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Abstract: Sentiment analysis aims to systematically study affective states and subjective information
in digital text through computational methods. Aspect Sentiment Triplet Extraction (ASTE), a
subtask of sentiment analysis, aims to extract aspect term, sentiment and opinion term triplets
from sentences. However, some ASTE’s extracted triplets are not self-contained, as they reflect the
sentence’s sentiment toward the aspect term, not the sentiment between the aspect and opinion terms.
These triplets are not only unhelpful to people, but can also be detrimental to downstream tasks. In
this paper, we introduce a more nuanced task, Aspect–Sentiment–Opinion Triplet Extraction (ASOTE),
which also extracts aspect term, sentiment and opinion term triplets. However, the sentiment in a
triplet extracted with ASOTE is the sentiment of the aspect term and opinion term pair. We build four
datasets for ASOTE. A Position-aware BERT-based Framework (PBF) is proposed to address ASOTE.
PBF first extracts aspect terms from sentences. For each extracted aspect term, PBF generates an
aspect term-specific sentence representation, considering the aspect term’s position. It then extracts
associated opinion terms and predicts the sentiments of the aspect–opinion term pairs based on the
representation. In the experiments on the four datasets, PBF has set a benchmark performance on the
novel ASOTE task.

Keywords: aspect–sentiment–opinion triplet extraction; aspect sentiment triplet extraction; aspect-
based sentiment analysis

MSC: 68T50

1. Introduction

Sentiment analysis, an important task in natural language understanding is to sys-
tematically study affective states and subjective information in digital text through com-
putational methods [1,2]. This field has received much attention from both academia and
industry due to its wide range of applications, such as the voice of the customer (VOC) in
marketing [3] and gaining insights from social media posts [4]. General sentiment analysis
determines if the emotional tone of a text is positive, negative or neutral. Aspect-based
sentiment analysis (ABSA) [5–8] is a fine-grained sentiment analysis task and can pro-
vide more detailed information than general sentiment analysis. To solve the ABSA task,
many subtasks have been proposed, such as Aspect Term Extraction (ATE), Aspect Term
Sentiment Analysis (ATSA) and Target-oriented Opinion Words Extraction (TOWE) [9].
An aspect term (aspect for short) is a word or phrase that refers to an entity discussed in a
sentence. An opinion term (opinion for short) is a word or phrase that expresses a subjec-
tive attitude. ATE extracts aspects from sentences. Given a sentence and an aspect in the
sentence, ATSA and TOWE predict the sentiment and opinions associated with the aspect.
These subtasks can work together to tell a complete story, i.e., the discussed aspect, the sen-
timent of the aspect and the cause of the sentiment. However, no previous ABSA study
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has tried to provide a complete solution in one shot. Peng et al. [10] proposed the Aspect
Sentiment Triplet Extraction (ASTE) task, which attempted to provide a complete solution
for ABSA. A triplet extracted from a sentence via ASTE contains an aspect, the sentiment
that the sentence expresses toward the aspect and one opinion associated with the aspect.
The example in Figure 1 shows the inputs and outputs of the tasks mentioned above.

The atmosphere is attractive, but a little uncomfortable, the servers were very friendly.

ATE
“atmosphere” “servers” 

“uncomfortable” “friendly”

TOWE ATSA

“attractive” conflict positive

TOWEATSA

ASTE

(“atmosphere” , conflict, “uncomfortable”)
(“atmosphere” , conflict, “attractive”)
(“servers”, positive, “friendly”)

ASOTE

(“atmosphere”, negative, “uncomfortable”)         
(“atmosphere”, positive, “attractive”)

(“servers”, positive, “friendly”)

Figure 1. An example showing the inputs and outputs of the tasks. For each arrow, when the head is
a task name, the tail is an input of the task; when the tail is a task name, the head is an output of the
task. The bold words are aspects. The underlined words are opinions.

However, the triplets extracted from a sentence with ASTE are not self-contained when
the sentence has multiple opinions about the aspect and these opinions express different
sentiments toward the aspect. This is because the sentiment in a triplet extracted with ASTE
is the sentiment that the sentence expresses toward the aspect rather than the sentiment of
the aspect and opinion pair. The third column in Figure 2 shows the extraction results of
ASTE for the corresponding sentences. The triplets whose sentiments are marked in red
are not only unhelpful to people, but can also be detrimental to downstream tasks such as
opinion summarization (opinion summarization is generated by aggregating the extraction
triplets. When extracted triplets are erroneous, the opinion summarization built based on
these triplets will not be accurate) [6].

ID Sentences ASTE Result ASOTE Result (ours)
1 The atmosphere is attractive , but a little 

uncomfortable.
(“atmosphere”, conflict, “attractive”)
(“atmosphere”, conflict, “uncomfortable”)

(“atmosphere”, positive, “attractive”)
(“atmosphere”, negative, “uncomfortable”)

2 Very "normal Indian food", but done really 
well.

(“Indian food”, positive, “normal”)
(“Indian food”, positive, “well”)

(“Indian food”, neutral, “normal”)
(“Indian food”, positive, “well”)

3 Food was just average...if they lowered the 
prices just a bit, it would be a bigger draw.

(“Food”, negative, “average”) (“Food”, neutral, “average”)

The sentiment toward the aspect “Food” The sentiment of the aspect-opinion pair (“Food”, “average”)

Figure 2. Differences between ASOTE and ASTE. In the third sentence, the negative sentiment toward
the aspect “Food” is expressed without an annotatable opinion. The triplets whose sentiments are
marked in red are not only unhelpful to people, but can also be detrimental to downstream tasks.

In this paper, we introduce a more fine-grained Aspect–Sentiment–Opinion Triplet
Extraction (ASOTE) task. ASOTE also extracts aspect, sentiment and opinion triplets. In the
triplet extracted with ASOTE, the sentiment is the sentiment of the aspect and opinion
pair. The fourth column in Figure 2 shows the extraction results of the ASOTE task for the
corresponding sentences. In addition, we build four datasets for ASOTE based on several
popular ABSA benchmarks.

Additionally, we propose a Position-aware BERT-based Framework (PBF) to address
ASOTE. PBF first extracts aspects from sentences. For each extracted aspect, PBF then
extracts associated opinions and predicts the sentiments of the aspect and opinion pairs.
PBF obtains triplets by merging the results. Since a sentence may contain multiple as-
pects associated with different opinions, to extract the corresponding opinions of a given
aspect, similar to previous models proposed for the TOWE task [9,11,12], PBF generates
aspect-specific sentence representations. To accurately generate aspect-specific sentence
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representations, both the meaning and the position of the aspect are important. Some meth-
ods have been proposed to integrate the position information of aspects into non-BERT
based models for some ABSA subtasks, such as refs. [13,14] for ATSA. However, how to
integrate the position information of aspects into BERT [15]-based modes has not been
studied well. PBF generates aspect-specific sentence representations considering both the
meaning and the position of the aspect. We explore several methods which integrate the
position information of aspects into PBF.

Our contributions are summarized as follows:

• We introduce a new aspect-based sentiment analysis subtask: Aspect–Sentiment–
Opinion Triplet Extraction (ASOTE).

• We build four datasets for ASOTE and release the datasets for public use as a bench-
mark.

• We propose a Position-aware BERT-based Framework (PBF) to address ASOTE.
• In the experiments on the four datasets, PBF has set a benchmark performance on the

novel ASOTE task.

2. Related Work

Aspect-based sentiment analysis (ABSA) [5–8] is a fine-grained sentiment analysis
task. ABSA has many subtasks, such as Aspect Term Extraction (ATE), Opinion Term
Extraction (OTE) (OTE extracts opinions from sentences), Aspect Term Sentiment Analysis
(ATSA) and Target-oriented Opinion Words Extraction (TOWE) [9]. Many methods have
been proposed for these subtasks. Most methods only solve one subtask, such as [16–20] for
ATE, refs. [21–30] for ATSA and refs. [9,11,12,31] for TOWE. Some studies also attempted
to solve two or three of these subtasks jointly. Refs. [32,33] jointly modeled ATE and
ATSA, then generated aspect–sentiment pairs. Refs. [34–36] jointly modeled ATE and OTE,
then output the aspect set and opinion set. The extracted aspects and opinions are not in
pairs. Refs. [37,38] jointly modeled ATE and TOWE, then generated aspect–opinion pairs.
Refs. [39,40] jointly modeled ATE, OTE and ATSA, then output the aspect–sentiment pairs
and opinion set. However, the extracted aspects and opinions are also not in pairs; that is,
the aspects, sentiments and opinions do not form triplets. The Aspect Sentiment Triplet
Extraction (ASTE) task proposed by [10] extracts aspects, the sentiments of the aspects
and opinions, which could form triplets. However, ASTE has the problem mentioned in
Section 1.

Many methods have been proposed for ASTE [10,41–47]. Since most of these methods
for ASTE do not utilize the fact that the sentiment of an ASTE triplet is the sentiment of the
entire sentence toward the aspect term and may be from more than one opinion term and
predict the sentiment of the aspect–opinion triplet as the triplet sentiment, these methods
can be directly used for our proposed ASOTE task. For example, ref. [41] proposed an
end-to-end model with a novel position-aware tagging scheme for ASTE. This model is
capable of jointly extracting the triplets and can obtain better performance compared with
previous pipeline approaches. However, this model has at most one triplet for an aspect
term. The sentiment of a triplet is predicted only based on the extracted opinion term
of the aspect term. Ref. [44] proposed a Grid Tagging Scheme (GTS) for ASTE. GTS first
predicts the relationships between the words in a sentence, then decodes triplets from the
relationships. The relationships includes the sentiment polarities. That is, the sentiment of
an ASTE triplet is predicted based on the words in the aspect term and the opinion term
and is the sentiment of the aspect–opinion pair. Different from these studies, we proposed
a Position-aware BERT-based Framework (PBF) to address ASOTE.

3. Dataset Construction

Data Collection. We annotate four datasets (i.e., 14res, 14lap, 15res, 16res) for our pro-
posed Aspect–Sentiment–Opinion Triplet Extraction (ASOTE) task. First, we construct four
Aspect Sentiment Triplet Extraction (ASTE) datasets. Similar to previous studies [10,41],
we obtain four ASTE datasets by aligning the four SemEval Challenge datasets [7,8] and
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the four Target-oriented Opinion Words Extraction (TOWE) datasets [9]. The four SemEval
Challenge datasets are restaurant and laptop datasets from SemEval 2014 and restaurant
datasets from SemEval 2015 and SemEval 2016. The four SemEval Challenge datasets
provide the annotation of aspect terms and the corresponding sentiments and the four
TOWE datasets were obtained by annotating the corresponding opinion terms for the
annotated aspect terms in the four SemEval Challenge datasets. Compared with the ASTE
datasets used in previous studies [10,41], the ASTE datasets we generate (1) keep the
triplets with conflict sentiments and (2) keep all the sentences in the four SemEval Chal-
lenge datasets. That is, the sentences that do not contain triplets and therefore are not
included in the ASTE datasets used in previous studies [10,41] are included in the ASTE
datasets we generate. We believe datasets including these sentences can better evaluate
the performance of ASOTE methods, since ASOTE methods can encounter this type of
sentences in real-world scenarios.

Data Annotation. We invited a researcher who works in natural language processing
(NLP) and an undergraduate student to annotate the sentiments of the aspect–opinion
pairs in the triplets of the four ASTE datasets. The annotation tool we used is brat [48].
Each time, we only provided the annotators only with triplets of one aspect term. For each
aspect term, not only the aspect term and its corresponding opinion terms but also the
sentiment of the aspect term were provided to the annotators. Figure 3a shows an example
of what we provided to the annotators and Figure 3b shows the results of annotation. When
annotating the sentiment of an aspect–opinion pair, the annotators need to consider both
the opinion itself and the context of the opinion. For example, given the sentence, “The
decor is night tho. . . but they REALLY need to clean that vent in the ceiling. . . its quite
un-appetizing and kills your effort to make this place look sleek and modern” (the triplets
extracted with ASOTE from this sentence, i.e., (“place”, negative, “sleek”) and (“place”,
negative, “modern”), are also not self-contained, since the sentiment shifter expression is
complicated and therefore is not annotated as part of the opinions. One simple solution to
this problem is to add a reversing word (e.g.,“not”) to this kind of opinion (e.g., “not sleek”
and “not modern”) when we annotate opinions, which is left for future exploration) and
one aspect–opinion pair, (“place”, “sleek”), the sentiment should be negative, even though
the sentiment of “sleek” is positive. The kappa statistic [49] between the annotations of the
two annotators is 0.85. The conflicts have been checked by another researcher who works
in NLP.

The atmosphere          is          attractive   , but a little uncomfortable.
-----------------------------------------------------------------------------------
aspect term sentiment: conflict 

aspect_term opinion_term opinion_termunannotated
unannotated

(a) Before annotation

The atmosphere          is          attractive   , but a little uncomfortable.
-----------------------------------------------------------------------------------
aspect term sentiment: conflict 

aspect_term opinion_term opinion_termpositive
negative

(b) After annotation

Figure 3. An example of annotating the sentiments of the aspect and opinion pairs on the ASTE
triplets for the ASOTE task. The annotated sentiments are marked in red.
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Dataset Analysis. The statistics of the four ASOTE datasets are summarized in Table 1.
Since #diff_s2 is always greater than 0, the annotators have to annotate the sentiments
of the triplets in which the aspect only has one triplet and the sentiment of the aspect is
not conflicting. That is, we cannot treat the sentiment of the aspect in these triplets as
the sentiment of these triplets. For example, for the third sentence in Figure 2, the aspect
“Food” has a negative sentiment, while the correct sentiment of its only one triplet, (“Food”,
neutral, “average”), is neutral.

Table 1. Statistics of our ASOTE datasets. #zero_t, #one_t and #m_t represent the number of
aspects without triplet, with one triplet and with multiple triplets, respectively. #d_s1 represents the
number of aspects that have multiple triplets with different sentiments. #d_s2 represents the number
of aspects which only have one triplet and whose sentiments are not in conflict and are different
from the sentiment of the corresponding triplet. #t_d represents the number of the triplets whose
sentiments are different from the sentiments of the aspects in them.

Dataset #sentence #aspects #triplets #zero_t #one_t #m_t #d_s1 #d_s2 #t_d

14res
train 2429 2984 2499 1662 1834 304 45 39 181
dev 606 710 561 412 446 54 5 10 24
test 800 1134 1030 464 720 144 14 9 42

14lap
train 2425 1927 1501 1868 1128 176 22 26 92
dev 608 437 347 444 268 37 2 2 10
test 800 655 563 553 411 69 9 9 40

15res
train 1050 950 1031 471 721 143 22 11 46
dev 263 249 246 134 182 30 4 4 9
test 684 542 493 390 385 51 13 5 26

16res
train 1595 1399 1431 793 1032 186 35 17 74
dev 400 344 333 209 252 37 4 3 7
test 675 612 524 412 395 61 14 6 28

4. Method

In this section, we describe our Position-aware BERT-based Framework (PBF) for
Aspect–Sentiment–Opinion Triplet Extraction (ASOTE).

4.1. Task Definition

Given a sentence S = {w0, . . . , wi, . . . , wn−1} containing n words, ASOTE aims to
extract a set of triplets T = {(a, s, o)t}T−1

t=0 , where a is an aspect, o is an opinion, s is the
sentiment of the aspect–opinion pair (a, o) and T is the number of triplets in the sentence.
When a sentence does not contain triplets, T = 0.

4.2. PBF

Figure 4 shows the overview of PBF. PBF contains three models. Given a sentence S =
{w0, . . . , wi, . . . , wn−1}, the Aspect Term Extraction (ATE) model first extracts a set of aspects
A = {a0, . . . , aj, . . . , am−1}. For each extracted aspect, aj, the Target-oriented Opinion Words

Extraction (TOWE) model then extracts its opinions O = {o0
j , . . . , ok

j , . . . , o
lj−1
j }, where lj is the

number of opinions with respect to the j-th aspect and lj ≥ 0. Finally, for each extracted aspect–
opinion pair (aj, ok

j ), the Aspect–Opinion Pair Sentiment Classification (AOPSC) model

predicts its sentiment sk
j ∈ P = {positive, neutral, negative}. PBF obtains the triplets by

merging the results of the three models: T = {(a0, s0
0, o0

0), . . . , (am−1, slm−1
m−1, olm−1

m−1)}. In PBF, all
three models use BiLSTM [50] with BERT [15] as sentence encoder.
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[SEP]
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[SEP]
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Figure 4. Our proposed Position-aware BERT-based Framework (PBF). The parameters of the ATE,
TOWE and AOPSC models are different.

4.3. Input

The input of PBF is a sentence S = {w0, . . . , wi, . . . , wn−1} consisting of n words.
Given the sentence, to obtain the inputs of the ATE model (Figure 4a), we first convert

the sentence S to a new sentence, SB = {w0, . . . , wi, . . . , wq}, where w0 is “[CLS]” and
wq is “[SEP]”. We then generate segment indices Iseg = {0, . . . , 0} and position indices
Ipos = {0, . . . , q} for the new sentence.

Since a sentence may contain multiple aspects associated with different opinions,
to extract the associated opinions of a particular aspect, the TOWE model generates aspect-
specific sentence representations for the aspect. It is intuitive that both the meaning and the
position of the aspect are important for producing aspect-specific sentence representations.
In other words, we need to tell the TOWE model what the aspect is and where the aspect
is in the sentence. Given the sentence S and an aspect aj in the sentence, we first replace
the words of the aspect with the word “aspect”, which tells the TOWE model where
the aspect is in the sentence. We then append the words of the aspect to the end of the
sentence, which tells the model what the aspect is. Finally, we obtain a new sentence
SA

B = {w0, . . . , wi, . . . , wq}. We also generate segment indices IA
seg = {0, . . . , 1} and position

indices IA
pos = {0, . . . , q} for the new sentence. The encoder of the TOWE model (Figure 4b)

takes SA
B , IA

seg and IA
pos as inputs and can generate aspect-specific sentence representations.

To predict the sentiment of an aspect–opinion pair, the AOPSC model (Figure 4c) also
generates aspect-specific sentence representations for the aspect. The inputs of the AOPSC
model are the same as the TOWE model.

4.4. ATE

We formulate ATE as a sequence-labeling problem. The encoder takes SB, Iseg and Ipos as
inputs and outputs the corresponding sentence representation, HA = {hA

0 , . . . , hA
i , . . . , hA

q }.
The ATE model uses hA

i to predict the tag yA
i ∈ {B, I, O} (B: Begin, I: Inside, O: Outside) of
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the word wi. It can be regarded as a three-class classification problem at each position of
SB. We use a linear layer and a softmax layer to compute prediction probability ŷA

i :

ŷA
i = so f tmax(WA

1 hA
i + bA

1 ) (1)

where WA
1 and bA

1 are learnable parameters.
The cross-entropy loss of the ATE task can be defined as follows:

LATE = −
q

∑
i=0

∑
t∈{B,I,O}

I(yA
i = t)log(ŷA

it ) (2)

where yA
i denotes the ground truth label. I is an indicator function. If yA

i == t, I = 1;
otherwise, I = 0. We minimize LATE to optimize the ATE model.

Finally, the ATE model decodes the tag sequence of the sentence and outputs a set of
aspects A = {a0, . . . , aj, . . . , am−1}.

4.5. TOWE

We aslo formulate TOWE as a sequence-labeling problem. The TOWE model has the
same architecture as the ATE model, but they do not share the parameters. The TOWE

model takes SA
B , IA

seg and IA
pos as inputs and outputs the opinions O = {o0

j , . . . , ok
j , . . . , o

lj−1
j }

of the aspect aj.

4.6. AOPSC

Given an aspect aj and its opinions {o0
j , . . . , ok

j , . . . , o
lj−1
j }, the AOPSC model predicts the sen-

timents {s0
j , . . . , sk

j , . . . , s
lj−1
j } of all aspect–opinion pairs, {(aj, o0

j ), . . . , (aj, ok
j ), . . . , (aj, o

lj−1
j )},

at once. The encoder of the AOPSC model takes the new sentence SA
B , the segment indices IA

seg

and the position indices IA
pos as inputs and outputs the aspect-specific sentence representation,

HS = {hS
0 , . . . , hS

q}. We then obtain the representation of an opinion by averaging the hidden
representations of the words in the opinion. The representation ho

jk of opinion ok
j is used to make

sentiment prediction ŷo
jk of opinion ok

j :

ŷo
jk = so f tmax(WS

1 ho
jk + bS

1 ) (3)

where WS
1 and bS

1 are learnable parameters.
The loss of the AOPSC task is the sum of all opinions’ cross entropy of the aspect:

LAOPSC = −
lj−1

∑
k=0

∑
t∈P

I(yo
jk = t)logŷo

jkt
(4)

where yo
jk denotes the ground truth label. We minimize LAOPSC to optimize the AOPSC

model.

5. Experiments
5.1. Datasets and Metrics

We evaluate our method on two types of datasets:
TOWE-data [9] are used to compare our method with previous methods proposed for

the Target-oriented Opinion Words Extraction (TOWE) task on the TOWE task. TOWE-data
only include the sentences that contain pairs of aspect and opinion and the aspect associated
with at least one opinion. Following previous works [9,11], we randomly select 20% of the
training set as a development set for tuning hyper-parameters and early stopping.



Mathematics 2023, 11, 3165 8 of 14

ASOTE-data are the data we built for our Aspect–Sentiment–Opinion Triplet Extrac-
tion (ASOTE) task and are used to compare the methods on the ASOTE task. ASOTE-data
can also be used to evaluate the TOWE models on the TOWE task. Compared with TOWE-
data, ASOTE-data additionally include the sentences that do not contain aspect–opinion
pairs and include the aspects without opinions. Since methods can encounter these kinds
of examples in real-world scenarios, ASOTE-data are more appropriate for evaluating
methods on the TOWE task.

We use precision (P), recall (R) and F1-score (F1) as the evaluation metrics. For the
ASOTE task, an extracted triplet is regarded as correct only if the predicted aspect spans,
sentiment, opinion spans and ground truth aspect spans, sentiment and opinion spans
exactly match.

5.2. Our Methods

We provide the comparisons of several variants of our Position-aware BERT-based
Framework (PBF). The difference between these variants is the way they generate the new
sentence SA

B , the segment indices IA
seg and the position indices IA

pos.
PBF -w/o A does not append the words of the aspect to the end of the original sentence.

In other words, this variant does not know what the aspect is.
PBF -w/o P does not replace the words of the aspect with the word “aspect”; namely, this

variant does not know where the aspect is. This model has been used on some aspect-based
sentiment analysis subtasks to generate aspect-specific sentence representations [26,51].

PBF -w/o AP neither appends the words of the aspect to the end of the original
sentence, nor replaces the words of the aspect with the word “aspect”.

PBF-M1 does not replace the words of the aspect with the word “aspect”. To inform
the model about the position of the aspect, the words of the aspect in the original sentence
and the words of the aspect appended to the original sentence share the same position
indices. This method has been used on relation classification [52].

PBF-M2 does not replace the words of the aspect with the word “aspect”. To inform
the model about the position of the aspect, the position indices of the words of the aspect
in the original sentence are marked as 0 and the position indices of other words are the
relative distance to the aspect. This method has been utilized in the aspect-term sentiment
analysis task [13].

PBF-M3 modifies the original sentence S by inserting the special token # at the be-
ginning of the aspect and the special token $ at the end of the aspect. Special tokens
were first used by [53] to incorporate target entity information into BERT for the relation
classification task.

Figure 5 displays input examples for PBF-M1, PBF-M2 and PBF-M3.

Rice is too dry , tuna wasn't so fresh

0
0

1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0

[CLS] [SEP]

9
0
10

1
[SEP]

1
1

Rice

12Position
Segment
Sentence

Rice is too dry , tuna wasn't so fresh

1
0

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0

[CLS] [SEP]

8
0
9

1
[SEP]

10
1

Rice

11Position
Segment
Sentence

Rice is too dry , tuna wasn't so fresh

0
0

1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0

[CLS] [SEP]

9
0
10

0
11

0
12Position

Segment
Sentence

(a) Input of PBF-M1

(b) Input of PBF-M2

(c) Input of PBF-M3

# $

Figure 5. The inputs of PBF-M1, PBF-M2 and PBF-M2, given the sentence “Rice is too dry, tuna was
n’t so fresh” and the aspect “Rice”. The symbols marked in red indicate the positions of the aspect
terms.
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5.3. Implementation Details

We implement our models in PyTorch [54]. We use the uncased basic pre-trained
BERT. The BERT is fine-tuned during training. The batch size is set to 32 for all models. All
models are optimized with the Adam optimizer [55]. The learning rate is set to 0.00002. We
apply a dropout of p = 0.5 after the BERT and BiLSTM layers. We apply early stopping
in training and the patience is 10. We run all models five times and report the average
results on the test datasets. For the baseline models of the ASOTE task, we first convert our
datasets into datasets that have the same format as the inputs of the baseline models, then
run the code released by the authors on the converted datasets.

5.4. Exp-I: ASOTE
5.4.1. Comparison Methods

On the ASOTE task, we compare our methods with several methods proposed for
the Aspect Sentiment Triplet Extraction (ASTE) task. These methods also extract aspect,
sentiment, opinion triplets from sentences. These methods include MTL from Zhang et al. [45]
(https://github.com/l294265421/OTE-MTL-ASOTE accessed on 1 January 2021), JETt, JETo,
JETt

+bert and JETo
+bert where M = 6 from Xu et al. [41] (https://github.com/l294265421

/Position-Aware-Tagging-for-ASOTE accessed on 1 January 2021), GTS-CNN, GTS-BiLSTM
and GTS-BERT from Wu et al. [44] (https://github.com/l294265421/GTS-ASOTE accessed
on 1 January 2021). All these baselines are joint models, which are jointly trained to extract the
three elements of ASOTE triplets.

5.4.2. Results

The results of the ASOTE task are shown in Table 2. We have several observations from
Table 2. First, MTL outperforms JETt on all datasets, because JETt can extract at most one
triplet for an aspect. Although JETo can extract at most one triplet for an opinion, JETo out-
performs JETt on all datasets and surpasses MTL on 3 of 4 datasets, because there are fewer
opinions belonging to multiple triplets than aspects belonging to multiple triplets. Second,
GTS-CNN and GTS-BiLSTM outperform both JETt and JETo on all datasets and GTS-BERT
also achieves better performance than JETt

+bert and JETo
+bert. GTS-BERT is the best baseline

model. Third, our proposed PBF surpasses GTS-BERT on all datasets. Since the Aspect Term
Extraction (ATE) model and the Aspect–Opinion Pair Sentiment Classification (AOPSC)
model in PBF are vanilla, compared with previous models, the advantages of PBF are
from the TOWE model. However, GTS-BERT cannot be applied to the TOWE task directly,
so we compare PBF with GTS-BERT on the aspect–Opinion Pair Extraction (OPE) [44]
task. The results of OPE are shown in Table 3, which shows that PBF also outperforms
GTS-BERT on all datasets. Fourth, PBF outperforms PBF -w/o P on all datasets, indicating
that integrating position information of aspects can boost the model performance. Fifth,
compared with PBF -w/o A, PBF obtains better performance on 14res and 16res, similar
performance on 14lap and worse performance on 15res. Similar phenomenon can also be
observed from the TOWE results in Table 4. This indicates that the meaning of the aspect is
useful but the method used to combine the position information with the aspect meaning in
PBF is not perfect. We leave the exploration of more effective combination methods for future
work. Sixth, PBF outperforms PBF-M1 in 3 of 4 datasets (14res, 15res and 16res) and surpasses
PBF-M2 on all datasets, which shows that our method of incorporating aspect position in-
formation is more effective. Although the method used by PBF-M2 to integrate the position
information of aspects into it has been successfully applied to non-BERT based models, it is
not effective enough for BERT-based models. Moreover, PBF-M1 is a little better than PBF on
the 14lap dataset. This indicates it is necessary for PBF to explore more effective methods of
incorporating aspect position information. Seventh, PBF outperforms PBF-M3, indicating our
method is more effective than the method of integrating the position information and meaning
of an aspect into a model by inserting special aspect markers for the aspect. The possible
reason is that the additional special tokens may destroy the syntax knowledge learned by

https://github.com/l294265421/OTE-MTL-ASOTE
https://github.com/l294265421/Position-Aware-Tagging-for-ASOTE
https://github.com/l294265421/Position-Aware-Tagging-for-ASOTE
https://github.com/l294265421/GTS-ASOTE
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BERT. Last but not least, PBF -w/o AP obtains the worst performance among all variants,
which further demonstrates that both the position and the meaning of an aspect are important.

Table 2. Results of ASOTE task. The bold F1 scores are the best scores among PBF and the baselines.
The underlined F1 scores are the best scores among PBF and its variants.

14res 14lap 15res 16res

Method P R F1 P R F1 P R F1 P R F1
OTE-MTL 63.8 52.1 57.3 51.3 36.8 42.7 56.3 44.0 49.3 58.3 52.4 55.0
JETt 66.0 48.4 55.8 41.0 36.5 38.6 45.3 47.8 46.5 58.1 46.9 51.9
JETo 61.5 53.9 57.5 48.8 36.7 41.9 57.5 47.2 51.8 61.0 56.8 58.8
GTS-CNN 66.4 58.5 62.2 55.3 37.4 44.6 56.3 48.1 51.8 61.4 60.0 60.5
GTS-BiLSTM 71.1 54.5 61.5 58.0 33.9 42.8 67.3 42.9 52.4 64.6 55.8 59.8
JETt

+bert 65.1 51.7 57.6 50.2 41.7 45.5 50.7 48.2 49.4 55.0 52.1 53.5
JETo

+bert 66.0 54.5 59.7 49.7 42.8 46.0 53.8 52.9 53.3 58.3 60.3 59.2
GTS-BERT 67.5 67.2 67.3 59.4 48.6 53.5 61.8 52.0 56.4 62.0 67.1 64.4

PBF 69.3 69.0 69.2 56.6 55.1 55.8 55.8 61.5 58.5 61.2 72.7 66.5
PBF -w/o A 67.3 69.3 68.3 55.9 55.7 55.8 56.4 61.6 58.8 60.7 71.3 65.5
PBF -w/o P 68.6 69.7 69.1 56.6 54.8 55.7 56.2 60.4 58.2 59.6 71.8 65.1
PBF -w/o AP 44.4 51.9 47.4 45.1 48.8 46.7 41.7 50.9 45.7 46.1 59.8 52.0
PBF-M1 66.6 69.7 68.1 58.8 54.1 56.3 57.8 59.4 58.4 59.3 72.1 65.0
PBF-M2 63.0 63.6 63.3 51.8 47.3 49.4 50.2 56.2 53.0 56.6 65.8 60.8
PBF-M3 66.8 69.2 68.0 56.8 53.3 54.9 54.2 61.7 57.7 60.4 71.1 65.2

Table 3. Results of the OPE task in terms of F1. The bold F1 scores are the best scores among PBF
and the baseline.

Method 14res 14lap 15res 16res

GTS-BERT 71.7 60.2 61.5 68.1

PBF 74.0 63.8 63.9 70.8

Table 4. Results of the TOWE task in terms of F1 on the ASOTE-data. The bold F1 scores are the best
scores among PBF and the variants.

Method 14res 14lap 15res 16res

PBF 81.5 74.0 77.9 82.1
PBF -w/o A 80.7 74.1 78.6 81.6
PBF -w/o P 80.9 74.0 77.3 81.0
PBF -w/o AP 56.1 61.9 60.5 64.8
PBF-M1 80.1 73.0 77.4 80.5
PBF-M2 75.1 66.1 72.9 76.5
PBF-M3 80.3 73.6 77.5 80.3

5.4.3. Case Study

To further understand the effect of the position and the meaning of an aspect, we
perform a case study on two sentences, as displayed in Figure 6. In the first sentence,
the bold “food” and underlined “food” are different aspects. The positions of the aspects
help PBF and PBF -w/o A to extract different opinions for aspects with the same meaning.
In the second sentence, with the help of the meaning of the aspect “crust”, PBF and PBF
-w/o P do not extract “raw” and “cold” as the opinions of “crust”.

ID Sentence Ground truth PBF -w/o A PBF -w/o P PBF

1 We really enjoy the food, was areally 
great food.

(“food”, positive, “enjoy”)
(“food”, positive, “great”)

(“food”, positive, “enjoy”)
(“food”, positive, “great”)

(“food”, positive, “enjoy”) (“food”, positive, “great”)
(“food”, positive, “enjoy”) (“food”, positive, “great”)

(“food”, positive, “enjoy”)
(“food”, positive, “great”)

2 Then they somehow made a dry and 
burnt crust, around a raw and cold inside.

(“crust”, negative, “dry”)
(“crust”, negative, “burnt”)

(“crust”, negative, “dry”) (“crust”, negative, “raw”)
(“crust”, negative, “burnt”) (“crust”, negative, “cold”)

(“crust”, negative, “dry”)
(“crust”, negative, “burnt”)

(“crust”, negative, “dry”)
(“crust”, negative, “burnt”)

Figure 6. Case study. Red triplets are incorrect predictions. The bold aspect term “food” and
underlined aspect term “food” are different aspect terms.
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5.5. Exp-II: TOWE
5.5.1. Comparison Methods

On the TOWE task, we compare our methods with (1) three non-BERT models: IOG [9],
LOTN [11], ARGCN [31]; (2) two BERT-based models: ARGCN+bert [31] and ONG [12].

5.5.2. Results

The results for ASOTE-data are shown in Table 4 and the results for TOWE-data are
shown in Table 5. We draw the following conclusions from the results. First, PBF outper-
forms all baselines proposed for TOWE on the TOWE-data, indicating the effectiveness of
our method. Second, PBF -w/o P also surpasses all baselines on the TOWE-data. To the best
of our knowledge, no previous study evaluates the performance of this method on TOWE.
Third, regarding PBF and its variants, we can obtain conclusions from Table 4 similar to the
conclusions obtained from Table 2, because the differences in these models’ performance on
ASOTE are mainly due to the differences in their performances on TOWE. Fourth, since the
methods (i.e., PBF, PBF -w/o A, PBF -w/o P and PBF -w/o AP) obtain better performance
on TOWE-data than on ASOTE-data, the ASOTE-data dataset is a more challenging dataset
for TOWE. Fifth, on the 14res dataset, PBF does not surpasses its variants PBF -w/o A
and PBF -w/o P, further indicating that it is necessary for PBF to explore more effective
methods of combining the position information with the aspect meaning in the future.

Table 5. Results of the TOWE task in terms of F1 on TOWE-data. The results of the baselines are
from the original papers. The bold F1 scores are the best.

Method 14res 14lap 15res 16res

IOG 80.0 71.3 73.2 81.6
LOTN 82.2 72.0 73.2 83.6
ARGCN 84.6 75.3 76.7 85.1
ARGCN+bert 85.4 76.3 78.2 86.6
ONG 82.3 75.7 78.8 86.0
PBF 85.9 81.5 80.8 89.2
PBF -w/o A 86.1 81.2 80.4 87.9
PBF -w/o P 86.3 80.3 79.8 88.8
PBF -w/o AP 61.6 67.9 59.0 69.3

6. Conclusions

In this paper, we introduce the Aspect–Sentiment–Opinion Triplet Extraction (ASOTE)
task. ASOTE is more fine-grained than Aspect Sentiment Triplet Extraction (ASTE). The sen-
timent of a triplet extracted with ASOTE is the sentiment of the aspect–opinion pair in the
triplet. We manually annotate four datasets for ASOTE. Moreover, we propose a Position-
aware BERT-based Framework (PBF) to address ASOTE. Although PBF is a pipeline method,
it obtains better performance than several joint models, which demonstrates the effective-
ness of our method.

Since Aspect Term Extraction (ATE) and Target-oriented Opinion Words Extraction
(TOWE) are highly correlated with each other and TOWE and Aspect–Opinion Pair Senti-
ment Classification (AOPSC) are also highly correlated with each other, we can improve
PBF by turning it into a joint model which jointly trains the ATE model, the TOWE model
and the AOPSC model. However, it is not easy to jointly train the ATE model and the
TOWE model, since we need to use the aspects that the ATE model extracts to modify the
sentences that the TOWE model takes as input. In the future, we will explore how to jointly
train the ATE model and the TOWE model.
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