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Abstract: We already know that the noncommutative N-graded Noetherian algebras resemble com-
mutative local Noetherian rings in many respects. We also know that commutative rings have the
important property that every minimal acyclic complex of finitely generated graded free modules
is totally acyclic, and we want to generalize such properties to noncommutative N-graded Noethe-
rian algebra. By generalizing the conclusions about commutative rings and combining what we
already know about noncommutative graded algebras, we identify a class of noncommutative graded
algebras with the property that every minimal acyclic complex of finitely generated graded free
modules is totally acyclic. We also discuss how the relationship between AS–Gorenstein algebras and
AS–Cohen–Macaulay algebras admits a balanced dualizing complex. We show that AS–Gorenstein
algebras and AS–Cohen–Macaulay algebras with a balanced dualizing complex belong to this algebra.
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1. Introduction

Recent studies have shown that noncommutative N-graded Noetherian algebras are
similar to commutative local Noetherian rings in many respects. For example, one has con-
structed a theory of the G-dimension and local cohomology in noncommutative N-graded
algebra; see [1,2]. People have also extended the (commutative) Gorenstein ring and G-class
concepts to noncommutative concepts and proved the Auslander–Buchsbaum formula and
the Auslander–Bridger formula in noncommutative graded situations; see [1,3,4]. In [5],
the authors give the classes of rings that satisfy the property of every minimal acyclic
complex of finitely generated free modules is totally acyclic. It is natural to look for the
classes of noncommutative N-graded algebras with the property that every minimal acyclic
complex of finitely generated graded free modules is totally acyclic.

The classes of commutative rings have the property that every minimal acyclic complex
of finitely generated free R-modules is totally acyclic, as studied by Hughes, Meri Jorgensen,
David Ega, and Liana [5]. In [5], the authors relied on the G-dimension to demonstrate that
every minimal acyclic complex of finitely generated free R-modules is totally acyclic; the
Auslander–Buchsbaum formula, the Auslander–Bridger formula, and the depth lemma of
the R-module are also used in the proof. The noncommutative versions of these contents
have been presented by Jørgense [3], Ueyama, Kenta [1], and Huckaba S, Marley T [6],
respectively. In this paper, we will continue to explore the properties of the G-dimension
and the G-class of graded modules and combine the G-dimension with the short exact se-
quence of graded left A-modules to explore the interrelationship of the G-dimension among
the three elements in the short exact sequence. I try to find a class of noncommutative
graded algebra with the property that every minimal acyclic complex of finitely generated
graded free left A-modules is totally acyclic. We will also discuss the relationship between
AS–Gorenstein algebras and AS–Cohen–Macaulay algebras with a balanced dualizing
complex; the results obtained in this paper will complement the results of [7]. Through
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the obtained relations, we know that AS–Cohen–Macaulay algebras with a balanced du-
alizing complex are the ones satisfying the property that every minimal acyclic complex
of finitely generated graded free left A-module is totally acyclic. This result complements
the conclusions related to the commutative ring in [5] on noncommutative graded algebra.
This paper is summarized as follows:

• Section 2. This Section introduces notation and conventions regarding graded algebras
and modules and recalls some well-known results.

• Section 3. We introduce the definition of the coproduct and product of graded modules
and prove some properties of the functors acting on the direct sum of the graded
modules and on the projective graded modules.

• Section 4. We focus on the proof of Theorem 4, which can be seen as the G-class
equivalence definition.

• Section 5. We introduce the properties of the G-dimension and G-class in the non-
commutative case and combine the G-dimension with the short exact sequence of the
graded left A-module to explore the interrelationship of the G-dimension among the
three elements in the short exact sequence.

• Section 6. We prove that there is an inequality G-dimA M ≤ pdA M, and the equality
holds if pdA M < ∞ for every finitely generated graded left A-module M. We still
proved the Auslander–Bridger formula while satisfying the condition χ◦depthA(A)(A A).

• Section 7. In this section, we will find a class of noncommutative graded algebras
that satisfies the property that every minimal acyclic complex of finitely generated
graded free modules is totally acyclic and that contains the AS–Gorenstein algebra.
The following theorem is the main result of this section, and covers the algebraic class
we are looking for.

Theorem 1 (Theorem 11). Let A be a left Noetherian connected graded algebra with
idA A = idA◦A = n < ∞ and satisfying the condition χ◦depthA(A)(A A), then every minimal
acyclic complex of finitely generated graded free left A-module is totally acyclic.

It is easy to know that an AS–Gorenstein algebra has the property that every minimal
acyclic complex of finitely generated graded free modules is totally acyclic.
But AS–Gorenstein algebras and the property that every minimal acyclic complex of
finitely generated graded free modules is totally acyclic are not mutually equivalent. So, the
above theorem extends AS–Gorenstein algebras to a larger class of noncommutative graded
algebras, such that this class of algebras also satisfies the property that every minimal
acyclic complex of finitely generated graded free modules is totally acyclic.

• Section 8. In this section, our main content is to prove two theorems.

Theorem 2 (Theorem 14). A is an AS–Gorenstein algebra if and only if A is an AS–Cohen–
Macaulay algebra with a balanced dualizing complex.

One should compare Theorem 2 with the results in ([7], Theorem 1.6). We know that
this theorem is complementary to the results of the paper [7].

Theorem 3 (Theorem 15). Let B be an AS–Cohen–Macaulay algebra with a balanced dualizing
complex, then B satisfies the property that every minimal acyclic complex of finitely generated
graded free left B-modules is totally acyclic.

According to the relation between an AS–Cohen–Macaulay algebra with a balanced
dualizing complex and an AS–Gorenstein algebra given by Theorem 2 and the related
results in Section 7, the above theorem shows that an AS–Cohen–Macaulay algebra with a
balanced dualizing complex also has the property that every minimal acyclic complex of
finitely generated graded free modules is totally acyclic. This theorem complements the
conclusions related to the commutative ring in [5] on noncommutative graded algebras.
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2. Preliminaries

In this section, let us review some of the basics of coderived functors and of the
hyperhomology of the category of graded modules over a graded algebra. We refer
to [1,3,8] for more basics about graded algebras.

2.1. Algebras

An N-graded k-algebra A is a graded k-vector space A = ⊕i∈NAi with an associative
multiplication, such that unit 1 is in A0 and the multiplication preserves the grading;
thus, Ai Aj ⊆ Ai+j. |a| denotes the degree of a graded or homogeneous element a. We use
Ao to denote the opposite algebra of A.

A graded algebra A is a connected graded algebra when A0 = k. In these circumstances,
we denote k = A/m, m = ⊕∞

i=1 Ai; it defines an obvious augmentation of A.
A graded algebra A connected over k is called the AS–Gorenstein of dimension n, and

of Gorenstein parameter l if idA A = idAo A = n and A satisfies the Gorenstein condition
(cf. [4], Definition 1.1), that is,

Exti
A(k, A) ∼= Exti

Ao (k, A) ∼=
{

k(l) i f i = n
0 otherwise.

We call A an AS–Cohen–Macaulay algebra when A is a Noetherian, N-graded, connected
k-algebra, for which the complex RΓm(A) is concentrated in one degree (cf. [7], Definition 1.1).

2.2. Graded Modules

Let A be a graded algebra and M be an A-module. M is called a left graded module over
A if there exists a family of k-vectorspaces {Mn}n∈Z of M, such that

(1) M =
⊕∞

i=−∞ Mi; and
(2) An ·Mm ⊆ Mn+m for any n, m ∈ Z.

Let M =
⊕∞

n=−∞ Mn be a graded left A-module and N be a submodule of M. For
each n ∈ Z, let Nn = N ∩Mn. If the family of subvectorspaces {Nn}n∈Z makes N a graded
left A-module, then N is a graded submodule of M.

The n’th shift of M is defined by M(n)i = Mn+i.
A graded module M is a left-bounded graded module if Mi = 0 for a sufficiently large

negative; right-boundness graded module and boundness graded module are defined similarly.
The graded left A-module M is a locally finite graded module if each graded piece Mi is a
finitely generated k-vectorspace. The graded left A-module M is called finitely generated if
there exist m1, m2 . . . mn in M, such that for any m in M, there exists a1, a2 . . . an in A with
m = a1m1 + a2m2 + · · ·+ anmn. The graded left A-module M is a free graded module if it is
isomorphic to ⊕A(ni) for some ni ∈ Z.

The graded A-module M is called a graded Noetherian module (graded Artinian module)
if every ascending (descending) chain of graded submodules

M1 ⊆ M2 ⊆ M3 ⊆ · · ·

stops. If A A is a graded Noetherian (graded Artinian) left A-module, then A is a left graded
Noetherian algebra (left graded Artinian algebra). If A is connected and left-Noetherian, then it
is a locally finite module over itself.

A finitely generated graded left A-module belongs to the G-class G(A) (cf. [1,9]) if and
only if

(1) Exti
A(M, A) = 0 for i > 0;

(2) Exti
Ao (HomA(M, A), A) = 0 for i > 0; and

(3) The biduality map σM : M→ HomAo (HomA(M, A), A) is an isomorphism.

Similarly definable, a finitely generated right A-module M belongs to the G-class; we
still call M belongs to G-class, notated as M ∈ G(Ao).
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The proofs of M ∈ G(Ao) and M ∈ G(A) are similar, so we only prove the relevant
conclusion of M ∈ G(A).

2.3. Homomorphisms

Let A be an N-graded k-algebra and M, N be graded left A-modules. Let f : M→ N
be an A-module homomorphism. Then, f is said to be graded or homogeneous of degree d if
f (Mn) ⊆ Nn+d for all n.

GrMod(A) denoted the category whose objects are graded left-modules over A and
whose morphisms are A-linear homomorphisms of degree 0. grmod(A) denoted the
full subcategory of finitely generated graded modules. We denote HomGrMod(A) for the
homomorphism-functor in the category GrMod(A). Define

HomA(M, N) =
∞⊕

n=−∞
HomGrMod(A)(M, N(n)).

Let A be a graded algebra; the two graded A-modules M and N are called isomorphic
as graded modules if there exists a degree 0 isomorphism between them. Likewise, the two
graded algebras A and B are said to be isomorphic as graded algebra if there exists a degree
0 isomorphism between them.

The two graded left A-modules are projectively equivalent if ∃P, Q graded projective
left A-module with M⊕ P ∼= N ⊕Q. Notation: M ≈ N.

2.4. Duality

For a graded left A-module, we are given the following definition:

M∗ = HomA(M, A) and M∗∗ = HomAo (HomA(M, A), A)

We called the modules M∗ and M∗∗, respectively, the dual and bidual of M. Similarly,
if M is a graded right A-module, then M∗ = HomAo (M, A).

Let π : P1
u→ P0

f→ M→ 0 be a sequence of graded module morphisms. π is called a
(finitely generated) projective presentation if and only if

π : P1
u→ P0

f→ M→ 0

is an exact sequence, P1 and P0 are (finitely generated) projective graded A-modules.
Let M be any finitely generated graded left A-module, and let

π : P1
u→ P0

f→ M→ 0

be a finitely generated projective presentation of M. The Auslander dual, D(M) of M is
defined as

D(M) = Coker(u∗ : P∗0 → P∗1 )

in other words, by dualizing (π), we obtain an exact sequence

π∗ : 0→ M∗
f ∗→ P∗0

u∗→ P∗1 → D(M)→ 0.

Note that the Auslander dual of M is not unique, and they are natural isomorphisms
to each other in grmod(A).

2.5. Complexes

A complex of graded left modules over A is a sequence

X = · · · → Xu−1 δu−1
→ Xu δu

→ Xu+1 → · · ·
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of morphisms of graded left modules over A such that

δuδu−1 = 0 for all u ∈ Z.

The nth syzygy module of X is ΩnX = Coker δn−1
X for each integer n. The cohomology

number m of a complex X is denoted by hm(X) = ker δm/Imδm−1. The twisting of complexes
is denoted by [ ] so that (X[n])p = Xn+p and δ

p
x[n] = (−1)nδ

n+p
X , for n ∈ Z.

The complex X of the finitely generated free graded left A-module is called acyclic
if hm(X) = ker δm

X /Imδm−1
X = 0, m ∈ Z. We let ( )∗ denote the functor HomA( , A).

The dual complex of X is the complex X∗, which has component (X−n)∗ in degree n, and
differentials δn

X∗ = (δ−n−1
X )∗ = HomA(δ

−n−1
X , A). An acyclic complex of finitely generated

free graded left A-modules is called totally acyclic if hm(X∗) = ker δm
X∗/Imδm−1

X∗ = 0, m ∈ Z.
The relevant definitions of the finitely generated free graded right A-modules are similar.

A morphism of complexes from a complex X to a complex

Y = . . . Yu−1 εu−1
→ Yu εu

→ Yu+1 → . . .

is a family (γu ∈ HomGrMod(A)(Xu, Yu))u∈z, such that γu+1δu = εuγu for u ∈ Z.
The induced map h( f ) of f on the cohomologies is a morphism of h(A)-modules.

f is called a quasi-isomorphism if h( f ) is an isomorphism, denoted f : X '→ Y. X is called
quasitrivial if X ' 0, X, Y, and 0 are complexes of graded modules.

A complex X ∈ D−(GrMod(A)) consisting of free modules is said to be finitely
generated if it consists of finitely generated frees.

A complex X ∈ D−(GrMod(A)) consisting of free modules is said to be minimal if
Im(δi−1

X ) ⊆ mXi for each i.
Let A be a Noetherian connected graded k-algebra. A complex R· ∈ Db(GrModAe) is

a dualizing complex if it meets the following conditions (cf. [8], Definitions 3.3 and 4.1):

(1) idA(R·) < ∞ and idAo (R·) < ∞;
(2) resA(R·) ∈ Db

fg(GrModA) and resAo (R·) ∈ Db
fg(GrModAo);

(3) The natural morphisms A→ RHomA(R·, R·) and A→ RHomAo (R·, R·) are isomor-
phisms in Db(GrModAe).

A dualizing complex R· over A is said to be balanced if there are isomorphisms

RΓm(R·) ∼= RΓmo (R·) ∼= A′

in Db(GrModAe).

2.6. Truncation

For a complex of graded left A-modules and each integer n, left brutal truncation of
complex X is denoted by X≤n, which has components

Xi
≤n =

{
Xi, i ≤ n
0, i > n

and differentials

δi
≤n =

{
δi, i ≤ n− 1
0, i ≥ n

that is,

· · · δn−3
−→ Xn−2 δn−2

−→ Xn−1 δn−1
−→ Xn −→ 0 −→ 0 · · · .

Define the right brutal truncation X≥n as the complex

· · · −→ 0 −→ 0−→Xn δn
−→ Xn+1 δn+1

−→ Xn+2 δn+2
−→ · · · .
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Define the left truncation σ≤nX as the complex

· · · δn−3
−→ Xn−2 δn−2

−→ Xn−1 −→ Ker δn −→ 0 −→ 0 −→ · · · .

Define the right truncation σ≥nX as the complex

· · · −→ 0 −→ 0 −→ Im δn−1 −→ Xn dn
−→ Xn+1 dn+1

−→ · · · .

Note that the cohomology of the left truncation σ≤nX and the right truncation σ≥nX
at n is still hn(X).

2.7. Resolutions

Let A be an N-graded k-algebra; a G-resolution of a finitely generated graded left
A-module M is a sequence of modules in G(A),

· · ·G−l d−l
→ G−l+1 d−l+1

→ · · · → G−1 d−1
→ G0 d0

→ 0

which is exact at G−l for l > 0 and has G0/Im(G−1 → G0) ∼= M. That is, there is an exact
sequence,

· · ·G−l d−l
→ G−l+1 d−l+1

→ · · · → G−1 d−1
→ G0 d0

→ M→ 0.

The resolution is said to be of length n if G−n 6= 0 and G−l = 0 for l > n.
A finitely generated graded left A-module M is called having a finite G-dimension,

denoted G-dimA M ≤ ∞, if M has a G-resolution of finite length. We set G-dimA0 = −∞.
For M 6= 0 and n ∈ N0, M has the G-dimension at most n, denoted G-dimA M ≤ n, if and
only if M has a G-resolution of length n. If M has no G-resolution of finite length, then M
has an infinite G-dimension, denoted G-dimA M = ∞.

A finitely generated graded left A-module M is called having a G-dimension g, denoted
G-dimA M = g, if g is the smallest integer, such that there exists an exact sequence
0 → Gg → Gg−1 → · · · → G1 → G0 → M → 0, with each Gi belonging to the G-
class. Thus, if the finitely generated graded left A-module M belongs to the G-class, then
G-dimM = 0.

A projective resolution of a finitely generated graded left A-module M is a sequence of
projective graded left A-modules,

· · · P−l d−l
→ P−l+1 d−l+1

→ · · · → P−1 d−1
→ P0 d0

→ 0

which is exact at P−l for l > 0 and has P0/Im(P−1 → P0) ∼= M. That is, there is an
exact sequence,

· · · P−l d−l
→ P−l+1 d−l+1

→ · · · → P−1 d−1
→ P0 d0

→ M→ 0.

The resolution is said to be of length n if P−n 6= 0 and P−l = 0 for l > n.
For a finitely generated graded left A-module M, take an exact sequence

0→ Ωn
A(M)→ P−n+1 d−n+1

→ · · · → P−1 d−1
→ P0 d0

→ M→ 0, where P−i is a finitely generated
graded projective left A-module(0 ≤ i ≤ −n + 1).

For each n > 0, the module Ωn
A(M) is called the nth syzygy module of M. Note that

syzygy modules of M are not uniquely determined, while they are natural isomorphisms
to each other in grmod(A).

A finitely generated graded left A-module M is said to have a finite projective dimension,
denoted pdA M ≤ ∞, if M has a projective resolution of finite length. We set pdA0 = −∞.
For M 6= 0, we define the projective dimension of M as follows: For n ∈ N0, M has
projective dimension at most n and denoted pdA M ≤ n if and only if M has a projective
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resolution of length n. If M has no projective resolution of finite length, then M has infinite
projective dimension, denoted pdA M = ∞.

A finitely generated graded left A-module M is called have projective dimension g,
denoted pdA M = g, if g is the smallest integer, such that there exists an exact sequence
0 → P−g → P−g+1 → · · · → P−1 → P0 → M → 0, where each Pi is a projective graded
left A-module. Thus, if finitely generated graded left A-module M is a projective module,
then pdM = 0.

Let A be an N-graded k-algebra, an injective resolution of a finitely generated graded
left A-module M is a sequence of injective modules,

0→ I0 d0
→ I1 d1

→ · · · Ig dg
→ · · ·

which is exact at Ig for g > 0 and has ker d0 ∼= M. That is, there is an exact sequence,

M→ I0 d0
→ I1 d1

→ · · · Ig dg
→ · · · .

The resolution is said to be of length n if In 6= 0 and Il = 0 for l > n.
A finitely generated graded left A-module M is called having a finite injective dimension,

denoted idA M ≤ ∞, if M has an injective resolution of finite length. We set idA0 = −∞.
For M 6= 0 and n ∈ N0, M has an injective dimension at most n, denoted idA M ≤ n, if and
only if M has an injective resolution of length n. If M has no injective resolution of finite
length, then M has an infinite injective dimension, denoted idA M = ∞.

A finitely generated graded left A-module M is called having injective dimension g,
denoted idA M = g, if g is the smallest integer, such that there exists an exact sequence

M→ I0 d0
→ I1 d1

→ . . . Ig dg
→ 0, with each Ii being a graded injective left A-module.

2.8. Category of Graded A-Modules

The category of graded left A-modules is denoted by GrMod(A), whose morphisms
are graded module morphisms. We denote by grmod(A) the category of finitely generated
graded left A-modules whose morphisms are graded module morphisms.

We denote by grmod(A) the stable category of grmod(A) modulo graded projective
modules: the objects are the same as grmod(A), while the morphism space between two
objects M and N is, by definition, the quotient k-vectorspace HomA(M, N)/PA(M, N),
where PA(M, N) is the k-subvectorpace of HomA(M, N) consisting of morphisms factoring
through projective modules. The stable category grmod(A) is additive, and projective mod-
ules are zero objects. Moreover, two modules M and N become isomorphic in grmod(A),
denoted by M ≈ N, if and only if there exist graded projective left A-modules P and Q
such that M⊕ P ∼= N ⊕Q;

The derived category of graded A-modules is denoted by D(GrMod(A)), which is
constructed from the category GrMod(A) by inverting quasi-isomorphisms. The derived
categories will be equipped with superscripts and subscripts when we only consider certain
types of complexes: superscripts and subscripts when we only consider certain types of
complexes: superscripts “+”, “−”, and “b”, respectively, decorate the signs for categories of
right- and left-bounded complexes, respectively, while subscripts “ f g” and “I f ”, respectively,
decorate the signs for categories of complexes of finitely generated respectively locally finite
modules. These decorations can be combined arbitrarily; for example, D−f g(GrMod(A))

is the derived category whose objects are left-bounded complexes of finitely generated
graded left A-modules.

The right derived functor of Hom is denoted RHom, and the left derived functor of ⊗
is denoted L⊗. They can be computed via projective, injective, and flat resolutions of the
graded modules. For any M, N ∈ D(GrMod(A)) and T ∈ D(GrMod(Ao)), let F '→ M,
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N '→ I, and P '→ T be the projective resolution of M, injective resolution of N, and flat
resolution of T, respectively. Then,

RHomA(M, N) = HomA(F, N) or RHomA(M, N) = HomA(M, I)

T L⊗A M = P⊗A M

and

Exti
A(X, Y) = hiRHomA(X, Y), TorA

i (X, Y) = h−i
(

X L ⊗A Y
)

.

We say that χ◦i (M) holds for an A-module M if Extj(A0, M) is bounded for all j ≤ i.
If χ◦i (M) holds for every finite A-module M, we say that χ◦i holds for the graded algebra
A, and if χ◦i holds for every i, we say that χ◦ holds for A (cf. [10], Definition 3.2).

In the rest of this paper, A will always be a connected and left-Noetherian graded
algebra over a field k, All modules mentioned in the rest of this paper are finitely generated
graded left A-modules. We denote its maximal graded ideal⊕∞

i=1 Ai by mA or m. Obviously,
the residue field k has a graded A-module structure via the canonical augmentation map
ε : A → k. We abbreviate the property that every minimal acyclic complex of finitely
generated graded free modules is totally acyclic as ac = tac.

3. Properties of Finitely Generated Graded Left A-Module

First, we introduce the definition of a coproduct and product of a graded module.
Then, we prove some properties of the functors acting on the direct sum of the graded
modules and on the graded projective modules.

If Mi, i ∈ Z are graded left A-modules, then the category GrMod(A) has a small
coproduct and product, given by

q
i

Mi = ⊕
n
⊕
i

Mi,n

Π
i

Mi = ⊕
n

Π
i

Mi,n.

If M
′

and M
′′

are graded left A-modules, then the formula

(M
′ ⊕M

′′
)i = M

′
i ⊕M

′′
i

defines a graded module M
′ ⊕M

′′
, the direct sum of M

′
and M

′′
. The maps

M′ ι′−→ M′ ⊕M′′ π′−→ M′

m′ 7−→ (m′, 0)
(m′, m′′) 7−→ m′

M′′ ι′′−→ M′ ⊕M′′ π′′−→ M′′

m′ 7−→ (m′, 0)
(m′, m′′) 7−→ m′

are morphisms of graded modules, which produce a natural isomorphism of A-module

HomA
(

M′ ⊕M′′, N
) ∼=−→ HomA

(
M′, N

)
×HomA

(
M′′, N

)
β 7−→

(
βι′, βι′′

)
β′π′ + β′′π′′ ←−

(
β′, β′′

)
Thus HomA(N ⊕M, X) ∼= HomA(N, X)⊕HomA(M, X).
In the following, we prove the properties of graded projective modules in the noncom-

mutative graded algebra, which are obvious in the commutative algebra but differ in some
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way from the commutative in the noncommutative. For example, comparing Corollary 1
with ([11], Corollary 1.15) reveals the difference.

Lemma 1. If P is a finitely generated graded projective left A-module, then P∗ = HomA(P, A) is
a graded projective right A-module.

Proof. If P is a finitely generated graded projective left A-module, we can find a free
graded left A-module, such that F = P⊕Q ∼= An. Since HomA(F, A) = HomA(P⊕Q, A),
then P∗ ⊕Q∗ ∼= HomA(An, A) = An; thus, P∗ = HomA(P, A) is a graded projective right
A-module.

Proposition 1. For every graded projective left A-module P, the canonical map σP : P→ P∗∗ is
injective, in which P∗∗ = HomAo (HomA(P, A), A).

Proof. Let {xi}, { fi} be a dual basis {xi}, { fi} for P. Suppose that x 6= 0 and x 7→
( f 7→ f (x)) = 0, Then, f (x) = 0 for all f ∈ P∗, and in particular fi(x) = 0, for all i.
But x = ∑i fi(x)xi = 0. So, we obtain a contradiction, and we conclude that σP : P→ P∗∗

is injective.

Corollary 1. For every finitely generated graded projective A-module P, the canonical map σP :
P→ P∗∗ is an isomorphism, in which P∗∗ = HomAo (HomA(P, A), A).

Proof. By choosing a dual basis x1, · · · , xn ∈ P and f1, · · · fn ∈ P∗ for P, we prove that
f1, · · · fn ∈ P∗ = HomA(P, A) and x̂1 · · · x̂n ∈ P∗∗ = HomAo (HomA(P, A), A) form a pair
of dual bases of P∗. By the definition of the dual basis for P, we obtain x = ∑n

i=i fi(x)xi
for all x ∈ P; applying an arbitrary of f ∈ P∗ to both sides of this equality yields
f (x) = f (∑n

i=1 fi(x)xi) = ∑n
i=1 fi(x) f (xi) = ∑n

i=1 fi(x)x̂i( f ). Hence, f = ∑n
i=1 fi x̂i( f ).

We prove that x̂1 · · · x̂n ∈ P∗∗ = HomAo (HomA(P, A), A) and f̃1, · · · f̃n ∈ P∗∗∗ =
HomA(P∗∗, A) form a pair of the dual bases of P∗∗. By the definition of dual basis for
P∗, we obtain f = ∑n

i=i fi x̂i( f ) for all fi ∈ P∗, applying an arbitrary of x̂ ∈ P∗∗ to both
sides of this equality yields x̂( f ) = x̂(∑n

i=i fi x̂i( f )) = ∑n
i=1 x̂( fi)x̂i( f ) = ∑n

i=1 f̃i(x̂)x̂i( f ).
Hence x̂ = ∑n

i=1 f̃i(x̂)x̂i. Since each x̂i has preimage xi, then P → P∗∗ =
HomAo (HomA(P, A), A) is a surjective A-linear map. We also showed injectivity in
Proposition 1. Thus, this map is an isomorphism.

Obviously, each finitely generated graded projective A-module belongs to the G-class.

Lemma 2. Let A be an N-graded k-algebra. The functor HomA( , A) is left exact.

Proof. For each exact sequence of graded left A-modules: 0→ M
η→ N π→ L→ 0, we want

to prove the complex 0→ HomA(L, A)
HomA(π,A)−→ HomA(N, A)

HomA(η,A)−→ HomA(N, A).

(i) ker HomA(π, A) = {0}.
For each f ∈ HomA(L, A), if HomA(π, A)( f ) = f π = 0, since π is surjective, thus

f =0, that is, ker HomA(π, A) = {0}.
(ii) ImHomA(π, A) = ker HomA(η, A).

First, since HomA(η, A)HomA(π, A) = HomA(πη, A) = HomA(0, A) = 0, thus
ImHomA(π, A) ⊆ ker HomA(η, A). Second, if τ ∈ HomA(N, A) and HomA(η, A)τ = 0.
If c ∈ L, then π(b) = c for some b ∈ N, because π is surjective. Define σ : L →
A by σ(c) = m if τ(b) = m, m ∈ A. Note that σ is well defined: If σ(c

′
) = m

′
,

m
′ ∈ A and c

′ ∈ L, then π(b
′
) = c

′
, τ(b

′
) = m

′
for some b

′ ∈ N by the definition of
σ. If π(b

′
) + π(b) = c

′
+ c = π(b

′
+ b) and τ(b

′
) + τ(b) = m

′
+ m = τ(b

′
+ b), then

σ(c
′
+ c) = m

′
+ m = σ(c

′
) + σ(c). If π(ab) = aπ(b) = ac and τ(ab) = aτ(b) = am, then
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σ(ac) = am = aσ(c). By the definition of σ, then σ ∈ HomA(L, A) and HomA(π, A)σ = τ.
Thus, ker HomA(η, A) ⊆ ImHomA(π, A).

Proposition 2. For each graded left A-module M, N. If the complex N → P−i+1 → P−i+2 · · · →
P−1 → P0 → M is an exact sequence, and P−j are projective graded left A-modules, 0 ≤ j ≤ i− 1,
then Extn+i

A (M, A) = Extn
A(N, A), ∀n ∈ Z.

Proof. If a complex · · ·Q−1 → Q0 → N is a projective resolution of N, Q−j is a graded
projective A-module, ∀j ∈ Z. There is an exact sequence, · · ·Q−1 → Q0 → P−i+1 →
P−i+2 · · · → P−1 → P0 → M. Let Q−j = P−i−j; then, · · · P−i−1 → P−i → P−i+1 →
P−i+2 · · · → P−1 → P0 → M is a projective resolution of M, then HomA(M, A) →
HomA(P0, A) → HomA(P−1, A) → · · · → HomA(P−i, A) → HomA(P−i−1, A) →
· · · = HomA(M, A) → HomA(P0, A) → HomA(P−1, A) → · · · → HomA(P−i+1, A) →
HomA(Q0, A) → · · · and HomA(N, A) → HomA(Q0, A) → HomA(Q−1, A) → · · · .
Thus Exti+n

A (M, A) = hi+nRHomA(M, A) = hnRHomA(N, A) = Extn
A(N, A).

4. Properties of G-Class

In this section, we prove the equivalence definition of the G-class by a particular exact
sequence.

The following lemma is a necessary condition for our proof of the equivalence defini-
tion of G-class; this is a noncommutative version of ([12], Proposition 5).

Lemma 3. Let σM : M → M∗∗ be the natural map with Kernel KM and Cokernel CM. Then,
we have natural isomorphisms

KM ∼= Ext1
Ao (D(M), A) and CM ∼= Ext2

Ao (D(M), A).

Proof. Consider the finitely generated projective presentation π : P1
u→ P0

f→ M → 0

of M. Dualizing π, we have an exact sequence π∗ : 0 → M∗
f ∗→ P∗0

u∗→ P∗1 → D(M) → 0.

Split π∗ into short exact sequence π∗0 : 0→ M∗
f ∗→ P∗0

β0→ N → 0 and π∗1 : 0→ N
β1→ P∗1 →

D(M) → 0, where N = Coker( f ∗) and β1β0 = u∗. Dualizing π∗0 and π∗1 , we obtain an
exact sequence,

π∗∗0 : 0 −→ N∗
β∗0−→ P∗∗0

f ∗∗−→ M∗∗ −→ Ext1
Ao (N, A) −→ 0

and
π∗∗1 : 0 −→ D(M)∗ −→ P∗∗1

β∗1−→ N∗ −→ Ext1
Ao (D(M), A) −→ 0.

Consider the commutative diagram with the exact row

P1 P0 M 0

0 N∗ P∗∗0 M∗∗

u

β∗1σP1

f

σP0 σM

β∗0 f ∗∗

Since σP1 is an isomorphism, we obtain Coker(β∗1σP1) = Coker(β∗1); according to π∗∗1 ,
we obtain Coker(β∗1)

∼= Ext1
Ao (D(M), A), so we have Coker(β∗1σP1) = Coker(β∗1)

∼=
Ext1

Aop(D(M), A). According to the snake lemma, we obtain Kerβ∗1σP1 → KerσP0 →
KerσM → Cokerβ∗1σP1 → CokerσP0 → CokerσM, since σP0 is isomorphism, we obtain
KM = Ker(σM) ∼= Coker(β∗1σP1), thus KM ∼= Ext1

Ao (D(M), A).
Since f is surjective and σP0 is an isomorphism, we have Im( f ∗∗) = ImσM.

According to π∗∗0 , we obtain CM = Coker(σM) = Coker( f ∗∗) ∼= Ext1
Ao (N, A).

According to the short exact sequence, π∗1 , P∗1 is a graded projective right A-module
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and exact sequence theorem in cohomology; we obtain Ext1
Ao (N, A) ∼= Ext2

Ao (D(M), A).
So, CM ∼= Ext2

Ao (D(M), A).

Lemma 4. For each graded left A-module, we have a exact sequence,

0→ Ext1
Ao (D(M), A)→ M→ M∗∗ → Ext2

Ao (D(M), A)→ 0

Proof. According to Lemma 3, we can obtain two natural isomorphisms f : KM →
Ext1

Ao (D(M), A) and g : CM → Ext2
Ao (D(M), A). We also have the exact sequence 0 →

KM
u→ M

σM→ M∗∗ v→ CM → 0; thus, we obtain a exact sequence 0 → Ext1
Ao (D(M), A)

f u→
M

σM→ M∗∗
vg→ Ext2

Ao (D(M), A)→ 0.

The ideas of the next theorem come from ([13], Proposition 3.8). The following theorem
can be used as the equivalent definition of the G-class.

Theorem 4. Let M be a finitely generated graded left A-module. The following are equivalent:

(a) G-dimM = 0;
(b) M belongs to the G-class;
(c) Exti

A(M, A) = 0 and Exti
Ao (D(M), A) = 0, ∀i > 0.

Proof. (a) ⇒ (b) If G-dimM=0, then there is a exact sequence 0 → M0 → M → 0,
where M0 belongs to the G-class. Thus M0 ∼= M; that is, M belongs to the G-class.

(b)⇒ (a) Because M belongs to the G-class, 0→ M
idM→ M→ 0 is a G-resolution of M;

that is, G-dimM = 0.
(b)⇔ (c) From the exact sequence

0→ Ext1
Ao (D(M), A)

u→ M
σM→ M∗∗ v→ Ext2

Ao (D(M), A)→ 0,

we see that the biduality map δM : M → M∗∗ = HomAo (HomA(M, A), A) is an
isomorphism if and only if Ext1

Ao (D(M), A) = 0 and Ext2
Ao (D(M), A) = 0. From the

exact sequence

π∗ : 0→ M∗ → P∗0 → P∗1 → D(M)→ 0

in which P1 → P0 → M → 0 is a projective presentation of M, we see that
Exti

Ao (D(M), A) = 0 if and only if Exti−2
Ao (M∗, A) = 0, for each i > 2. Thus, (b) and

(c) are equivalent.

5. G-Dimension of Graded Left A-Module

This Section complements the properties of the G-dimension and G-class in the non-
commutative case of [1] by the properties of G-dimension in the commutative case and
combines the G-dimension with the short exact sequence of the graded left A-module to
explore the interrelationship of the G-dimension among the three elements in the short
exact sequence.

Proposition 3. If M ≈ N, then G-dimM = G-dimN, where M and N are finitely generated
graded left A-modules.

Proof. The following proves that G-dimM and G-dimN are infinite or finite at the same
time. When G-dimM and G-dimN are finite, then G-dimM = G-dimN. Suppose G-dimN
is infinite and G-dimM < t < ∞; let us prove the contradiction: Since G-dimM < t < ∞,

then we have a G-resolution 0 → G−t d−t
→ G−t+1 d−t+1

→ · · · → G−1 d−1
→ G0 d0

→ M → 0 of M.

Since M ≈ N, then M ⊕ P
f∼= N ⊕ Q. Since 0 → G−t d−t

→ G−t+1 d−t+1
→ · · · → G−1 d−1⊕0→

G0 ⊕ P
d0⊕idP→ M⊕ P→ 0 is a G-resolution of M⊕ P, then 0→ G−t d−t

→ G−t+1 d−t+1
→ · · · →
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G−1 d−1⊕0→ G0 ⊕ P
(d0⊕idP) f→ N ⊕ Q → 0 is a G-resolution of N ⊕ Q. Thus, 0 → G−t d−t

→

G−t+1 d−t+1
→ · · · → G−2 d−2

→ G−1 ⊕ Q
d−1⊕0⊕idQ→ G0 ⊕ P ⊕ Q

(d0⊕idP) f (idN⊕0)→ N → 0 is a
G-resolution of N, so we can obtain G-dimN ≤ ∞, contradictory to assumption; thus,
G-dimM and G-dimN are infinite or finite at the same time. From the above proof, it is
clear that each G-resolution of M is also G-resolution of N. Similarly, we can prove that
the G-resolution of N is also the G-resolution of M; thus, when G-dimM and G-dimN are
finite, G-dimM = G-dimN. In summary, G-dimM = G-dimN.

By the result in [13], we can obtain the following long exact sequence of graded left
A-modules and obtain the relationship between the G-dimensions of the three elements in
the short exact sequence according to the long exact sequence.

Lemma 5. Let 0→ M1 → M2 → M3 → 0 be an exact sequence of finitely generated graded left
A-modules; then, there exists an exact sequence, 0→ M∗3 → M∗2 → M∗1 → D3 → D2 → D1 →
0, where Di ≈ D(Mi) for i = 1, 2, 3, such that there is an exact sequence, 0 → D∗1 → D∗2 →
D∗3 → 0.

Proof. We can find finitely generated graded projective left A-modules Pi, Qi (i = 1, 2, 3)
and maps so that the following diagram is exact and commutative:

0→ Q1 → Q2 → Q3 → 0
↓ ↓ ↓

0→ P1 → P2 → P3 → 0
↓ ↓ ↓

0→ M1 → M2 → M3 → 0
↓ ↓ ↓
0 0 0

We note that the top rows split. If we dualize the first diagram, we obtain the exact
commutative diagram:

0 0 0
↓ ↓ ↓
M∗3 → M∗2 → M∗1
↓ ↓ ↓

0→ P∗3 → P∗2 → P∗1 → 0
↓ ↓ ↓

0→ Q∗3 → Q∗2 → Q∗1 → 0
↓ ↓ ↓
D3 → D2 → D1
↓ ↓ ↓
0 0 0

We have an exact sequence 0→ M∗3 → M∗2 → M∗1 → D3 → D2 → D1 → 0 by snake
lemma. Since each finitely generated graded projective A-module P is isomorphic to P∗∗

and the first diagram is an exact commutative diagram, we can dualize once more and
obtain the following exact and commutative diagram:



Mathematics 2023, 11, 3167 13 of 22

0 0 0
↓ ↓ ↓
D∗1 → D∗2 → D∗3
↓ ↓ ↓

0→ Q1 → Q2 → Q3 → 0
↓ ↓ ↓

0→ P1 → P2 → P3 → 0
↓ ↓ ↓
M1 → M2 → M3
↓ ↓ ↓
0 0 0

Applying the snake lemma diagram again, we obtain an exact sequence 0→ D∗1 →
D∗2 → D∗3 → M1 → M2 → M3 → 0. Furthermore, since M1 → M2 is a monomorphism,
we conclude that 0→ D∗1 → D∗2 → D∗3 → 0 is exact.

Lemma 6. Let 0 → M1 → M2 → M3 → 0 be exact with Mi finitely generated. Suppose that
G-dim M3 = 0; then, G-dim M2 = 0 if and only if G-dimM1 = 0.

Proof. Since G-dimM3 = 0, we know Exti
A(M3, A) = 0 and Exti

Ao (D(M3), A) = 0 for
all i > 0 by Lemma 4. In particular, Ext1

A(M3, A) = 0. Dualizing our short exact se-
quence then gives the exact sequence 0 → M∗3 → M∗2 → M∗1 → 0. Now, from Lemma 5,
there exists an exact sequence 0 → M∗3 → M∗2 → M∗1 → D3 → D2 → D1 → 0, where
Di ≈ D(Mi) for i = 1, 2, 3. Since M∗2 → M∗1 is surjective, we deduce the exactness of
0 → D3 → D2 → D1 → 0. We now have two long exact sequences obtained from
0→ M1 → M2 → M3 → 0 and 0→ D3 → D2 → D1 → 0, respectively,

· · · → Exti
A(M3, A)→ Exti

A(M2, A)→ Exti
A(M1, A)→ Exti+1

A (M3, A)→ · · ·

and

0 → D∗1 → D∗2 → D∗3 → Ext1
Ao (D1, A) → Ext1

Ao (D2, A) → Ext1
Ao (D3, A) → · · ·

→ Exti−1
Ao (D3, A)→ Exti

Ao (D1, A)→ Exti
Ao (D2, A)→ Exti

Ao (D3, A)→ · · · .

Since Exti
A(M3, A) = 0 for all i > 0, we deduce from the first of these sequences that

Exti
A(M1, A) ∼= Exti

A(M2, A), ∀i > 0. By Lemma 5, we have that D∗2 → D∗3 is surjective.
Furthermore, since G-dimM3 = 0, then Exti

Ao (D3, A) = 0, ∀i > 0. We deduce from the
second of these sequences that Exti

Ao (D1, A) ∼= Exti
Ao (D2, A), ∀i > 0. In summary, ∀i > 0,

Exti
A(M1, A) ∼= Exti

A(M2, A),

Exti
Ao (D1, A) ∼= Exti

Ao (D2, A).

By the characterization of G-dim= 0 contained in Theorem 4, we see that G-dimM1 = 0
if and only if G-dimM2 = 0.

N ∈ G(A) also has the same properties as the projective module. The conclusions are
as follows.

Lemma 7. Let 0 → X → N → M → 0 be an exact sequence of finitely generated graded left
A-modules. If N ∈ G(A), then there are isomorphisms

Extm+1
A (M, A) ∼= Extm

A(X, A),

for m > 0.
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Proof. Dualizing the short exact sequence 0→ X → N → M → 0, we have a long exact
sequence 0 → M∗ → N∗ → X∗ → Ext1

A(M, A) → · · · → Extm
A(M, A) → Extm

A(N, A) →
Extm

A(X, A) → · · · . Since N ∈ G(A), then Extm
A(N, A) = 0 for m > 0. By the long exact

sequence, we can easily obtain Extm+1
A (M, A) ∼= Extm

A(X, A) for m > 0.

Theorem 5. Let 0→ X → Gn−1 → · · · → G1 → G0 → M→ 0 be an exact sequence of finitely
generated graded left A-modules. If Gi ∈ G(A), 0 ≤ i ≤ n− 1, then there are isomorphisms

Extm+n
A (M, A) ∼= Extm

A(X, A),

for m > 0.

Proof. We set X0 = M, X1 = Ker(G0 → M), X = Xn and Xi = Ker(Gi−1 → Gi−2) for
2 ≤ i ≤ n− 1. For each 0 ≤ j ≤ n, we have a short exact sequence 0 → Xj → Gj−1 →
Xj−1 → 0. Applying Lemma 7, we obtain isomorphisms Extm+1

A (Xj−1, A) ∼= Extm
A(Xj, A)

for m > 0, which piece together to give isomorphisms Extm+n
A (X, A) ∼= Extm

A(M, A)
for m > 0.

Proposition 4. Let M be a finitely generated graded left A-module, and M belong to the G-class;
then, M∗ also belongs to the G-class.

Proof. Since M belongs to the G-class, then M has the following properties:

(1) Exti
A(M, A) = 0 for i > 0;

(2) Exti
Aop(HomA(M, A), A) = 0 for i > 0; and

(3) the biduality map δM : M→ HomAop(HomA(M, A), A) = 0 is an isomorphism.

Since M and M∗∗ are isomorphic, Exti
A(M, A) = Exti

A((M∗)∗, A) = 0 for i > 0 and
M∗ ∼= (M∗)∗∗; thus, M∗ belong to the G-class.

By the result of [9], we have the following characterization.

Lemma 8. Let A be an N-graded k-algebra and M be a finitely generated graded left A-module of
finite G-dimension. If Extm

A(M, A) = 0 for all m > 0, then M ∈ G(A).

Proof. First, let G-dimM ≤ 1, then we obtain an exact sequence, 0→ G−1 → G0 → M→ 0,
where the modules G−1 and G0 belong to G(A). As Ext1

A(M, A) = 0, this sequence dualizes
to give a short exact sequence, 0 → M∗ → G0∗ → G−1∗ → 0. Since G0∗, G−1∗ ∈ G(Ao),
M∗ ∈ G(Ao), in particular Extm

A(M∗, A) = 0 for m > 0. Since G0∗∗, G−1∗∗ ∈ G(A),
Ext1

A(G
−1∗∗, A) = 0. Dualizing once more, we have the second row in the short exact ladder

0 G−1 G0 M 0

0 G−1∗∗ G0∗∗ M∗∗ 0

δG−1 δG0 δM

By five lemma, we know that δM is an isomorphism; thus, M ∈ G(A).
Now, let n > 1 and G-dimM ≤ n− 1 imply M ∈ G(A).
If G-dimM ≤ n, then M has a G-resolution of length n

0→ G−n → G−n+1 → · · · → G−1 → G0 → M→ 0.

Let K = Ker(G−n+2 → G−n+3), then there is a exact sequence 0→ G−n → G−n+1 → K.
By the definition of the G-dimension, we know G-dim(K) ≤ 1. since Extm

A(K, A) =
Extm+n−1

A (M, A) = 0 for m > 0, So K ∈ G(A) by the above. Now, the exact sequence

0→ K → G−n+2 → · · · → G0 → M→ 0
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shows that G-dimM ≤ n− 1. By the induction hypothesis, M ∈ G(A).

The G-dimension, projective dimension, and injective dimension have similar con-
clusions about cohomology. From [9], we can obtain the following conclusions about
G-dimension.

Theorem 6. Let M be a finitely generated graded left A-module and n ∈ N. The following
are equivalent:

(a) G-dimM ≤ n.
(b) G-dimM < ∞ and Extm

A(M, A) = 0, for m > n.

Proof. (a)⇒ (b)
If G-dimM ≤ n, then M has a G-resolution of length n

0→ G−n → · · · → G−1 → G0 → M→ 0.

From Theorems 4 and 5, Extm+n
A (M, A) ∼= Extm

A(G
−n, A) = 0, for m > 0, that is,

Extm
A(M, A) = 0, for m > n.
(b)⇒ (a)
We assume that M has a G-resolution of finite length p:

0→ G−p → · · · → G−1 → G0 → M→ 0.

If p ≤ n, there is nothing to prove. So, we assume that p > n. Defining K =
Ker(G−n+1 → G−n+2), we obtain an exact sequence,

0→ K → G−n+1 → · · · → G−1 → G0 → M→ 0.

Since 0→ G−p → · · · → G−n−1 → K is an exact sequence, K has finite G-dimension
at most p− n. Since Extm

A(M, A) = 0, for m > n, then Extm+n
A (M, A) ∼= Extm

A(K, A) = 0, for
m > 0. From Lemma 8, K ∈ G(A). So, M has a G-resolution of length n.

Notation. From Theorem 6, we can immediately conclude that G-dimA(M)=
sup{m ∈ N|Extm

A(M, A) 6= 0} for modules of the finite G-dimension.

Theorem 7. Let A be an N-graded k-algebra. If X ∈ D−(GrMod(A) and n is an integer, the
following conditions are equivalent:

(a) We have pdA(M) ≤ n;
(b) For any X ∈ GrMod(A) and any m > n we have Extm

A(M, X) = 0;
(c) For any X ∈ grmod(A) and any m > n we have Extm

A(M, X) = 0.

Proof. See [3].

Corollary 2. If there exist two exact sequences, as follows:

0→ K → G−n+1 → · · · → G−1 → G0 → M→ 0,

0→ N−n → N−n+1 → · · · → N−1 → N0 → M→ 0.

where N−j,(j = 1, . . . , n) and G−i,(i = 1, . . . , n− 1) belong to the G-class, then K belongs to the
G-class.

That is, G-dimM ≤ n, and there is an exact sequence 0→ K → G−n+1 → · · · → G−1 →
G0 → M→ 0; then, K belongs to the G-class.
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Proof. Since 0 → N−n → N−n+1 → · · · → N−1 → N0 → M → 0 is the G-resolution
of M, then G-dimM ≤ n. From Theorem 6, we can obtain Extm

A(M, A) = 0, for m > n.
From the observation Extm+n

A (M, A) ∼= Extm
A(K, A) = 0, for m > 0. Then, K ∈ G(A), from

Theorem 5.

Analogously to the commutative case ([13], Corollary 3.16), we have the following
characteristics in the noncommutative case.

Theorem 8. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of finitely generated graded
left A-modules; if two modules have a finite G-dimension, then so does the third.

Proof. First, assume that G-dimM3 = n < ∞; we prove that G-dimM1 ≤ t if and only if
G-dimM2 ≤ t, where n < t < ∞.

Consider the exact and commutative diagram

0 0 0

0 M1 M2 M3 0

0 P0 P0 ⊕Q0 Q0 0

...
...

...

0 P−t+1 P−t+1 ⊕Q−t+1 Q−t+1 0

0 K1 K2 K3 0

0 0 0

where Pi and Qi are graded projective left A-modules (0 ≤ i ≤ t− 1), then Ki ≈ Ωt Mi,
we can obtain G-dim(Ki) = G-dimΩt

A(Mi) for (i = 1, 2, 3) by Proposition 3. Since n ≤ t,
we have G-dimΩt M3 = G-dimK3 = 0 by Corollary 2.

Since 0 → K1 → K2 → K3 → 0 are exact, we have G-dimK2 = 0 if and only if
G-dimK1 = 0 by Lemma 6. By definition of the G-dimension, this is equivalent to saying
G-dimM2 ≤ t if and only if G-dimM1 ≤ t.

Second, assume that G-dimM1 ≤ n and G-dimM1 ≤ n; we prove that G-dimM3 ≤ t + 1,
where n < t < ∞.

Consider the exact and commutative diagram
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0 0 0

0 M1 M2 M3 0

0 P0 P0 ⊕Q0 Q0 0

...
...

...

0 P−t+1 P−t+1 ⊕Q−t+1 Q−t+1 0

0 K1 K2 K3 0

0 0 0

where the Pi and Qi are graded projective left A-modules (0 ≤ i ≤ t− 1), then Ki ≈ Ωt(Mi),
we can obtain G-dim(Ki) = G-dimΩt

A(Mi) for (i = 1, 2, 3). Since G-dimM1 ≤ n and
G-dimM2 ≤ n, G-dim(Ki) = G-dimΩt

A(Mi) = 0,(i = 1, 2) by Corollary 2.
From Theorem 4, we can obtain K1, K2 belonging to G-class; we have an exact sequence
0→ K1 → K2 → Q−t+1 → · · · → Q0 → M3 → 0. Thus, G-dimM3 ≤ t + 1.

6. The Auslander–Bridger Theorem

The generalized Auslander–Buchsbaum formula and the generalized Auslander–
Bridger formula have already been proved by Jørgensen in ([8], Theorem 3.2) and by ([1],
Theorem 4.3), respectively. From the existence theorem due to Van den Bergh ([14],
Theorem 6.3), we obtain that if A admits a balanced dualizing complex, then A satis-
fies the χ◦-condition on both sides; thus, the conditions assumed in ([1], Theorem 4.3)
are stronger. Rogalski and Sierra [15] found that there is a Noetherian connected graded
algebra that does not satisfy the Auslander–Buchsbaum formula; that is, the χ◦-condition
is in some sense necessary for Jørgensen’s results. However, in the Auslander–Bridger
formula, we only use the conclusion of the A-module, so we use the relationship between
the projective dimension and the G-dimension of A-module to give a simple proof and
only assume A satisfies the χ◦-condition.

Definition 1 ([2]). Let A be a connected graded algebra. For each X ∈ D(GrModA),
we define the Bass-numbers

µi(X) = dimk Exti
A(k, X),

the depth of X

depthA(X) = inf RHomA(k, X) = inf
{

i | µi(X) 6= 0
}

,

and the k-injective dimension of X

k. idA(X) = sup RHomA(k, X) = sup
{

i | µi(X) 6= 0
}

.

Theorem 9 (The Auslander–Buchsbaum theorem). Let A be an N-graded k-algebra which is
left-Noetherian and connected and satisfies the condition χ◦depthA(A)(A A) ( this χ◦-condition is
vacuous if A has infinite depth as a left-module over itself).
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Given X ∈ Db
f g(GrMod(A)) with pdA(X) < ∞, we have

pdA(X) + depthA(X) = depthA(A).

Proof. See ([3], Theorem 3.2).

Depending on the commutative case [9], we can obtain the relevant inequality on the
noncommutative graded algebra.

Lemma 9. For every finitely generated graded left A-module M, there is an inequality

G−dimA M ≤ pdA M,

and equality holds if pdA M < ∞.

Proof. If M has infinite projective dimension, then the inequality certainly holds.
Assume that M has a finite projective dimension, say p. Since M is a finitely gener-
ated graded left A-module, it has a resolution of minimal length by the finitely generated
graded projective left A-module 0 → P−p → · · · → P−1 → P0 → M. In particular, this
resolution is a G-resolution, so G-dimA M ≤ p. By Theorem 7, Extp+1

A (M, ) = 0 and a
finitely generated graded left A-module T exists, such that Extp

A(M, T) 6= 0. Applying the
functor HomA(M, ) to the short exact sequence 0→ K → ⊕n

i=1 A→ T → 0, we have an
exact sequence

· · · → Extp
A(M, K)→ Extp

A(M,⊕n
i=1 A)→ Extp

A(M, T)→ 0.

Show that Extp
A(M,⊕n

i=1 A) 6= 0, and therefore,⊕n
i=1Extp

A(M, A) = Extp
A(M,⊕n

i=1 A) 6=
0, that is, Extp

A(M, A) 6= 0; thus, G-dimA M = p.

Theorem 10 (The Auslander–Bridge theorem). Let A be an N-graded k-algebra that is left-
Noetherian and connected and satisfies the condition χ◦depthA(A)(A A) (this χ◦-condition is vacuous
if A has infinite depth as a left-module over itself).

Given X ∈ grmod(A) with pdA(X) < ∞, we have

G−dimAX + depthA(X) = depthA(A).

Proof. According to Lemma 9 and Theorem 10, we can immediately obtain the Auslander–
Bridger theorem.

7. Complexes of Graded Modules

In this section, we identify a class of noncommutative graded algebra that satisfies
ac = tac. We also give an example belonging to this algebra. We default A to be a connection
left-Noetherian graded algebra and satisfy the condition χ◦depthA(A)(A A); the following
lemma is similar to ([5], Lemma 1.3).

Lemma 10. Let X be an acyclic complex of finitely generated graded free left A-modules.
The following conditions are equivalent:

(a) X is totally acyclic;
(b) ΩiX belongs to G-class for all i ∈ Z;
(c) G-dimA(ΩiX) < ∞ for some i ∈ Z;

Proof. Let X be an acyclic complex of finitely generated graded free left A-modules, that is,

X = · · · → Xu−1 δu−1
→ Xu δu

→ Xu+1 → · · · ,
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where Xi is finitely generated graded free left A-module for i ∈ Z.
(a) ⇒ (b) Fix n ∈ Z and set G = ΩnX = Cokerδn−1. As X≤n[n] is a projective

resolution of G, we have Exti
A(G, A) ∼= hi−n(X∗) = 0 for i > 0 and G∗ ∼= Ker(δn−1)∗ =

Ker(δ−n
X∗ ). As X∗ is exact, Kerδ−u

X∗ = Ω−n−1X∗ and X∗≤−n−1[−n − 1] is a projective
resolution of G∗. Since X∗∗ = X, we obtain Exti

A(G
∗, A) ∼= hi+n+1(X∗∗) = 0 for i > 0 and

G∗∗ ∼= Ker(δX∗
−n−2)

∗ = Kerδn+1
X∗∗ = Kerδn+1

X = G.
(b) ⇒ (a) For each n ∈ Z, the complex X≤n−1[n − 1] is a projective resolution of

Ωn−1X, so hn(HomA(X, A)) ∼= Ext1
A(Ω

−n+1X, A) = 0. Since this holds for all n ∈ Z,
the conclusion holds.

(b)⇒ (c) From Theorem 4, the conclusion clearly holds.
(c)⇒ (b) From Lemma 8, we know that in a short sequence, if two modules have a

finite G-dimension, then so does the third. Recursive use of the short exact sequence
0 → Ωi−1X → Xi → ΩiX → 0 gives then G-dimA(ΩiX) < ∞ for all i. For any
i, we can obtain an exact sequence, 0 → Ωi−1X → Xi → ΩiX → 0. Since Xi is
a finitely generated graded free left A-module, Xi belongs to the G-class, that is, G-
dimXi = depthA − depthXi = 0. From the depth lemma cf. [7], we can obtain
depthΩi−1X ≥ inf

{
depthXi, depthΩiX + 1

}
.

(i) Assume depthΩi−1X ≥ depthXi.

From the Auslander–Bridger theorem, we can obtain G-dimΩi−1X = depthA −
depthΩi−1X = depthXi − depthΩi−1X ≤ 0; thus, G-dimΩi−1X = 0.

(ii) Assume depthΩi−1X ≥ depthΩiX + 1.

From the Auslander–Bridger theorem, we can obtain G-dimΩi−1X = depthA −
depthΩi−1X = depthXi − depthΩi−1X ≤ depthA− depthΩiX− 1.

Next, we consider the exact sequence 0→ ΩiX → Xi+1 → Ωi+1X → 0.
Assume depthΩiX ≥ depthXi+1 = depthA, then G-dimΩi−1X ≤ −1. Assumptions

do not hold.
Assume depthΩiX ≥ depthΩi+1X + 1, then G-dimΩi−1X ≤ depthA −

depthΩi+1X − 2, and so on, we can obtain G-dimΩi−1X ≤ 0. Therefore, assumption
(ii) is not valid.

Summarizing the above, G-dimΩi−1X = 0. That is, conclusion (b) holds.

In the following theorem, we will give a class of noncommutative graded algebra that
satisfies ac = tac.

Theorem 11. Let A be a left Noetherian connected graded algebra with idA A = idA◦A = n < ∞
and satisfying the condition χ◦depthA(A)(A A), then A satisfies ac = tac.

Proof. First, let us suppose A is a left Noetherian connected graded algebra with
idA A = idAo A = n < ∞. If M is a finitely generated graded left A-module, we show that
G-dimM ≤ n.

Consider Ωn M. Since idA A = n, then we have Exti
A(Ω

n M, A) ∼= Extn+i
A (M, A) = 0.

Now, consider an exact sequence P−n−1 → P−n → · · · → P−1 → P0 → Ωn M, where
P−i are finitely generated projective graded left A-modules. Since Exti

A(Ω
n M, A) = 0 for

all i > 0 and the functor HomA( , A) is left exact. We have, upon dualizing, the following
exact sequence:

0→ (Ωn M)∗ → (P0)∗ → (P−1)∗ → · · · → (P−n)∗ → (P−n−1)∗

Let C = Coker((P−n)∗ → (P−n−1)∗). Since D(Ωn M) ≈ Coker((P0)∗ → (P−1)∗),
then we have an exact sequence,

0→ D(Ωn M)→ (P−2)∗ → (P−3)∗ → · · · → (P−n)∗ → (P−n−1)∗ → C → 0.
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Therefore, D(Ωn M) ' ΩnC. Since idAo A = n, we have Exti
Ao (D(Ωn M), A) =

Extn+i
Ao (C, A) = 0 for all i > 0. From Theorem 4, we obtain that G-dimΩn M = 0.

So, G-dimM ≤ n < ∞. For each minimal acyclic complex of finitely generated graded free
left A-modules,

L : · · · → Ln−1 → Ln → Ln+1 → · · · .

Since Li, i ∈ Z are finitely generated graded free left A-modules, then ΩiL is a finitely
generated graded left A-module, so we can obtain G-dimΩiL ≤ n < ∞. From Lemma 10,
we obtain that L is totally acyclic.

Example 1. When A is an AS–Gorenstein algebra, A belongs to the algebra in Theorem 11,
so the AS–Gorenstein algebra also satisfies ac = tac.

8. AS–Cohen–Macaulay Algebra

In this section, we will discuss the relationship between AS–Gorenstein algebra and
AS–Cohen–Macaulay algebra with a balanced dualizing complex. The results obtained
in this paper will be complementary to the results of [7]. Through the obtained relations,
we know that AS–Cohen–Macaulay algebra with a balanced dualizing complex satisfies
ac = tac; this result complements the conclusions related to the commutative ring in [5] on
the noncommutative graded algebra.

Throughout this section, we will suppose that B is an AS–Cohen–Macaulay algebra
with a balanced dualizing complex. According to [7], we know that it is a graded factor of
an AS–Gorenstein algebra. We will suppose that A is an AS–Gorenstein algebra, that a is a
graded ideal in A, and that B = A/a. Note that by ([14], Theorem 6.3), this entails that B
satisfies χ◦ and lcd(B) is finite. We will denote m = A≥1 and n = B≥1 = m/a.

Lemma 11. If X, Y ∈ Db
fg(GrMod(B)), then for each i, we have

Exti
B(X, Y) ∼= Exti

B0

(
RΓn(Y)′, RΓn(X)′

)
.

Proof. see ([2], Lemma 4.2).

Proposition 5. For X ∈ Db
fg(GrMod(B)), we have

depthB(X) = inf
{

i|RiΓn(X) 6= 0
}

;

k. idB(X) = sup
{

i|RiΓn(X) 6= 0
}

;

Proof. Considering a minimal injective resolution X '→ I, we will write n = B≥1.
Because of the χ◦-condition, each Ii only contains a finite number of direct summands
isomorphic B

′
, so (RΓn(X)′ = (RΓn(I)′ = F is a complex of finitely generated free

modules. Moreover, the minimality of I implies the minimality of F. According to
Lemma 11, Exti

B(k, X) ∼= Exti
Bo (RΓn(X)′, RΓn(k)′) ∼= Exti

Bo (F, k) ∼= HomBo (F−i, k).
depthB(X) = inf RHomB(k, X) = inf{i|Exti

B(k, X) 6= 0}
= inf{i|HomBo (F−i, k) 6= 0} = sup{i|HomBo (Fi, k) 6= 0} = inf

{
i | RiΓn(X) 6= 0

}
,

k. idB(X) = sup RHomB(k, X) = sup{i|Exti
B(k, X) 6= 0}

= sup{i|HomBo (F−i, k) 6= 0} = inf{i|HomBo (Fi, k) 6= 0} = sup
{

i | RiΓn(X) 6= 0
}

.

Theorem 12. If X ∈ Db
fg(GrMod(B)), then

idB(X) = k. idB(X).

Proof. see ([2], Theorem 4.5).
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Theorem 13. Let C be a Noetherian connected graded k-algebra with a balanced dualizing
complex R·. Then, the following are equivalent:

(1) C is AS–Gorenstein;
(2) idC C < ∞;
(3) pdC R· < ∞;
(4) For any X ∈ Db

fg(GrMod(C)), pdC X < ∞ if and only if idC X < ∞.

Proof. see ([16], Theorem 3).

The following Theorem is complementary to the results of [7].

Theorem 14. A is an AS–Gorenstein algebra if and only if A is an AS–Cohen–Macaulay algebra
with a balanced dualizing complex.

Proof. Assume that A is an AS–Gorenstein algebra. From ([2], Theorem 1.2), we know
that A has a balanced dualizing complex Aα(−l)[d] for some graded automorphism α of A,
some integer l, and d = idAo (A) = idA(A). So, Aα(−l) is a balanced dualizing module,
and A is an AS–Cohen–Macaulay algebra with a balanced dualizing complex.

Next, assume that A is an AS–Cohen–Macaulay algebra with a balanced dualizing
complex. According to [7], we know that it is a graded factor of an AS–Gorenstein alge-
bra. Because A is an AS–Cohen–Macaulay algebra, RΓn(A) is thus concentrated in one
degree. Because A ∈ Db

fg(GrMod(A)), we know that depthB(X) = inf
{

i|RiΓn(X) 6= 0
}
=

sup
{

i|RiΓn(X) 6= 0
}
= k. idB(X) = n < ∞ from Lemma 5. From Theorem 12, idA(A) =

k · idA(A) = n < ∞. From Theorem 13, we know that A is an AS–Gorenstein algebra.

The following theorem complements the conclusions related to the commutative ring
in [5] on noncommutative graded algebra.

Theorem 15. Let B be an AS–Cohen–Macaulay algebra with a balanced dualizing complex; then,
B satisfies ac = tac.

Proof. From Theorem 14, it follows that when B is an AS–Cohen–Macaulay algebra with
a balanced dualizing complex, B is also an AS–Gorenstein algebra. Thus, the AS–Cohen–
Macaulay algebra with a balanced dualizing complex satisfies ac = tac.

9. Conclusions

In this paper, the author identified a class of noncommutative graded algebra that
satisfies ac = tac. The author also discussed the relationship between AS–Gorenstein
algebra and AS–Cohen–Macaulay algebra with a balanced dualizing complex and showed
that AS–Gorenstein algebra and AS–Cohen–Macaulay algebra with a balanced dualizing
complex belong to this algebra. Unfortunately, we could not give a specific example
for the above result. We did not find all the noncommutative graded algebraic classes
satisfying ac = tac, and we did not find conditions such that AS–Cohen–Macaulay algebra
is equivalent to ac = tac. Our next goal is to find all the noncommutative graded algebraic
classes that satisfy ac = tac, and to try to find conditions such that AS–Cohen–Macaulay
algebra is equivalent to ac = tac. It is also our next task to give concrete examples of the
relevant results.
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