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Abstract: As an important branch of modern decision-making theory, multi-attribute decision-making
(MADM) plays an important role in various fields. Classic MADM methods can provide a ranking
of alternatives, and decision-makers need to evaluate the level subjectively based on the ranking
results. Because of the limitation of knowledge, this is likely to lead to potential individual losses.
Three-way decision (3WD) theory has good classification ability. Therefore, this paper proposes a
dynamic hybrid multi-attribute 3WD (MA3WD) model. First, a new scheme for constructing loss
functions is proposed from the perspective of gray relational analysis (GRA), which is an accurate
and objective way to describe the relationship between loss functions and attribute values. Then,
conditional probabilities are determined by employing the gray relational analysis technique for order
preference by similarity to the ideal solution (GRA-TOPSIS). With these discussions, a GRA-based
hybrid MA3WD model for a single period is proposed by considering multi-source information.
Furthermore, by extending the single-period scenario to a multi-period one, we construct a dynamic
hybrid MA3WD model, which can obtain the final three-way decision rules as well as the results of
each period and each attribute. Finally, the proposed method is applied to the case of performance
evaluation of elderly-care services to demonstrate the effectiveness of the method, and comparative
analyses are given to verify the superiority of the proposed method.

Keywords: three-way decision; dynamic multi-attribute decision-making; gray relational analysis;
performance evaluation; elderly-care services

MSC: 90B50; 90C70

1. Introduction

Decision-making is pervasive in our daily life, and multi-attribute decision-making
(MADM) is an important part of it. Multi-attribute decision-making has been applied to
various fields, including performance evaluation [1,2], risk assessment [3,4], and medical
diagnosis [5,6]. With the continuous development of decision theory, classic MADM meth-
ods have been progressively proposed, such as TOPSIS [7,8], TODIM [9,10], VIKOR [11,12],
etc. However, traditional MADM methods used in most studies are essentially a two-way
decision-making procedure [13,14], which only considers two options, namely acceptance
and rejection. For instance, when the government makes decisions on the access and exit
mechanism of third-party social organizations, the result obtained by MADM methods is
to renew a contract or terminate the contract according to the alternative rankings. How-
ever, there may be a contradiction where two social organizations with slight differences
in evaluation receive opposite decision results, i.e., one is accepted to sign a new con-
tract, while another one is obliged to terminate the contract. To conquer the limitation
of traditional MADM methods, this paper introduces three-way decision theory under a
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multi-attribute decision-making environment. Three-way decision-making, derived from
decision-theoretic rough sets (DTRSs), encompasses the ability to objectively classify all
alternatives into three regions, i.e., a positive region, a negative region, and a boundary
region. Yao provided a reasonable semantic interpretation of these three pairwise disjoint re-
gions from the perspective of cognitive science, corresponding to acceptance, rejection, and
non-commitment in the actual decision-making process, respectively [15,16]. Compared
with two-way MADM methods, three-way decision-making adds a deferment strategy,
which reduces the risk of decision-making. For instance, the two social organizations in the
aforementioned example can be classified into a deferment region for further investigation
to reduce the loss of misclassification.

In recent years, 3WD has made remarkable achievements in theoretical models and
application studies. For theoretical models, many researchers have extended the traditional
3WD model to dynamic environments and proposed improved models, such as sequential
three-way decision [17], multi-granulation three-way decision [18], multi-class three-way
decision [19], multi-attribute three-way decision [20,21], etc. To solve MADM problems,
Jia and Liu [20] proposed a multi-attribute three-way decision model, transforming at-
tribute evaluation values to loss functions in a multi-attribute environment. Zhan et al. [22]
introduced the concept of relative utility function, utilized similarity relation to determine
conditional probabilities, and proposed a 3WD model in an incomplete fuzzy decision
environment. Zhan et al. [23] proposed a MA3WD method based on outranking rela-
tions. Huang et al. [24] designed a pair of pre-order relations and further proposed a new
method for calculating conditional probabilities. Gao et al. [13] proposed a three-way
decision-based target–threat assessment method based on a comprehensive evaluation
matrix integrating multi-period information. Subsequently, some researchers incorporated
psychological behaviors into the construction of 3WD models. He et al. [25] proposed a
behavioral MA3WD model considering the regret-aversion behavior and risk-aversion
behavior of human beings. In application studies, 3WD has been widely applied in various
practical issues, such as conflict analysis [26,27], medical diagnosis [28,29], investment
decisions [30,31], concept analysis [32,33], etc. However, based on the above brief review of
3WD, the existing 3WD methods still have some deficiencies. First, the loss functions and
conditional probabilities of 3WD are difficult to determine objectively and scientifically,
and lack interpretability; Second, the study of 3WD in a time-dynamic environment is rela-
tively limited, while the time-dynamic environment is the most common type of dynamic
decision-making environment in real life.

Due to the complexity of the decision-making environment and the diversity of at-
tributes, exact numbers often struggle to accurately express the fuzzy cognition of decision-
makers. Therefore, to describe uncertain information more accurately and reasonably, vari-
ous fuzzy numbers have been proposed and widely studied, such as interval numbers [34],
triangular fuzzy numbers [35], and intuitionistic fuzzy numbers [36]. Moreover, due to
the unquantifiable nature of certain attributes, linguistic variables become a powerful
tool for describing such information [37]. However, in many practical decision-making
problems, it is necessary to use a combination of quantitative and qualitative attribute
types. For instance, in the performance evaluation of elderly-care services, attributes such
as the number of service programs, professional level, and communication ability are often
considered [38,39]. Among them, the number of service programs is a quantitative attribute,
which is often expressed by exact numbers; communication ability is a qualitative attribute,
often expressed by language variables. Hence, in the decision-making problem with diver-
sity attributes, a single form of information cannot accurately describe all attributes, and it
is effective and reliable to adopt a mixed approach using multiple forms of information
according to practical needs.

Based on the above analysis of the research subjects, we summarize the motivations
and innovations of this paper as follows:
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Motivations:

• In the process of constructing the loss function, many existing methods are unreason-
able. For instance, in the classical three-way decision theory [15], the loss function is ar-
tificially set by the decision-maker, which is not scientific. In addition, Jia and Liu [20]
converted the attribute value into a relative loss function in a multi-attribute decision-
making environment. This method is also not rational because it uses 1 and 0 as the
maximum and minimum of the attribute values in the construction of the relative
loss function.

• In the existing studies on MA3WD methods, there is limited consideration of the time-
dynamic environment. Most methods are based on decision information from a single
period [14,21], which leads to an incomplete evaluation of the objects. Gao et al. [13]
proposed a 3WD method based on multi-period evaluation information to address the
issue of time dynamics, which is an improvement. However, the model constructed by
Gao et al. fails to provide continuous evaluations for objects across different periods.

• Traditional MADM methods have limitations in solving practical problems such as
the performance evaluation of elderly-care services. These methods’ essence lies in
two-way decision-making, where the outcomes often overlook the necessity of further
investigation, leading to potential individual losses.

Innovations:

• A new scheme for constructing loss functions is proposed from the perspective of
GRA, which is an accurate and objective way to describe the relationship between loss
functions and attribute values.

• Conditional probabilities are estimated based on GRA-TOPSIS, which provides com-
prehensive and objective results for three-way decisions.

• A GRA-based hybrid MA3WD model considering mixed forms of information is
proposed for evaluating objects at a specific period. The model can point out the
specific attributes and periods of poor performance of the object so that it accurately
improves its shortcomings.

• By extending the single-period scenario to a multi-period one, we construct a
GRA-based dynamic hybrid MA3WD model, extending the study of 3WD in a time-
dynamic environment.

• This paper introduces the 3WD theory into the performance evaluation of elderly-care
services, which provides a scientific and reasonable way to solve this issue.

The remainder of this paper is organized as follows. Section 2 lists the basic concepts
of multi-attribute three-way decision-making, the definition of a dynamic hybrid multi-
attribute information system, and the basic knowledge of gray relational analysis. Section 3
introduces the concept of gray relational analysis into the construction of loss function,
proposes a method to determine conditional probability using GRA-TOPSIS, and further
proposes a GRA-based hybrid MA3WD model for a single period. In Section 4, a single-
period scenario is extended to a multi-period one, and a dynamic hybrid MA3WD model
is proposed using information from the multi-period. In Section 5, the proposed model is
applied to the performance evaluation of government purchases of elderly-care services,
and its effectiveness is verified through comparative analysis. Section 6 summarizes the
final concluding remarks in this paper.

2. Preliminaries
2.1. Multi-Attribute Three-Way Decision (MA3WD)

The three-way decision derived from the DTRSs uses a two-state set and a three-action
set to describe the decision process [15]. The set of states Ω = {C,¬C} indicates that an
object is in C or not in C; the set of actions A = {aP, aB, aN} corresponds to three actions
x ∈ POS(C), x ∈ BND(C), x ∈ NEG(C) that are taken when classifying the object x, i.e.,
acceptance, non-commitment, and rejection. When the object x is in different states, the
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three actions taken produce corresponding losses or risks, which can be represented by the
3 × 2 loss function matrix [15] in Table 1.

Table 1. The loss functions of a three-way decision.

C ¬C

aP λPP λPN
aB λBP λBP
aN λNP λNN

Assume that Pr(C|[x]) represents the conditional probability that an object x belongs to
a state C, then for any object x, the expected loss after taking all actions can be expressed as:

R(aP|[x]) = λPPPr(C|[x]) + λPNPr(¬C|[x]) (1)

R(aB|[x]) = λBPPr(C|[x]) + λBNPr(¬C|[x]) (2)

R(aN [x]) = λNPPr(C|[x]) + λNNPr(¬C|[x]) (3)

Based on the Bayesian theory that the optimal decision is the one with the least cost,
the decision rules are deduced as follows:

(P− 1) If R(aP|[x]) ≤ R(aB|[x]) and R(aP|[x]) ≤ R(aN |[x]), decide x ∈ POS(C);

(B− 1) If R(aB|[x]) ≤ R(aP|[x]) and R(aB|[x]) ≤ R(aN |[x]), decide x ∈ BND(C);

(N− 1) If R(aN |[x]) ≤ R(aP|[x]) and R(aN |[x]) ≤ R(aB|[x]), decidex ∈ NEG(C).

Based on the decision rough sets, the decision rules (P-1)~(N-1) are three-way decisions.
Consider the following relationship between the loss functions:

λPP ≤ λBP < λNP, λNN ≤ λBN < λPN (4)

Based on the above relationship and Pr(C|[x]) + Pr(¬C|[x]) = 1 , the decision rules
(P-1)~(N-1) can be further simplified as:

(P− 2) If Pr(C|[x]) ≥ α and Pr(C|[x]) ≥ γ , decide x ∈ POS(C);

(B− 2) If Pr(C|[x]) ≤ α and Pr(C|[x]) ≥ β , decide x ∈ BND(C);

(N− 2) If Pr(C|[x]) ≤ β and Pr(C|[x]) ≤ γ , decide x ∈ NEG(C).

where the thresholds α, β, and γ are as follows:

α =
(λPN − λBN)

(λPN − λBN) + (λBP − λPP)
(5)

β =
(λBN − λNN)

(λBN − λNN) + (λNP − λBP)
(6)

γ =
(λPN − λNN)

(λPN − λNN) + (λNP − λPP)
(7)

When (λBP − λPP)(λBN − λNN) < (λPN − λBN)(λNP − λBP) the thresholds satisfy
α > γ > β, then the decision rules (P-2)~(N-2) can be simplified as:

(P− 3) If Pr(C|[x]) ≥ α , decide x ∈ POS(C);

(B− 3) If β < Pr(C|[x]) < α , decide x ∈ BND(C);

(N− 3) If Pr(C|[x]) ≤ β , decide x ∈ NEG(C).
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Traditional 3WD can only deal with single-attribute decision-making issues. However,
most real decisions encompass multi-attribute decision-making. Jia and Liu [20] proposed
a new construction method of loss functions based on a multi-attribute environment, which
uses attribute values to derive relative loss functions in a data-driven manner. For a MADM
problem with m alternatives and n attributes, we denote the evaluation value of object
Ai on attribute cj as xij ∈ [NISj, PISj], where NISj and PISj represent the negative ideal
solution and positive ideal solution on attribute cj, respectively. The relative loss function
derived from xij is shown in Table 2, where the relative loss of correct classification is 0, i.e.,
λPP = λNN = 0, d

(
xij, NISj

)
and d

(
xij, PISj

)
, respectively represent the distance between

the evaluation value xij and the negative and positive ideal solutions under attribute cj, and
σj ∈ [0, 0.5] represents the risk-avoidance coefficient of cj, reflecting the decision-maker’s
preference for vague or accurate outcomes [20].

Table 2. Relative loss function derived from the evaluation value.

Cj ¬Cj

aP 0 d
(
xij , PISj

)
aB σjd

(
xij , NISj

)
σjd
(
xij , PISj

)
aN d

(
xij , NISj

)
0

Then, after converting all attribute values xij into corresponding loss functions λ
(

xij
)
,

use the attribute weight vector w = (w1, w2, . . . , wn) to integrate λ
(
xij
)

to obtain the com-
prehensive loss function of each object Ai, as shown in Table 3. Next, the decision thresholds
are calculated based on the comprehensive loss function, and then the classification result
is obtained as the process of traditional 3WD.

Table 3. Comprehensive loss function.

Cj ¬Cj

aP 0 wjd
(
xij , PISj

)
aB wjσjd

(
xij , NISj

)
wjσjd

(
xij , PISj

)
aN wjd

(
xij , NISj

)
0

2.2. Dynamic Hybrid Multi-Attribute Information System

Let IS = (T, U, C, V, f ) be a dynamic hybrid multi-attribute information system.
T = {tk|k = 1, 2, . . . , p} is the set of non-empty finite periods. U = {Ai|i = 1, 2, . . . , m}
is a non-empty set of finite objects, called the universe. C =

{
Ctk
∣∣k = 1, 2, . . . , p

}
is the

set of p attribute sets, where Ctk =
{

ctk
j

∣∣∣j = 1, 2, . . . , n; k = 1, 2, . . . , p
}

is the set of non-

empty finite attributes for tk period. In addition, Ctk has the following characteristic:
N(Ctk ) ≤ N(Ctk+1), which means that the number of attributes in the attribute set in
the corresponding period will change dynamically with the increase of k, i.e., it shows
an increasing trend. Wtk =

{
wtk

j

∣∣∣j = 1, 2, . . . , n
}

is the set of attribute weights for tk

period, wtk
j represents the weight of attribute cj for tk period, and satisfying wk

j > 0,
n
∑

j=1
wk

j = 1. In addition, the attribute weight has the following features: different attributes

have different weights, and even the same attribute has different weights in different tk

periods. V =

{
V

c
tk
j

∣∣∣∣j = 1, 2, . . . , n; k = 1, 2, . . . , p
}

is the set of attribute values, and V
c

tk
j

is

the domain of the attribute ctk
j . f : U × C → V is a function; for any ctk

j ∈ C, Ai ∈ U, there

is f
(

Ai, ctk
j

)
∈ V

c
tk
j

, where f
(

Ai, ctk
j

)
is hybrid data, which may be a real number, interval

number, triangular fuzzy number, linguistic term, or intuitionistic fuzzy number.
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2.3. Gray Relational Analysis

Gray relational analysis, derived from gray system theory, is a modern statistical
method of systematic analysis. The basic idea of this method is to judge the correlation
degree between sequences by analyzing the similarity degree of geometric shapes [40,41].
The general steps of this method are as follows:

Suppose there are m alternatives, n attributes, and the decision matrix H = (hij)m×n.
Normalize the original decision matrix H to obtain the decision matrix V = (vij)m×n.

(1) Determine the positive ideal solution (PIS) and the negative ideal solution (NIS) v+j = max
i

(vij)

v−j = min
i
(vij)

j = 1, 2, · · ·, n (8)

(2) Calculate the gray relational coefficient r+ij of alternative Ai(i = 1, 2, . . . , m) from PIS
about the attribute cj(j = 1, 2, . . . , n).

r+ij =

min
1≤i≤m

min
1≤j≤n

d+ij + ρ max
1≤i≤m

max
1≤j≤n

d+ij

d+ij + ρ max
1≤i≤m

max
1≤j≤n

d+ij
(9)

where d+ij =
∣∣∣v+j − vij

∣∣∣, ρ is the identification coefficient where 0 < ρ < 1. There is no
specific reference standard for the selection of ρ. The larger the ρ (closer to 1), the smaller
the difference of the relational coefficient between different alternatives; the smaller the
ρ (closer to 0), the greater the difference of the relational coefficient between different
alternatives. Regarding the existing literature [41,42], we take ρ = 0.5.

By the same token, calculate the gray relational coefficient r−ij of alternative
Ai(i = 1, 2, . . . , m) from NIS about the attribute cj(j = 1, 2, . . . , n).

r−ij =

min
1≤i≤m

min
1≤j≤n

d−ij + ρ max
1≤i≤m

max
1≤j≤n

d−ij

d−ij + ρ max
1≤i≤m

max
1≤j≤n

d−ij
(10)

where d−ij =
∣∣∣v−j − vij

∣∣∣, ρ is the identification coefficient where 0 < ρ < 1; here we take
ρ = 0.5.

(3) Calculate the gray relational degrees r̃+i and r̃−i of alternative Ai(i = 1, 2, . . . , m)
corresponding from PIS and NIS.

r̃+i =
n

∑
j=1

wijr+ij (11)

r̃−i =
n

∑
j=1

wijr−ij (12)

3. GRA-Based Hybrid MA3WD Model for Single Period

In Section 3, we first construct the relative loss functions from the perspective of gray
relational analysis and explore the conditional probability with the GRA-TOPSIS method.
Then, a GRA-based hybrid MA3WD model for a single period is established.

As the hybrid MADM problem is the concrete embodiment of a certain period in the
dynamic hybrid MADM problem, we should first describe the problem of the latter. A
dynamic MADM problem under a hybrid information environment can be explained as
follows. Suppose there are a set of alternatives A = {A1, A2, · · · , Am}, a set of periods
T =

{
t1, t2, · · · , tp

}
, and ξ =

{
ξ1, ξ2, · · · , ξ p} is the weight vector of time series satisfying
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ξk > 0 and
p
∑

k=1
ξk = 1. The decision attributes set in tk period is Ck =

{
ck

1, ck
2, . . . , ck

n

}
. The

attribute weight vector in tk period can be expressed as Wk =
{

wk
1, wk

2, · · · , wk
n

}
, satisfying

wk
j > 0 and

n
∑

j=1
wk

j = 1. The hybrid MADM matrix in the tk period can be expressed

as follows:
Hk =

{
hk

ij

}

=


hk

11 hk
12 · · · hk

1n
hk

21 hk
22 · · · hk

2n
...

...
...

...
hk

m1 hk
m2 · · · hk

mn


(13)

where hk
ij is hybrid type data, which can be a real number, interval number, triangular fuzzy

number, linguistic term, intuitionistic fuzzy number, etc.

3.1. Loss Function Based on Gray Relational Analysis

Jia and Liu used relative loss functions and inverse loss functions to convert attribute
values into loss functions, illustrating the correlation between 3WD and MADM [20].
Inspired by Jia and Liu [20], in this section, we first propose a new method for constructing
loss functions using GRA. By virtue of its ability to reflect trend differences in data series,
GRA is used to represent the relationship between objects in the process of constructing
loss functions. In addition, as an effective tool to deal with dynamic decision-making
problems, GRA can describe the dynamic process of multi-period evaluation. Then, the
comprehensive loss function of each alternative in a single period is constructed based on
multiple attributes.

Gray relational coefficients are introduced to construct loss functions of three-way deci-
sions. As the calculating process of gray relational coefficients has been given in Section 2.3,
here we extend the traditional method of calculating the gray relational coefficients. When
normalizing the decision matrix, we transform the linguistic term sets into triangular fuzzy
numbers [43,44]. When determining the PIS and the NIS, the maximum value of the at-
tribute in p periods is taken as the PIS, i.e., vk+

j = max
i,k

(
vk

ij

)
, and the minimum value in

p periods is taken as the NIS, i.e., vk−
j = min

i,k

(
vk

ij

)
. Since the data in the hybrid decision

matrix is not limited to the exact number, d+ij and d−ij are calculated according to the distance
formula between the corresponding types of data.

In the tk period, let
{

Ck
j ,¬Ck

j

}
present two states, where Ai ∈ Ck

j indicates that Ai

possesses the property ck
j and Ai ∈ ¬Ck

j indicates that Ai does not possess the property ck
j .

{aP, aB, aN} presents three actions that indicate decisions of acceptance, non-commitment,
and rejection, respectively. The relative loss functions of the alternative Ai on the attribute
ck

j are expressed in Table 4. In Table 4, λ
ijk
PP = λ

ijk
NN = 0 indicates that sorting the alternative

into the correct region causes no loss. λ
ijk
NP = 1− rk−

ij represents the loss incurred by taking

rejection action in the state of Ai ∈ Ck
j , where rk−

ij denotes the gray relational coefficient

between alternative Ai and the NISk
j . The larger the value of rk−

ij , the closer the association

between vk
ij and vk−

j , indicating that the alternative Ai has less advantage over the NISk
j .

Therefore, decision-makers will suffer the loss 1− rk−
ij if they reject the object Ai belonging

to Ck
j . λ

ijk
PN = 1− rk+

ij represents the loss incurred by taking the acceptance action in the

state of Ai ∈ ¬Ck
j , where rk+

ij denotes the gray relational coefficient between alternative Ai

and the PISk
j . The larger the value of rk+

ij , the closer the association between vk
ij and vk+

j ,

indicating that the alternative Ai has less advantage over the PISk
j . Therefore, decision-
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makers will suffer loss 1− rk+
ij if they accept the object Ai belonging to ¬Ck

j . λ
ijk
BP and

λ
ijk
BN are related to λ

ijk
NP and λ

ijk
PN , which are represented by introducing the parameter

σk
j ∈ [0, 0.5] defined as the risk-avoidance coefficient [20]. Moreover, σk

j reflects the decision-

maker’s preference for ambiguous or accurate outcomes. The larger the σk
j , the more

accurate the result; the smaller the σk
j , the more ambiguous the result.

Table 4. Relative loss functions in the tk period.

Ai Ck
j ¬Ck

j

aP 0 1− rk+
ij

aB σk
j

(
1− rk−

ij

)
σk

j

(
1− rk+

ij

)
aN 1− rk−

ij 0

To obtain comprehensive three-way decision rules for each object in the tk period,
we need to obtain the comprehensive loss function of Ai in the tk period. First, the loss
function of Ai to ck

j in Table 4 can be written as

λ
(

vk
ij

)
=

λ
ijk
PP

λ
ijk
BP

λ
ijk
NP

λ
ijk
PN

λ
ijk
BN

λ
ijk
NN

 =

 0
σk

j

(
1− rk−

ij

)
1− rk−

ij

1− rk+
ij

σk
j

(
1− rk+

ij

)
0

 (14)

Then, each attribute is weighted according to its importance to the decision result,
and the attribute weight vector Wk =

(
wk

1, wk
2, · · · , wk

n

)
is obtained. Next, the weighted

average operator is used to integrate the losses of all attributes in the tk period to acquire the
comprehensive loss function of each alternative Ai in the tk period, which is expressed as

λk
i = ∑

j
wk

j λ
(

vk
ij

)
=


0

∑j wk
j σk

j

(
1− rk−

ij

)
∑j wk

j

(
1− rk−

ij

)
∑j wk

j

(
1− rk+

ij

)
∑j wk

j σk
j

(
1− rk+

ij

)
0

 (15)

3.2. Estimating Conditional Probability by GRA-TOPSIS

Conditional probability is another essential concept of the three-way decision. In
many studies, conditional probabilities are given directly according to the experiences
of decision-makers; to reduce subjectivity and arbitrariness, Liang adopted TOPSIS to
estimate the conditional probability in an objective way [45]. This method describes the
differences between each alternative and ideal solution from the positional relationship
between the data curves. However, it may cause errors due to data fluctuation. A method
to reflect the significance of the alternative by the degree of variation in the data sequence
is needed. Therefore, considering the idea in [45], we introduce a GRA-TOPSIS method to
estimate the conditional probability. Section 2.3 described the calculation process of the
gray relational degrees r̃k+

i of the alternative Ai from the PIS and r̃k−
i of the alternative Ai

from the NIS, and the process of the GRA-TOPSIS method is as follows:
Step 1. Compute the distances of Ai to ideal solutions.
The distance of the alternative Ai from the PIS is

dk+
i = ∑

j
wk

j d
(

vk
ij, vk+

j

)
(16)

The distance of the alternative Ai from the NIS is

dk−
i = ∑

j
wk

j d
(

vk
ij, vk−

j

)
(17)
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where d
(

vk
ij, vk+

j

)
and d

(
vk

ij, vk−
j

)
represent the distance from vk

ij to vk+
j and vk−

j , respectively.

Step 2. Obtain the dimensionless distances dk+
i , dk−

i and dimensionless gray relation
degrees r̃k+

i , r̃k−
i , respectively

Dk+
i =

dk+
i

max
i

dk+
i

, Dk−
i =

dk−
i

max
i

dk−
i

(18)

Rk+
i =

r̃k+
i

maxr̃k+
i

i

, Rk−
i =

r̃k−
i

maxr̃k−
i

i

(19)

Step 3. Combine the distances Dk+
i , Dk−

i and gray relational degrees Rk+
i , Rk−

i as

Lk+
i = δ1Dk−

i + δ2Rk+
i , Lk−

i = δ1Dk+
i + δ2Rk−

i (20)

where δ1 and δ2 are preference coefficients, which reflect the preferences of decision-makers
for the position and shape, and δ1 + δ2 = 1, δ1, δ2 ∈ [0, 1]. There is no specific standard
for the selection of δi(i = 1, 2). When δ1 is larger than δ2, it indicates that decision-makers
pay more attention to the influence of distance; when δ2 is larger than δ1, it indicates that
decision-makers pay more attention to the influence of shape. Referring to the existing
literature [46,47], we take δ1 = δ2 = 0.5, which indicates that decision-makers have no
special preference for distance and shape.

Step 4. Calculate the relative closeness

RCk
i =

Lk+
i

Lk+
i + Lk−

i

(21)

Based on the semantics of Equation (21), RCk
i indicates the probability of the object Ai

being in the state C, then the conditional probability of the object Ai in the tk period as

Prk(C|[Ai]) = RCk
i (22)

3.3. GRA-Based Three-Way Decision Rules for Single Period

In the above two subsections, two basic elements of the proposed 3WD model, namely
loss function and conditional probability, have been induced. Subsequently, the deci-
sion rules of the GRA-based three-way decisions for a single period are established in
this section.

According to the traditional 3WD model, the expected losses Rk(ac∇|[Ai])(∇ = P, B, N)
generated by three actions are calculated as

Rk(aP|[Ai]) = λik
PPPrk(C|[Ai]) + λik

PNPrk(¬C|[Ai]) (23)

Rk(aB|[Ai]) = λik
BPPrk(C|[Ai]) + λik

BNPrk(¬C|[Ai]) (24)

Rk(aN |[Ai]) = λik
NPPrk(C|[Ai]) + λik

NNPrk(¬C|[Ai]) (25)

Since Prk(C|[Ai])+Prk(¬C|[Ai]) = 1, we can replace Prk(¬C|[Ai]) with 1−Prk(C|[Ai])
and obtain:

Rk(aP|[Ai]) =
(

1− Prk(C|[Ai])
)

λik
PN (26)

Rk(aB|[Ai]) = Prk(C|[Ai])λ
ik
BP +

(
1− Prk(C|[Ai])

)
λik

BN (27)

Rk(aN |[Ai]) = λik
NPPrk(C|[Ai]) (28)
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According to the discussion in Section 2.1, the decision rules are deduced as follows:

(PGRA ) If Rk(aP|[Ai]) ≤ Rk(aB|[Ai]) and Rk(aP|[Ai]) ≤ Rk(aN |[Ai]), decideAi ∈ POS(C);

(BGRA ) IfRk(aB|[Ai]) ≤ Rk(aP|[Ai]) and Rk(aB|[Ai]) ≤ Rk(aN |[Ai]), decideAi ∈ BND(C);

(NGRA ) If Rk(aN |[Ai]) ≤ Rk(aP|[Ai]) and Rk(aN |[Ai]) ≤ Rk(aB|[Ai]), decide Ai ∈ NEG(C).

Meanwhile, the loss function satisfies conditions λPP ≤ λBP < λNP and
λNN ≤ λBN < λPN , so (PGRA)~(NGRA) can be simplified as:(

P′GRA ) If Prk(C|[Ai]) ≥ αk
i and Prk(C|[Ai]) ≥ γk

i , decide Ai ∈ POS(C);(
B′GRA ) If Prk(C|[Ai]) ≤ αk

i and Prk(C|[Ai]) ≥ βk
i , decide Ai ∈ BND(C);(

N′GRA ) If Prk(C|[Ai]) ≤ βk
i and Prk(C|[Ai]) ≤ γk

i , decide Ai ∈ NEG(C).

The expressions of thresholds αk
i , βk

i and γk
i are

αk
i =

∑j wk
j

(
1− σk

j

)(
1− rk+

ij

)
∑j wk

j

(
1− σk

j

)(
1− rk+

ij

)
+ ∑j wk

j σk
j

(
1− rk−

ij

) (29)

βk
i =

∑j wk
j σk

j

(
1− rk+

ij

)
∑j wk

j σk
j

(
1− rk+

ij

)
+ ∑j wk

j

(
1− σk

j

)(
1− rk−

ij

) (30)

γk
i =

∑j wk
j

(
1− rk+

ij

)
∑j wk

j

(
1− rk+

ij

)
+ ∑j wk

j

(
1− rk−

ij

) (31)

Remark 1. There are two extreme threshold cases to pay attention to: (1) If vk
ij = vk−

j for all j in

the tk (k = 1, 2, . . . , p) period, then αk
i = βk

i = γk
i = 1 will be obtained. This indicates that for the

object Ai in the tk (k = 1, 2, . . . , p) period only the decision to reject is made; (2) If vk
ij = vk+

j for all

j in the tk (k = 1, 2, . . . , p) period, then αk
i = βk

i = γk
i = 0 will be obtained. This indicates that for

the object Ai in the tk (k = 1, 2, . . . , p) period only the decision to accept is made.

4. Dynamic Hybrid MA3WD Model for Multiple Periods

In this section, the calculation methods of weights for time series and attributes are
discussed, respectively. Based on the GRA-based hybrid MA3WD model, a dynamic hybrid
MA3WD model is then proposed by considering multi-period information. The specific
process of the proposed model is shown in Figure 1.Mathematics 2023, 11, x FOR PEER REVIEW 12 of 29 
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4.1. Determination of Weights

(1) Determination of time-series weights

An important feature of dynamic hybrid MA3WD is the time-series information, as
data in different time series have different relative importance for final results. In this paper,
the entropy-weight method is applied to obtain the weights of the time series. Nonlinear
programming based on maximum entropy value is constructed to obtain the time-series
weights as follows:

maxI = −
p
∑

k=1
ξk ln ξk

st



λ =
p
∑

k=1

p−k
p−1 ξk

p
∑

k=1
ξk = 1

0 ≤ ξk ≤ 1
k = 1, 2, . . . , p

(32)

where ξk is the weight of the tk period, and p is the number of periods. λ ∈ [0, 1] means
“time degree”, which reflects the importance of time series in the process of operator
assembly. A value of λ closer to 0 denotes that the decision-maker places more emphasis on
recent data; a value of λ closer to 1 denotes that the decision-maker places more emphasis on
distant data. In addition, λ = 0.5 denotes that the decision-maker places equal importance
on each period and has no special preference [48].

(2) Determination of attribute weights

To obtain the weights of attributes, a combination of BWM and entropy-weight meth-
ods is utilized. It avoids the excessive subjectivity in BWM, as well as the imbalance of
indicator weights in the entropy-weight method. The specific steps of the BWM-entropy-
weight method are described as follows.

Step 1. Obtain the subjective weights of attributes by BWM. BWM is a multi-criteria
decision-making method proposed by Rezaei [49]. The method is based on the idea of
pairwise comparison of indicators. First, the decision-makers select the optimal cB and
the worst from the evaluation indicators. Then, cB and cW are compared with other
indicators to construct the comparison vectors of the optimal and worst indicators, which
are, respectively, expressed as AB = (aB1, aB2, . . . , aBn) and AW = (a1W , a2W , . . . , anW) [50].
Next, the optimal weight values are obtained by constructing the following nonlinear
programming model.

minζ

st



∣∣∣wB
wj
− aBj

∣∣∣ ≤ ζ∣∣∣ wj
wW
− ajW

∣∣∣ ≤ ζ
n
∑

j=1
wj = 1

wj ≥ 0, j = 1, 2, . . . , n

(33)

In this paper, we consider the reality that a set of attributes expands over time. There-
fore, when determining the attribute weights in different periods, we first use the BWM
method cW to calculate the weight of each attribute in the current period tp that contains
the most comprehensive attributes. Then, other periods are regarded as attribute subsets
of the tp period. For the acquisition of their attribute weights, we remove the attributes
added in the tp period and normalization, thus obtaining the attribute weight vector

W̃k =
(

w̃k
1, w̃k

2, . . . , w̃k
n

)
of the tk (k = 1, 2, . . . , p) period based on the BWM method.

Step 2. Obtain the objective weights of attributes by the entropy-weight method.
Entropy is a measure of system disorder in the entropy-weight method. In addition, the
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lower the entropy value of a set of values, the greater the change in data, and the greater
the corresponding entropy weight [51]. The specific calculation steps of this method are

ej = −
1

ln m

m

∑
i=1

Dij

Dj
ln

Dij

Dj
(j = 1, 2, . . . , n) (34)

where Dij =
m
∑

s=1
d
(
vij, vsj

)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) indicates the deviation of object

Ai from all other objects, and Dj =
m
∑

i=1
Dij =

m
∑

i=1

m
∑

s=1
d
(
vij, vsj

)
(j = 1, 2, . . . , n) indicates the

deviation of all objects from other objects for attribute cj. d
(
vij, vsj

)
indicates the distance

between vij and vsj. Then, the entropy weight wj of each attribute can be expressed as

wj =
1− ej

n
∑

j=1

(
1− ej

) (j = 1, 2, . . . , n) (35)

and then, we can obtain the attribute weight vector
_
W

k
=

(
_
w

k
1,

_
w

k
2, . . . ,

_
w

k
n

)
in the tk

(k = 1, 2, . . . , p) period based on the entropy-weight method.
Step 3. Calculate the comprehensive weights of attributes. Through BWM and entropy-

weight methods, the attribute weight vector of each period can be acquired, respectively.
Then we combine the results of the two methods to obtain the attribute weight of the
tk(k = 1, 2, . . . , p) period as

wk
j =

w̃k
j +

_
w

k
j

n
∑

j=1
w̃k

j +
_
w

k
j

(36)

Then, we can obtain the comprehensive weight vector Wk =
(

wk
1, wk

2, . . . , wk
n

)
in

tk(k = 1, 2, . . . , p).

4.2. Dynamic Hybrid MA3WD for Multiple Periods

In this section, a dynamic hybrid MA3WD model is established. First, a weighted av-
erage operator is employed to integrate the comprehensive loss functions of the alternative
Ai in each period tk shown in Table 5, to obtain the overall loss function of the alternative
Ai as shown in Table 6. Then, the overall conditional probability of the alternative Ai is
obtained in the same way. Finally, the three-way decision rules are established.

Table 5. Comprehensive loss function of Ai in the tk period.

Ai C ¬C

aP 0 ∑j wk
j

(
1− rk+

ij

)
aB ∑j wk

j σk
j

(
1− rk−

ij

)
∑j wk

j σk
j

(
1− rk+

ij

)
aN ∑j wk

j

(
1− rk+

ij

)
0

Table 6. Overall loss function of alternative Ai.

Ai C ¬C

aP 0 ∑k ∑j ξkwk
j

(
1− rk+

ij

)
aB ∑k ∑j ξkwk

j σk
j

(
1− rk−

ij

)
∑k ∑j ξkwk

j σk
j

(
1− rk+

ij

)
aN ∑k ∑j ξkwk

j

(
1− rk−

ij

)
0
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Table 6 shows that each loss λ•∗ (• = P, B, N; ∗ = P, N) in the overall loss function is
obtained by integrating the corresponding losses for p periods. We calculate the thresholds
according to the overall loss function, yielding:

αi =
∑k ∑j ξkwk

j

(
1− σk

j

)(
1− rk+

ij

)
∑k ∑j ξkwk

j

(
1− σk

j

)(
1− rk+

ij

)
+ ∑k ∑j ξkwk

j σk
j

(
1− rk−

ij

) (37)

βi =
∑k ∑j ξkwk

j σk
j

(
1− rk+

ij

)
∑k ∑j ξkwk

j σk
j

(
1− rk+

ij

)
+ ∑k ∑j ξkwk

j

(
1− σk

j

)(
1− rk−

ij

) (38)

γi =
∑k ∑j ξkwk

j

(
1− rk+

ij

)
∑k ∑j ξkwk

j

(
1− rk+

ij

)
+ ∑k ∑j ξkwk

j

(
1− rk−

ij

) (39)

Through the process described in Section 3.2, we can calculate the conditional proba-
bility in each independent period Prk(C|[Ai]). Considering the information from multiple
periods, the overall conditional probability Pr(C|[Ai]) of Ai can be obtained by integrating
the corresponding conditional probability Prk(C|[Ai]) for k = 1, 2, . . . , p. We denote the
overall conditional probability as

Pr(C|[Ai]) =
p

∑
k=1

ξkPrk(C|[Ai]) (40)

Then, the three-way decision rules can be described as

(P) If
p

∑
k=1

ξkPrk(C|[Ai]) ≥ αi, decide Ai ∈ POS(C);

(B) If βi <
p

∑
k=1

ξkPrk(C|[Ai]) < αi, decide Ai ∈ BND(C);

(N) If
p

∑
k=1

ξkPrk(C|[Ai]) ≤ βi, decide Ai ∈ NEG(C).

where αi and βi are expressed as Equations (37) and (38). In the elderly-service performance
evaluation application, if the object Ai follows the rule (P), then Ai ∈ POS(C), meaning the
third-party organization has a good performance and is qualified to obtain a new contract
with the government; if the object Ai follows the rule (N), then Ai ∈ NEG(C), meaning
that the third-party organization has a poor performance and the government should
terminate the contract with it; and if the object Ai follows the rule (B), then Ai ∈ BND(C),
meaning that the third-party organization has a moderate performance and it should take
self-inspection and self-rectification for further evaluation.

It should be noted that the third-party social organizations following rule (B) can locate
their shortcomings to a certain period and certain attributes according to the proposed
model because it also contains the evaluating results for each single period and each single
attribute. Therefore, in the final result, the social organizations in the boundary region can
determine the certain period in which they have poor performance. Similarly, they can also
determine certain attributes with poor performance by the proposed model. Then they
can rectify the corresponding shortcomings accurately and strive to establish a cooperative
relationship with the government again in the next assessment.
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4.3. The Key Steps and Algorithm of Dynamic Hybrid MA3WD Model

To illustrate the dynamic hybrid MA3WD model, we summarize the key steps as well
as the Algorithm 1: The specific algorithm for dynamic hybrid MA3WD.of the proposed
model.

Step 1. Calculate the relative loss function based on gray relational analysis in the tk
(k = 1, 2, . . . , p) period according to Table 4.

Step 2. Compute the comprehensive loss function of each object Ai and the thresholds
in tk period by Equations (29)–(31).

Step 3. Calculate the conditional probability Prk(C|[Ai]) through Section 3.2.
Step 4. Obtain the evaluation results of Ai through the new GRA-based hybrid

MA3WD model.
Step 5. Calculate the overall loss function and overall conditional probability based

on the loss function and conditional probability obtained from the GRA-based hybrid
MA3WD model.

Step 6. Obtain the final decision result of Ai according to the three-way decision rules.

Algorithm 1: The specific algorithm for dynamic hybrid MA3WD.

Input: An information system (T, U, C, V, f ), the risk-avoidance coefficient vector

σk =
(

σk
1 , σk

2 , . . . , σk
n

)
for each period tk, the attribute weight vector Wk =

(
wk

1, wk
2, . . . , wk

n

)
for

each period tk, the time-series weight vector ξ =
(
ξ1, ξ2, . . . , ξ p).

Output: The classification results of objects.
Begin
for k = 1 to p do

for i = 1 to m and j=1 to n do
Calculate the relative loss function λ

ijk
•∗(• = P, B, N; ∗ = P, N) according to Table 4.

end
for i = 1 to m and j=1 to n do
Calculate the comprehensive loss function λ

ijk
•∗(• = P, B, N; ∗ = P, N) by Equation (15).

end
for i = 1 to m do
Calculate thresholds αk

i , βk
i and γk

i by Equations (29)–(31).
end
for i = 1 to m and j=1 to n do
Compute conditional probability Prk(C|[Ai]) according to Section 3.2.
for i = 1 to m do
Determine the evaluation result of each object in the tk period in light of (P′GRA)~(N′GRA).
end

end
for i = 1 to m and k=1 to p do

Calculate the overall loss function λi
•∗(• = P, B, N; ∗ = P, N) according to Table 6.

end
for i = 1 to m do

Calculate thresholds αi, βi and γi by Equations (37)–(39).
end
for i = 1 to m and k=1 to p do

Calculate the overall conditional probability Pr(C|[Ai]) by Equation (40).
end
for i = 1 to m do

Obtain the final decision result of each object according to three-way decision rules.
end

5. Case Illustration
5.1. Example Calculation

The demand for elderly care in China is rising with the acceleration of aging, and
traditional elderly-care supply by governments cannot meet the practical requirements.
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Therefore, the government purchase of elderly-care services has been successfully adopted
in China. We take Xinyang, a city in Henan Province, as an example. Given the obvious
aging problem in the local area, the Xinyang government has actively invested special
funds to purchase elderly-care services. Moreover, the government’s policy is to evaluate
the elderly-care service performance of social organizations once every year and decide
whether to renew the contract after three years. For this realistic requirement, the GRA-
hybrid MA3WD model is used to evaluate the elderly-care service performance each
year, and the dynamic hybrid MA3WD model is used to solve the renewal decision after
three years.

5.1.1. Evaluation Analysis for Single Period

There are eight social organizations Ai (i = 1, 2, . . . , 8) that provide elderly-care ser-
vices purchased by the government. As a period of three years comprises a decision-making
cycle, the information of their latest three years (denoted as t1, t2, and t3, respectively, where
t3 is the current period) is selected. For the t1 and t2 periods, the following evaluation in-
dexes are used to evaluate the elderly-care services provided by social organizations [38,39].

1© Professional training level (c1). This attribute examines the standardization of
training in social organizations and the degree of specialization of the trained personnel.

2© Number of personalized service items (c2). This attribute reflects the level of
diversification of services provided by social organizations.

3© Information disclosure (c3). This attribute examines the ability of social organiza-
tions to timely inform the elderly about service adjustment, to ensure the elderly’s right to
know about services.

4© Timeliness of service (c4). Timeliness refers to the swiftness and rapidness of time.
The timeliness of providing elderly-care services means that elderly-care services can
respond to the needs of service objects in time during the supply process.

5© Customer satisfaction (c5). This attribute is the result of the continuous strengthen-
ing of customer satisfaction, reflecting the customer’s recognition, affirmation, and trust in
the service.

6© Communication ability (c6). This attribute is used to evaluate the ability of service
personnel to communicate effectively with the elderly. With the extension of the service,
social organizations provide psychological counseling and treatment to satisfy the needs of
the elderly during the period t3. Therefore, in the third year, decision-makers add a new
evaluation attribute c7.

7© Psychological treatment ability (c7). Old people often have serious psychological
problems such as the lack of company of family members and the fear of death, so social
organizations need to provide psychological counseling and treatment.

To verify the feasibility of the method proposed in this paper, after a discussion among
experts selected from the field of elderly-care services, the forms of different indexes are
determined as shown in Table 7. During the discussion, experts determine the type of each
index based on attribute characteristics as well as their own experience and preferences. For
example, timeliness of service (c4) and customer satisfaction (c5) are best represented on a
scale of 1–5 according to expert experience, with 5 indicating strong approval, 1 indicating
complete disapproval, and intermediate scores indicating different degrees. Communica-
tion ability (c6) is a qualitative index, so the linguistic variable is the most relevant tool.
Furthermore, to demonstrate the applicability of the method to different information, ex-
perts were selected to rate based on their different preferences. The evaluation values of
different social organizations in the three periods are shown in Tables 8–10. In this case,
experts use a 7-point linguistic term-set to evaluate c6, denoted as

T = {t0 = extremly poor(EP), t1 = very poor(VP), t2 = poor(P),
t3 = medium(M), t4 = good(G), t5 = very good(VG), t6 = extremly good(EG)

}
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Table 7. Classification of evaluation indexes.

Evaluation Indexes Index Value Forms Index Type

c1 Triangular fuzzy numbers Quantitative (benefit type)
c2 Real numbers Quantitative (benefit type)
c3 Intuitionistic fuzzy numbers Quantitative (benefit type)
c4 Real numbers Quantitative (benefit type)
c5 Real numbers Quantitative (benefit type)
c6 Linguistic terms Qualitative (benefit type)
c7 Interval numbers Quantitative (benefit type)

Table 8. Decision matrix for the t1 period.

c1 c2 c3 c4 c5 c6

A1 (0.64,0.7,0.76) 7 <0.8,0.1> 4 3 G
A2 (0.6,0.68,0.76) 8 <0.75,0.15> 3 3 P
A3 (0.7,0.75,0.8) 9 <0.85,0.1> 3 4 VG
A4 (0.8,0.85,0.9) 8 <0.8,0.1> 4 3 VG
A5 (0.72,0.8,0.88) 6 <0.85,0.1> 4 4 G
A6 (0.65,0.7,0.75) 7 <0.8,0.1> 5 4 M
A7 (0.81,0,85,0.89) 10 <0.8,0.1> 5 5 G
A8 (0.75,0.85,0.95) 7 <0.75,0.15> 4 5 EG

Table 9. Decision matrix for the t2 period.

c1 c2 c3 c4 c5 c6

A1 (0.68,0.72,0.76) 7 <0.8,0.1> 5 4 G
A2 (0.65,0.70,0.75) 8 <0.75,0.15> 4 5 M
A3 (0.8,0.85,0.9) 8 <0.85,0.1> 4 4 VG
A4 (0.61,0.66,0.71) 8 <0.8,0.1> 3 3 G
A5 (0.72,0.77,0.82) 6 <0.85,0.1> 4 5 VG
A6 (0.75,0.8,0.85) 7 <0.8,0.1> 5 4 G
A7 (0.82,0.87,0.91) 10 <0.8,0.1> 4 5 EG
A8 (0.73,0.83,0.93) 9 <0.75,0.15> 4 5 EG

Table 10. Decision matrix for the t3 period.

c1 c2 c3 c4 c5 c6 c7

A1 (0.68,0.73,0.78) 8 <0.8,0.1> 5 4 G [77,81]
A2 (0.7,0.75,0.8) 8 <0.75,0.15> 4 5 G [77,81]
A3 (0.74,0.79,0.84) 10 <0.85,0.1> 4 5 VG [81,85]
A4 (0.71,0.76,0.81) 9 <0.8,0.1> 3 3 G [75,79]
A5 (0.7,0.75,0.8) 8 <0.85,0.1> 5 5 VG [81,85]
A6 (0.8,0.84,0.9) 9 <0.8,0.1> 5 4 VG [82,86]
A7 (0.9,0.95,1) 10 <0.8,0.1> 4 5 EG [86,90]
A8 (0.65,0.7,0.75) 8 <0.75,0.15> 4 4 G [75,79]

Considering that c3 is not easy to change in the short term, the evaluation value of
each object under this attribute is fixed in the three periods.

In the treatment of hybrid information, the distance between the hybrid information
and the ideal solution is used as a basis for decision-making in this paper, to avoid informa-
tion loss due to the interconversion of heterogeneous information [37]. The determination
of ideal solution and distance of real numbers, interval numbers, triangular fuzzy numbers,
and intuitionistic fuzzy numbers are, respectively, referred to [34–36,52], where for these ba-
sic concepts we do not elaborate too much. The linguistic term-set T = {tk|k = 1, 2, . . . , s}
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is transformed into triangular fuzzy numbers to participate in the calculation, with the
formula t̃ = (tL

k , tM
k , tU

k ) = (max{(k− 1)/s, 0}, k/s,min{(k + 1)/s, 1}), k = 1, 2, . . . , s.
Considering the BWM and entropy-weight method, we can calculate the attribute weight

vectors as W1 = (0.211, 0.162, 0.129, 0.192, 0.132, 0.175), W2 = (0.222, 0.146,
0.106, 0.255, 0.155, 0.115), and W3 = (0.297, 0.088, 0.096, 0.146, 0.136, 0.104, 0.132) for t1,
t2, and t3 periods, respectively. According to the uncertain attitude of decision-makers to-
wards different attributes, the risk-avoidance coefficient vector in the t1 and t2 periods is
σ1,2 = (0.35, 0.45, 0.35, 0.4, 0.4, 0.5). As a new attribute is added in the t3 period, the risk-
avoidance coefficient vector of the period becomes σ3 = (0.35, 0.45, 0.35, 0.4, 0.4, 0.5, 0.4). We
follow the steps below to evaluate these eight social organizations (the calculation process of
the t2 or t3 periods is the same as that of the t1 period; we will not repeat the calculation steps,
and only take the t1 period as an example).

In the evaluation of third-party social organizations providing elderly-care services,
there are two states Ω = {C,¬C}, where C denotes a good organization and ¬C denotes
a bad organization. Let the set of actions be represented as A = {aP, aB, aN}, where aP,
aB, and aN denote good performance, moderate performance, and poor performance,
respectively. According to the discussion in Section 3, we first calculate the gray relational
coefficients between the eight objects and PIS and NIS in the t1 period by Equations (9) and
(10). The relative loss functions of each evaluation value in the t1 period are obtained as
shown in Table 11. Then, we use the attribute weight vector W1 to aggregate the relative
loss functions to obtain the comprehensive loss functions of each object as shown in Table 12.
Next, we can calculate the conditional probability of each object using the GRA-TOPSIS
method mentioned in Section 3.2. Meanwhile, the thresholds of each object can be obtained
by Equations (29)–(31). The thresholds and conditional probabilities are listed in Table 13.

Table 11. Relative loss functions in the t1 period.

c1 c2 c3 c4 c5 c6

C1 ¬C1 C2 ¬C2 C3 ¬C3 C4 ¬C4 C5 ¬C5 C6 ¬C6

A1

aP 0 0.448 0 0.493 0 0.103 0 0.394 0 0.565 0 0.484
aB 0.043 0.157 0.110 0.222 0.049 0.036 0.157 0.157 0 0.226 0.260 0.242
aN 0.124 0 0.245 0 0.140 0 0.394 0 0 0 0.520 0

A2

aP 0 0.468 0 0.394 0 0.204 0 0.565 0 0.565 0 0.667
aB 0.032 0.164 0.177 0.177 0 0.077 0 0.226 0 0.226 0 0.333
aN 0.092 0 0.394 0 0 0 0 0 0 0 0 0

A3

aP 0 0.394 0 0.245 0 0 0 0.565 0 0.394 0 0.306
aB 0.081 0.138 0.222 0.110 0.071 0 0 0.226 0.157 0.157 0.309 0.153
aN 0.233 0 0.493 0 0.204 0 0 0 0.394 0 0.619 0

A4

aP 0 0.245 0 0.394 0 0.103 0 0.394 0 0.565 0 0.306
aB 0.135 0.086 0.177 0.177 0.049 0.036 0.157 0.157 0 0.226 0.309 0.153
aN 0.386 0 0.394 0 0.140 0 0.394 0 0 0 0.619 0

A5

aP 0 0.330 0 0.565 0 0 0 0.394 0 0.394 0 0.484
aB 0.112 0.116 0 0.254 0.071 0 0.157 0.157 0.157 0.157 0.260 0.242
aN 0.320 0 0 0 0.204 0 0.394 0 0.394 0 0.520 0

A6

aP 0 0.448 0 0.493 0 0.103 0 0 0 0.394 0 0.594
aB 0.043 0.157 0.110 0.222 0.049 0.036 0.226 0 0.157 0.157 0.176 0.297
aN 0.124 0 0.245 0 0.140 0 0.565 0 0.394 0 0.351 0

A7

aP 0 0.246 0 0 0 0103 0 0 0 0 0 0.484
aB 0.135 0.086 0.254 0 0.049 0.036 0.226 0 0.226 0 0.260 0.242
aN 0.386 0 0.565 0 0.140 0 0.565 0 0.565 0 0.520 0

A8

aP 0 0.260 0 0.493 0 0.204 0 0.394 0 0 0 0
aB 0.136 0.091 0.110 0.222 0 0.071 0.157 0.157 0.226 0 0.333 0
aN 0.390 0 0.245 0 0 0 0.394 0 0.565 0 0.667 0
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Table 12. Comprehensive loss functions in the t1 period.

C ¬C C ¬C

A1

aP 0 0.423
A5

aP 0 0.373
aB 0.109 0.176 aB 0.129 0.159
aN 0.250 0 aN 0.312 0

A2

aP 0 0.489
A6

aP 0 0.344
aB 0.035 0.204 aB 0.128 0.146
aN 0.083 0 aN 0.306 0

A3

aP 0 0.337
A7

aP 0 0.150
aB 0.137 0.138 aB 0.195 0.065
aN 0.316 0 aN 0.465 0

A4

aP 0 0.333
A8

aP 0 0.237
aB 0.148 0.138 aB 0.165 0.095
aN 0.347 0 aN 0.389 0

Table 13. Decision thresholds and conditional probabilities in the t1 period.

A1 A2 A3 A4 A5 A6 A7 A8

α1
i 0.693 0.889 0.592 0.568 0.624 0.606 0.303 0.463

β1
i 0.555 0.881 0.436 0.410 0.465 0.452 0.194 0.297

γ1
i 0.628 0.855 0.516 0.489 0.545 0.529 0.244 0.378

Pr1(C|[Ai]) 0.417 0.268 0.523 0.545 0.482 0.488 0.717 0.632

For each object, the range of each region and the conditional probability are shown in
Figure 2. The region where Pr1(C

∣∣∣[Ai]) falls represents the decision of Ai in the t1 period,
so we can obtain three-way decision results clearly from Figure 2 as: POS(C) = {A7, A8},
BND(C) = {A3, A4, A5, A6} and NEG(C) = {A1, A2}. From the results, in the t1 period,
social organizations A7 and A8 are divided into the positive region, indicating that these
two meet the standard of eligibility; A3, A4, A5 and A6 are divided into the boundary
region, meaning that they perform moderately and should strive to improve their business
in the next period; A1 and A2 are divided into the negative region, indicating these two
perform poorly and may face the risk of elimination in the final decision if they do not
make a change.
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As the calculation process of t2 and t3 is the same as t1, the calculation results of t2
and t3 are directly given, which are listed in Table 14.

Table 14. Decision thresholds and conditional probabilities in the t2 and t3 periods.

A1 A2 A3 A4 A5 A6 A7 A8

t2

α2
i 0.531 0.600 0.517 0.800 0.550 0.491 0.332 0.426

β2
i 0.360 0.427 0.344 0.688 0.371 0.325 0.179 0.253

γ2
i 0.444 0.514 0.428 0.750 0.459 0.404 0.250 0.336

Pr2(C|[Ai ]) 0.543 0.483 0.567 0.311 0.536 0.575 0.694 0.643

t3

α3
i 0.593 0.601 0.452 0.752 0.448 0.437 0.184 0.699

β3
i 0.405 0.413 0.268 0.592 0.269 0.261 0.090 0.529

γ3
i 0.500 0.508 0.356 0.679 0.355 0.344 0.130 0.620

Pr3(C|[Ai ]) 0.461 0.458 0.577 0.330 0.575 0.594 0.709 0.371

From the 3WD results of Table 15, we can observe the different results of the t2 and
t3 periods. In the t2 period, social organizations A1, A3, A6, A7, and A8 are classified into
the positive region, meaning that the five objects perform well; A4 is classified into the
negative region, indicating poor performance during this period; A2 and A5 are classified
into the boundary region, which means they have mediocre performance and need further
improvement to reach the standard of renewal. Similarly, in the t3 period, social organiza-
tions A3, A5, A6, and A7 perform well; A4 and A8 perform poorly; and A1 and A2 perform
mediocrely, and need to work hard to improve business.

Table 15. Three-way decision results in t2 and t3 periods.

POS(C) BND(C) NEG(C)

t2 {A1, A3, A6, A7, A8} {A2, A5} {A4}
t3 {A3, A5, A6, A7} {A1, A2} {A4, A8}

5.1.2. Decision Analysis for Multiple Periods

According to the process of the GRA-based hybrid MA3WD model, the corresponding
comprehensive loss function and the conditional probability of each object of the three
periods are obtained in Section 5.1.1. Since the decision-maker attaches more importance
to the recent data, the value of the time degree λ is set to 0.3, and then the time-series
weight vector is obtained according to Equation (32) as follows: ξ = (0.154, 0.292, 0.554).
Next, use the time-series weights to integrate the comprehensive loss functions of the t1,
t2 and t3 periods to obtain the overall loss functions as shown in Table 16. It should be
noted that the meaning of the actions set A = {aP, aB, aN} in Table 16 is slightly different
from that mentioned in Section 5.1.1. Here, aP, aB and aN denote the renewal of contract,
further investigation, and termination of contract, respectively. Like the method used to
calculate the overall loss functions, we integrate the corresponding conditional probability
of each object in three periods to obtain the overall conditional probability Pr(C|[Ai]) of
each object. The thresholds and overall conditional probabilities are listed in Table 17.

Table 16. Overall loss functions.

C ¬C C ¬C

A1

aP 0 0.319
A5

aP 0 0.256
aB 0.130 0.130 aB 0.146 0.105
aN 0.314 0 aN 0.355 0

A2

aP 0 0.348
A6

aP 0 0.246
aB 0.114 0.142 aB 0.156 0.101
aN 0.274 0 aN 0.382 0

A3

aP 0 0.257
A7

aP 0 0.105
aB 0.156 0.103 aB 0.186 0.042
aN 0.378 0 aN 0.454 0

A4

aP 0 0.403
A8

aP 0 0.313
aB 0.086 0.163 aB 0.132 0.124
aN 0.201 0 aN 0.314 0
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Table 17. Decision thresholds and overall conditional probabilities.

A1 A2 A3 A4 A5 A6 A7 A8

αi 0.592 0.645 0.496 0.737 0.511 0.482 0.254 0.588
βi 0.414 0.468 0.318 0.585 0.333 0.310 0.135 0.405
γi 0.504 0.559 0.405 0.667 0.419 0.392 0.188 0.499

Pr(C|[Ai]) 0.478 0.436 0.566 0.357 0.549 0.572 0.705 0.491

From Figure 3, we can visually observe the final 3WD results after comprehensively
considering the evaluation information of three periods. Now, according to the classifi-
cation results, the government can decide on which social organizations to continue to
cooperate with. As shown in Figure 3, POS(C) = {A3, A5, A6, A7}, BND(C) = {A1, A8}
and NEG(C) = {A2, A4}. Therefore, social organizations A3, A5, A6, and A7 have good
performances and are qualified to obtain new contracts with the government; A2 and A4
have poor performances and government should terminate contracts with them; A1 and
A8 have moderate performances and they should take self-inspection and self-rectification
for further evaluation.
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As mentioned in Section 4, the model proposed in this paper can precisely locate which
attributes are underperforming at which period for the social organization, to rectify and
manage the corresponding business. Hence, for the social organizations in the boundary
region, they can make targeted rectifications according to the results of the model, and
perform outstandingly in the next assessment. For example, in the final decision results, A8
is divided into the boundary region. According to Tables 13 and 15, A8 is divided into the
positive region, while in the t3 period, it is divided into the negative region. Based on this
situation, for A8, we can explore which attributes underperform at t3, i.e., which attributes
are divided into the negative region. Considering a single attribute as a 3WD problem, the
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3WD rules of A8 under each attribute are obtained based on the 3WD method proposed in
this paper.

According to the thresholds and conditional probabilities listed in Table 18, we can
judge that A8 is classified into the rejection region under attributes c1, c2, c3, c6, and c7, which
means A8 performs worse in these five attributes. From this result, if A8 wants to improve
its service performance, it should rectify the business related to these five attributes.

Table 18. Calculation results of A8 under each attribute.

c1 c2 c3 c4 c5 c6 c7

A8

α 0.870 0.550 1 0.6 0.6 0.482 1
β 0.661 0.450 1 0.4 0.4 0.482 1

Pr(Cj

∣∣∣[A8]) 0.259 0.356 0.285 0.5 0.5 0.346 0.264

5.2. Comparative Analysis
5.2.1. Comparison between Static and Dynamic Assessment

To illustrate the importance of dynamic evaluation, we compare the results of the 3WD
based on the evaluation information in the t3 (current) period with the results of the 3WD
based on the comprehensive information, i.e., when t = t3 and t = t1 ∼ t3. The comparison
results are shown in Table 19.

Table 19. Comparison at t = t3 and t = t1 ~ t3.

POS(C) BND(C) NEG(C)

t = t3 {A3, A5, A6, A7} {A1, A2} {A4, A8}
t = t1 ∼ t3 {A3, A5, A6, A7} {A1, A8} {A2, A4}

From Table 19, it can be seen that there are differences in the results derived from
static and dynamic assessment. However, the result based on dynamic assessment is
more reasonable. For example, in the t3 period, A8 is divided into the negative region,
but if the evaluation information of the t1 ∼ t3 periods is considered, A8 is classified in
the boundary region. By comparing the decision results of t1 and t2, we can find that
A8 performs well in the first two periods and is classified into the positive region. This
suggests that A8 only performs poorly in the t3 period, but still has the potential to be
renewed and should be given a chance to rectify for the next assessment. Based on the
above discussion, integrating multiple periods leads to more credible classification results,
which demonstrates the importance of dynamic assessment.

5.2.2. Comparison between the Proposed Method and MADM Methods

In the current section, we compare the proposed method with three traditional MADM
methods (the TOPSIS method [53], the VIKOR method [54], and the ELECTRE method [55]).
It should be noted that the 3WD method is about the classification of alternatives, while
these three MADM methods are only for obtaining the ranking of alternatives and determin-
ing an optimal alternative. To compare with these three MADM methods, the ranking of
the alternatives is obtained according to the thresholds α, β, and γ, respectively. The smaller
the value of α (or β or γ) of the alternative, the higher the probability of the alternative
being accepted [20], so we obtain three sorting results according to the values of α, β, and
γ, which are shown in Table 20.

From Table 20, it can be seen that the ranking results of different methods are highly
consistent, although there are slight differences. More specifically, there is a difference in
the sorting of A3, A5, and A6 for all methods, which indicates that the proposed method is
valid. In addition, compared with the MADM method, the method proposed in this paper
considers the risk preference of the decision-maker and divides all social organizations into
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three areas, which effectively reduces decision-making risks and helps the decision-maker
make the most reasonable decision.

Table 20. Ranking comparison of alternatives obtained by different methods.

Proposed
Method

(Based on α)

Proposed
Method

(Based on β)

Proposed
Method

(Based on γ)
TOPSIS [53] VIKOR [54] ELECTRE

[55]

A1 6 6 6 6 6 6
A2 7 7 7 7 8 7
A3 3 3 3 4 3 4
A4 8 8 8 8 7 8
A5 4 4 4 3 4 2
A6 2 2 2 2 2 3
A7 1 1 1 1 1 1
A8 5 5 5 5 5 5

5.2.3. Comparison between the Proposed Method and Existing 3WD Methods

To further illustrate the superiority of the proposed model, we select Jia and Liu’s
method [20], Gao et al.’s method [13], and Wang et al.’s method [56] for comparison. These
three methods are first applied to the example in this section to obtain the classification
results, which are listed in Table 21. Then, we compare and analyze the similarities and
differences between the proposed method and the above methods considering four aspects,
which are listed in Table 22.

Table 21. Comparison of classification results.

POS(C) BND(C) NEG(C)

Jia and Liu’s method [20] {A3, A5, A6, A7} {A1, A8} {A2, A4}
Gao et al.’s method [13] {A3, A5, A6, A7} ∅ {A1, A2, A4, A8}

Wang et al.’s method [56] {A3, A5, A6, A7} {A1, A8} {A2, A4}
Proposed method {A3, A5, A6, A7} {A1, A8} {A2, A4}

Table 22. Comparative analysis among different methods.

Different Methods Attribute Weights Outcome or Loss
Functions

Conditional
Probability

Dynamic
Decision-
Making

Jia and Liu’s method [20] Subjective Objective Subjective ×
Gao et al.’s method [13] Objective Objective Objective

√

Wang et al.’s method [56] Subjective Subjective Objective ×
Proposed method Objective Objective Objective

√

As shown in Table 21, the classification results of the four methods are generally
consistent. A3, A5, A6, and A7 are all classified into the accept region, A2 and A4 are
both classified into the reject region. There are only differences as to whether A1 and A8
are classified in the boundary region or the negative region. Based on the comparison
of classification results, the effectiveness of our proposed method can be verified. Next,
through the comparison in Table 22, we summarize the advantages of the method proposed
in this paper:

(1) Jia and Liu [20] converted attribute values into loss functions using relative loss and
inverse loss functions, which is a great advance on the 3WD model. The determination
of conditional probabilities is subjectively given by the decision-maker and lacks
interpretability. The method proposed in this paper uses GRA-TOPSIS to estimate
conditional probabilities, which overcomes the subjective influence of conditional
probabilities given artificially.

(2) Gao et al.’s method [13] considers the influence of time factors on realistic decision
problems and considers the integration of information from multiple periods to make
decisions. In some decision-making problems, it is also necessary to evaluate objects
in a certain period. Gao et al. [13] lack the evaluation of objects in a single period. In
contrast, the model proposed in this paper not only obtains the final decision results
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but also obtains the results of a certain period and a certain attribute, which facilitates
the object to accurately determine which attribute is at a disadvantage for rectification.
From this perspective, the proposed model is superior because of its flexibility and
universality in the presentation of results.

(3) Wang et al.’s method [56] introduces regret theory into the 3WD process, which is
a great improvement to the 3WD and provides a guiding direction for our future
research work. However, both the attribute weights and outcome matrix are decided
subjectively by the decision-maker, which lacks transparency and interpretability.
The method proposed in this paper uses a combination of BWM and entropy-weight
methods to determine the attribute weights, which is more scientific than the method
of Wang et al. [56]. At the same time, the proposed model uses GRA to construct the
loss functions, which effectively connects the attribute values in the MADM with the
loss functions in the 3WD from an objective perspective.

5.2.4. Correlation Analysis

In this section, we introduce the pairwise comparison method Spearman’s correlation
coefficient (SCC) [57] to explore the connection of the above methods. There is a consensus
that a larger SCC indicates a stronger consistency between the two methods. In general,
an SCC greater than 0.8 indicates a strong correlation between the two counterparts. The
specific calculation results are shown in Figure 4.
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The results in Figure 4 show that all the SCCs between the proposed method and the
other selected methods are greater than 0.9; therefore, there is a conclusion that the results
derived from the proposed method are valid and credible.

6. Conclusions

In this paper, a GRA-based dynamic hybrid MA3WD model is established, and the
main contributions of the method are listed as follows: (1) a new loss function construction
method is proposed based on GRA, which adopts a data-driven method to overcome the
drawback of excessive subjectivity caused by decision-makers giving loss functions based
on experience; (2) with the aid of GRA-TOPSIS method, a new conditional probability
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determination method is proposed, which is based on the relative closeness reflecting the
position and shape similarity; (3) a GRA-based hybrid MA3WD model is proposed for
evaluating objects at a specific period. The model can point out the specific attributes
and periods of poor performance of the object, which facilitates the object to improve its
deficiencies accurately; (4) by extending the single-period environment to a multi-period
environment, a dynamic hybrid MA3WD model is proposed, which extends the study of
3WD in a time-dynamic environment.

The proposed model is applied to solve the performance evaluation problem of elderly-
care services to illustrate the feasibility and superiority of the proposed method, and the
applicability of the proposed method is as follows: (1) the model applies to realistic
problems with hybrid information derived from single-period evaluation information as
well as multi-period information, which is widely applicable and flexible; (2) the proposed
model can be used not only in the performance evaluation of elderly-care services but also
in similar decision-making problems in other fields, such as target–threat assessment [13],
investment decisions [30], risk analysis [58], medical diagnosis [28], etc.

There are some limitations, namely: (1) some existing 3WD methods have considered
the psychological behavior of decision-makers [25], which is not mentioned in this paper,
and the proposed method can be combined with regret theory [21] in future work; (2) in the
dynamic MA3WD model, we calculate the time-series weights based on the entropy-weight
method. Although this method is classical, it can be improved to obtain more reasonable
time-series weights. Therefore, we will focus on three aspects in future studies: (1) the
proposed method should be combined with group decision-making [59] to make the evalu-
ation information used in decision-making more accurate and reliable; (2) considering the
advantages of machine learning, we will introduce the knowledge of machine learning [60]
in future studies on 3WD; (3) based on the characteristic that decision-makers are rational,
we will consider combining the proposed method with behavioral decision theories such
as regret theory [21] and prospect theory [61].
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