth limiting resources but also by such exotic factors as various metabolites, growth
stimulators, variations in pH of the medium, etc. The particular nature of the RF does
not affect the validity of the coexistence rule. For example, temperature has never been
considered as a density-dependent factor. At the same time, under certain conditions (heat
release by the culture and temperature dependence of SGR), it becomes a RF.

The theoretical modeling of “exceptions”, where the number of species in mixed
culture is greater than the number of regulators, is determined by the type of equations and,
often, is not the theorem-type result. Moreover, mathematical limitations for implementing
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steady-state mixed culture look cumbersome, and, thus, it is unlikely that they can be
implemented in a natural environment. For example, in a paper cited above [21], “chaotic”
coexistence in the form of “chaos” of population dynamics is imitated by a complex
combination of discrete and random processes. An attempt to establish an oscillatory flow
mode to obtain “exclusion from Gause’s competitive exclusion principle” failed to violate
Gause’s principle: one of the competitors dominated asymptotically [49]. The multi-species
stochastic chemostat model with discrete delays did not violate Gause’s law either [50].
However, a quite expected result was obtained: that the stochastic regime accompanying
flow cultivation can give an advantage to a species that would not be able to dominate
under stationary conditions [51].

For models (2), which explicitly take into account RFs, in the most general case, for
arbitrary functions and types of interactions, the “principle of exclusion” is rigorously
proven: even dynamic coexistence of two species with a single RF of any nature is
impossible [25]. Numerous studies, in addition to Table 1, show a positive correlation
between the number of populations in the mixture and diversity of RFs, with the species
in the population exactly identified (up to nine species) and the biochemical nature of
RFs determined [52–57]. Unfortunately, almost none of the studies measure the depen-
dence of steady-state background levels of RFs in the environment on their own input
levels. Although detailed data experimentally supporting the autostabilization effect
are scant, violation of autostabilization has been reported, which can be considered as a
way to support this effect [58]. The authors of that study proposed a chemostat model
of monoculture with one substrate and one reaction product, describing bioreduction
of uranium [VI] to uranium [IV]. The authors found that in contrast to most of the
traditional chemostat models, because of thermodynamic inhibition, equilibrium con-
centration of the nutrient substrate might depend on its input concentration. According
to the “quantization” theorem that we have proved (the number of species—m = 1, the
number of regulators—substrate and product—n = 2), the sum of two autostabilization
coefficients must be equal to 1: n − m = 2 − 1 = 1, and each of the coefficients is not equal
to zero, i.e., steady-state levels of both regulators depend on their input concentrations.

Thus, our theory of RF autostabilization cannot be applied and, therefore, the role
of these factors as regulators cannot be accurately established. The search for specific
RFs is one of the most important tasks of ecology, and the basis of the search is the
absence of dependence of the equilibrium levels of regulators in the system on their
input levels revealed in the present study. The generalization of the mathematical model
describing growth of a microorganism community in a chemostat flow system that took
into consideration the possible age and growth rate heterogeneity of cell populations
showed that such effects as RF autostabilization and quantization of sensitivity coefficients
were observed regardless of that heterogeneity. Equation (12) confirms the fundamental
relationship between the type of interactions in the community and variations in growth
control factors, providing another way to verify the structure of the model by comparing
the calculated and experimental interaction coefficients.

For ecosystems with complete cycling (100%), autostabilization should manifest it-
self as the absence of a relationship between the content of some growth limiting factor
(for example, a lack of nitrogen for photosynthesis) and its total amount in the whole
system [59].

The autostabilization effect we have discovered is reminiscent of Le Chatelier’s prin-
ciple. The Le Chatelier Braun principle (1884) describes an equilibrium system in which
variations in some physical conditions cause changes opposing these variations. In the
projection on ecological systems, the autostabilization of RFs in the community is based
on an explicitly expressed mechanism of self-regulation: “an increase in the RF inflow→
an increase in the RF level inside the system→ an increase in species productivity→ an
increase in the RF consumption rate→ restoration of the initial RF level in the system”.
Here, the levels of regulators are autostabilized, which is fundamentally different from
the Le Chatelier effect in physical and chemical systems, where it manifests itself as a
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tendency. It is clear that the autostabilization effect will be a unique way to find RFs in real
communities [60,61].

Note that in this study we left aside the formal model problems of equilibrium stability,
and of dynamic properties of model solutions. All these problems are an independent
scientific area [62–67].

6. Results and Conclusions

A. A systematic theoretical and experimental analysis of the regulators of microbial
populations as specific density-dependent growth control factors revealed a number of their
fundamental attributes. First of all, regulators ensure stable coexistence of populations,
with the number of species not exceeding the number of regulators in the equilibrium.
By changing the input levels of regulators, it is possible to control the diversity of the
community, forming a predetermined equilibrium composition.

B. Secondly, the problem of classifying interactions between populations has been
solved based on the new criterion of interactions: the growth acceleration of the “acceptor”
population in response to a change in the size of the “donor” population, which was
previously impossible. The criterion can be applied both experimentally and theoretically,
which makes it possible, by comparing them, to determine the degree of completeness
of knowledge about regulators for a particular population or between populations. The
disadvantage is the usual high error of differential variables.

C. Thirdly, the study rigorously showed for a monoculture, based on the magnitude
of feedbacks through the criterion of growth acceleration, that (1) the more complete the
list of regulators taken into account, the more accurate the verification of models using
observational data, and (2) the interpretation of the Lyapunov criterion of local stability in
the small has become maximally constructive.

D. Further, a new general effect of regulators was discovered, regardless of their nature:
In a steady-state community, if the number of populations and regulators is equal, the
equilibrium level of the latter does not depend on their input levels. The effect is called
autostabilization of regulators.

E. A measure of autostabilization is introduced: the autostabilization coefficient as
the ratio of the change in the background steady-state level of the regulator to its input
change. The study shows that when the number of stationary coexisting species is less
than the number of regulators, the autostabilization coefficients are not equal to zero,
but the “quantization” theorem has been proven: the sum of these coefficients is exactly
an integer equal to the difference between the number of regulators and the number of
populations. In the presence of trophic interactions, a modification of the theorem that
violates its “integrality” has been proven.

F. The search for regulators based on the “quantization” theorem has been proposed
and tested experimentally in the first stage.

The autostabilization effect is a rare instance of a theoretically accurately derived
invariant or “law of ecology” for an entire ecosystem, which was obtained for the
community with an extensive and intricate network of “density dependent” interactions.
By using quantization formulae in practice, we can estimate the exhaustiveness of our
knowledge about the system of interactions between populations in the community. The
approach generally allows us to aim directly at finding unrecorded types of nutrients or
the number of microorganisms based on the degree of approximation to the fulfilment
of the quantization condition.

RF input levels are the “levers” of the controlling the composition of the species
mixture in the equilibrium of the community. This approach is particularly important
for performing biomanipulation, counteracting the introduction of “foreign” species, and
counterbalancing anthropogenic impact. One of the tasks of controlling the composition
of the microalgal community to match the respiratory quotients of this mixture with
the human respiratory quotient in a closed life support system can now be solved more
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systematically: by creating a stable mixture of two types of microalgae with two regulators,
the change of which at the input can control the species composition of the mixture.
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Abbreviation

List of Symbols
DDGCF Density-dependent growth control factor
RF Regulating factor
SGR (h−1) Specific growth rate
FBL Feedback level
g (h−1) Specific growth rate (SGR) or corresponding vector SGRs
ks, k (mg·L−1) Michaelis–Menten constant
∂g
∂R (L·mg−1·h−1) SGR sensitivity to unit change in the level of factor R

D (h−1)
Specific dilution rate [the ratio of the flow rate (L h−1) to the culture
vessel volume (l)]

D−1, h Time necessary for the culture to be completely renewed

Bij (h−2)
Coefficient of the action of the jth population on the ith,
or growth acceleration

B (L·mg−1·h−1)
Specific growth acceleration (per unit SGR and per unit
biomass perturbation)

S, S0 (mg·L−1) Substrate concentration in the medium and substrate input concentration
Rj, R0

j ; (mg· L−1) jth RF concentration in the medium and jth RF input concentration
.

Xi,
.

Rj (mg·L−1·h−1)
The rate of change in the density of the ith population and
concentration of the jth RF

X = (X1, X2, . . . , Xm)
The vector of species abundance in the community. The number of
species is denoted by m and the species index by i.

R = (R1, R2, . . . , Rn)
The vector of RFs. The number of factors is denoted by n and
the factor index by j.

aji (mg·mg−1)
The amount of the jth RF taken up or released by unit increase
in the abundance of the ith population (dimensionless)

A = (aji)
n,m
j,i

Matrix of the RFs amount taken up or released by unit increase
in the abundance of the populations

Y (mg·mg−1) Yield coefficient (the amount of biomass increase per 1 mg substrate)

Ks, Kj (dimensionless)
A change in steady-state concentration of the substrate or the jth RF
in response to unit change in input RF, RF autostabilization coefficient,
or sensitivity coefficient

“·” Wherever necessary, matrix multiplication, the dot product, in particular.
If the operation is obvious, this symbol is omitted.

“*” Component-wise multiplication of vectors
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