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Abstract: Measuring the similarity between two objects and classifying them on the basis of their
resemblance level has been a fundamental tool of the human mind. In an intuitionistic fuzzy
environment, we find researchers that have attempted to generalize the fuzzy versions of similarity
measures between fuzzy sets to their intuitionistic forms for measuring the level of similarity between
the intuitionistic fuzzy sets. Though many different forms of intuitionistic fuzzy similarity measures
have been introduced so far, a comparative study reveals that among all these measures, it is difficult
for one to claim the existence of a single measure that alone has the capability to recognize every
single pattern assigned to it. This paper presents a four-parametric family of similarity measures for
intuitionistic fuzzy sets employing weighted average cardinality and intuitionistic fuzzy t-norms
along with their dual t-co-norms. A combinational variation of the parameters involved in this family
resulted in some of the famous similarity measures having an intuitionistic version. These new
measures are analyzed for their properties, and they have shown some remarkable results. Moreover,
the proposed family has a practical advantage over the other measures in the existing literature
because every member not only possesses the capability of successfully recognizing any pattern
assigned to it up to a fine accuracy but also a choice of different t-norms and co-norms within a single
measure equips it with the capacity to portray different mindsets of a decision-maker who, besides
being unbiased, can possess a deep psychology of being an optimist, pessimist, or possessing neutral
behavior in general. Lastly, the members of this family are tested for their feasibility in a sensitive
medical decision process of detection of COVID-19.

Keywords: intuitionistic fuzzy set (IFS); weighted average cardinality measure (WACM); fuzzy
measure for IFS; pattern recognition

MSC: 28E10; 03E72; 94D05

1. Introduction and Preliminaries

In the literature on fuzzy mathematics, we find numerous definitions of fuzzy simi-
larity measures that naturally restrict a value in [0, 1] giving two popular yet structurally
different approaches. Among these, the first one comprises of an axiomatic structure-based
approach [1–3], while the other one concentrates on developing new formulas for fuzzy
similarity measures based on fuzzification of the existing similarity measures for ordinary
sets [4–6]. This second approach to building similarity measures for fuzzy sets from ordi-
nary sets has utilized distances between sets as well as sets of theoretic constructions and
gained equal popularity in terms of practical applications in various scientific domains.

To be more specific for ordinary sets, a set theoretic-based approach to building a
similarity relation between sets initially builds a feature vector based on an appropriate
set of attributes/features apparently common in both the objects/sets under consideration.
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This feature vector has binary entries exhibiting the existence (1) or non-existence (0) of
every feature under consideration. A comparison (similarity or inclusion) between the
two feature vectors are equivalent to a process of generating a comparison of the two
objects themselves on the basis of each attribute one by one. This in turn, provides us with
the degree of similarity between objects in context of each attribute individually and is
naturally in the form of a vector with dimension the same as the feature vector.

The comparison of two objects under consideration on the basis of attributes is a
local or pointwise phenomenon which, however, requires a global or overall view of
similarity. This final number is called the “Similarity Degree of two objects”, which is
formulated by utilizing a cardinality measure of the underlying ordinary sets. Similarly, in
a fuzzy environment, these measures involving cardinalities employ feature vectors that
have entries from [0, 1] representing the fuzziness of the sets involved. The [0, 1]-valued
similarity measure called fuzzy similarity measure developed by this method originated as
a generalization of some of the famous similarity measures for crisp sets [5–7].

Likewise, in an intuitionistic fuzzy environment, we find researchers working in this
area that have attempted to generalize the measure of similarity of fuzzy sets to their
intuitionistic forms [8–14]. Though many different forms of intuitionistic fuzzy similarity
measures have been introduced so far, yet a comparative study reveals that among all these
measures, it is difficult for one to claim the existence of a single measure which alone has
the capability of recognizing every single pattern assigned to it. Moreover, unlike their
fuzzy counterparts, most of these measures for intuitionistic fuzzy sets are distance-based
and hardly any having set-theoretic constructions involved.

Therefore in this paper, we have focused on the development of a novel four-parameter
class of fuzzy similarity measures for intuitionistic fuzzy sets employing a feature vector
having an intuitionistic fuzzy framework, i.e., every element within the feature vector is
characterized by two degrees (membership and nonmembership) exclusively from [0, 1]
obeying the condition that demands their sum not to exceed one. Thus, we can say that a
feature comparison vector that represents an intuitionistic fuzzy set has components that
are naturally scaled to the lattice Υ =

{
µ = (µ1, µ2) ∈ [0, 1]2 | µ1 + µ2 ≤ 1

}
. Furthermore,

we have studied the properties of the members of the new class of measures and found
them to obey most of the axioms of the similarity measure existing in the literature. In
addition, we have discovered a special feature of this class of measures which distinct it
from the other parallel similarity measures existing in the literature, i.e., its every member
not only possesses the capability of successfully recognizing any pattern assigned to it
up to a fine accuracy but also a choice of different t-norms and co-norms within a single
member equips it with a capacity to portray the different mind sets of a decision-maker
who, besides being unbiased, can possess a deep psychology of being optimist, pessimist,
or possessing neutral behavior in general without disturbing the final output. Moreover,
we have utilized some members of this family to build a medical diagnosis technique for
COVID-19.

We have organized our work as follows: in Section 1, a brief introduction of the
fuzzy and intuitionistic fuzzy concepts involved in this work are presented. Moreover,
as the new similarity measures required set theoretic based operations; therefore, in an
attempt to define these measures, we have generalized some of the existing crisp set-
theoretic operations and identities to their respective intuitionistic fuzzy set versions. After
defining these necessary operations, the new parametric family of similarity measures for
intuitionistic fuzzy sets are introduced in Section 2 and studied for its properties, while in
the third and last section of this work we have presented the effective utility of these new
measures of similarity in initial diagnosis of COVID-19, among other close viral infections.

Let X = {x1, x2, . . . xn} be a universe and (Υ,≤Υ) be a complete bounded lattice given
by set: Υ =

{
µ = (µ1, µ2) ∈ [0, 1]2 | µ1 + µ2 ≤ 1

}
with order ≤Υ defined as (µ1, µ2) ≤Υ

(ν1, ν2) if µ1 ≤ ν1 and µ2 ≥ ν2.This lattice Υ has elements 0Υ = (0, 1) and 1Υ = (1, 0)
that act as its smallest and largest elements. An intuitionistic fuzzy set (IFS) E on X is
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defined as a map E : X −→ Υ given by E(x) = ((δE(x), ηE(x)) = (µ1, µ2) ∈ Υ satisfying
µ1 + µ2 ≤ 1; ∀x ∈ X. However, it may be defined alternatively by its founder as:

Definition 1 ([15]). Let X be the universe of discourse then an intuitionistic fuzzy set (IFS ) on X
is given by E = {(x, δE(x), ηE(x)) | x ∈ X}. Here, δE(x) and ηE(x) ∈ [0, 1] are the functions
representing the membership degree and the nonmembership degree of x in the set E, such that (∀x ∈
X)(δE(x) + ηE(x) ≤ 1). The complement of E is defined as: Ec = {(x, ηE(x), δE(x)) | x ∈ X}.
The set of all IFS on X is denoted by IFS(X).

Definition 2 ([16]). The weighted average cardinality of IFS is a map Cardω : IFS(X) −→ [0, ∞)
defined as:

Cardω(E) = ∑
x∈X

ωδE(x) + (1−ω)(1− ηE(x));

ω ∈ [0.5, 1].

Throughout this study, Card0.5(E) will be regarded as the scalar cardinality of E and
will be |E|.

Definition 3 ([17]). A map Ť : (Υ)2 −→ Υ which is commutative, increasing and associative
satisfying the condition Ť(1Υ, µ) = µ; ∀µ ∈ Υ is said to be an IF-t-norm. Likewise, an IF t-conorm
is a commutative, increasing, and associative (Υ)2 −→ Υ map Š satisfying Š(0Υ, µ) = µ; ∀ µ ∈ Υ.

Definition 4 ([17]). An IF t-norm T (respectively, t-conorm S) is called t-representable if there
exists a t-norm T and a t-conorm S on [0, 1] (respectively, a t-conorm S′ and a t-norm T′ on [0, 1])
such that, for µ, ν ∈ Υ,

T(µ, ν) = (T(µ1, ν1), S(µ2, ν2))

[respectively, S(µ, ν) = (S′(µ1, ν1), T′(µ2, ν2))].

Remark 1. (1) Throughout this study we have modeled the union and intersection between
E, F ∈ IFS(X) by IF Frank t-norms Tt and co-norms St given as:

E ∪St
F =

{
(x, St(δE(x), δF(x)), Tt(ηE(x), ηF(x)))

| x ∈ X

}
E ∩Tt

F =

{
(x, Tt(δE(x), δF(x)), St(ηE(x), ηF(x)))

| x ∈ X

}
such that t = M, P, L. Thus, notion Tt will represent the three members of fuzzy Frank
t-norms given as follows:

(a) TM(p, q) = min(p, q); for all p, q ∈ [0, 1];
(b) TP(p, q) = pq for all p, q ∈ [0, 1];
(c) TL(p, q) = max(0, p + q− 1); for all p, q ∈ [0, 1];

and St represents their corresponding dual t-co-norms.
(2) Moreover, we will introduce here some of the intuitionistic fuzzy versions of the classical

set-theoretic identities that we have built by employing the weighted average cardinality
measure and be utilized in the construction of our newly introduced class of set theoretic-based
similarity measures for intuitionistic fuzzy set:

(a) |Ec| = n− |E| will be modeled by: |Ec| = n− |E| = n
2 + 1

2 ∑
x∈X

(δE(x)− ηE(x)).
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(b) |E\F| = |E| − |E ∩ F| will be modeled by:

|E\F| = |E| − |E ∩ F| =
∑

x∈X
δE(x)−ηE(x)−Tt(δE(x),δF(x))+St(ηE(x),ηF(x))

2

=
∑

x∈X
δE(x)+ηF(x)−Tt(δE(x),δF(x))−Tt(ηE(x),ηF(x))

2

=
∑

x∈X
δE(x)+1−ηE(x)−Tt(δE(x),δF(x))−Tt(1−ηE(x),1−ηF(x))

2 ; t = M, P, L.

(c) |E4 F| = |E\F|+ |F\E| = |E|+ |F| − 2|E ∩ F| will be modeled by:

|E4 F| = |E|+ |F| − 2|E ∩ F|

=
∑

x∈X
δE(x)+δF(x)−ηE(x)−ηF(x)−2Tt(δE(x),δF(x))+2St(ηE(x),ηF(x))

2

=
∑

x∈X
δE(x)+δF(x)+ηE(x)+ηF(x)−2Tt(δE(x),δF(x))−2Tt(ηE(x),ηF(x))

2

=
∑

x∈X
δE(x)+δF(x)+(1−ηE(x))+(1−ηF(x))−2Tt(δE(x),δF(x))−2Tt(1−ηE(x),1−ηF(x))

2 ; t = M, P, L.

Definition 5 ([18]). A fuzzy equivalence relation on FS(X) the class of all fuzzy sets on X is a
fuzzy relation Π on FS(X) satisfying the following condtions:

(1) Reflexivity: Π(E, E) = 1;
(2) Symmetry: Π(E, F) = Π(F, E);
(3) TL−Transitivity: IL(TL(Π(E, F), Π(F, G)), Π(E, G)) = ε > 0, for all x ∈ X and E, F, G ∈

FS(X).

Here, IL(p, q) = min(1− p + q, 1) for all p, q ∈ [0, 1] (Lukasiewicz fuzzy implicator).

2. Parametric Family of Fuzzy Similarity Measures for IFSs

According to Zadeh, it has always been a challenging problem to build a valid and
general-purpose definition of similarity measures besides its wide applications in various
domains, namely, decision-making, information retrieval, pattern recognition, chemistry,
biology, and machine learning.

In this section, we will present our new class of similarity measures, the Parametric
family of Fuzzy Similarity Measures for IFSs. This class of measures that we have introduced
is close to the one introduced in [19]. The extension involves the intersections of IFS by the
family of frank t-norms for IFSs and their scalar cardinality.

Definition 6. A Parametric family of Fuzzy Similarity Measures for Intuitionistic Fuzzy Sets is a
class of maps Ψ : IFS(X)× IFS(X) −→ [0, 1] defined as:

Ψ(E, F) =
α(|E4 F|) + β(|E ∩ F|) + γ(|E ∪ F)c|)
λ(|E4 F|) + β(|E ∩ F|) + γ(|E ∪ F)c|)

where α, β, γ, and λ are positive real numbers such that 0 ≤ α ≤ λ.

This condition on the parameters enforces Ψ(E, F) ∈ [0, 1] and hence defines a class
of [0, 1]-valued similarity measures for IFSs in the form of rational expressions. Next,
we present here intuitionistic fuzzy versions of the famous similarity measures that are
derived from the above-defined parametric family by setting different combinations of
the parameters involved, as well as by using the expressions of set-theoretic identities,
unions, and intersection for IFSs introduced in Remark 1. Moreover, in this study, we have
employed the notation Ψt

k, k = I J, ISM, ID, IRT, ISK1, ISK2 to specify these transformed
members of the family Ψt, such that t = M, P, L. The results obtained here are represented
as follows:
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(a). Intuitionistic Jaccard(Ψt
I J) =

∣∣∣E∩Tt
F
∣∣∣∣∣∣E∪St

F
∣∣∣

=
∑

x∈X
Tt(δF(x),δE(x))+Tt(1−ηE(x),1−ηF(x))

∑
x∈X

St(δE(x),δF(x))+St(1−ηF(x),1−ηE(x)) for (α, λ, β, γ) = (0, 1, 1, 0).

(b). Intuitionistic Simple Matching (Ψt
ISM) = 1− |E4F|

n

=
2n− ∑

x∈X
δF(x)+δE(x)+(1−ηE(x))+(1−ηF(x))−2Tt(δE(x),δF(x))−2Tt(1−ηF(x),1−ηE(x))

2n for (α, λ, β, γ)

= (0, 1, 1, 1).

(c). Intuitionistic Dice (Ψt
ID) =

2|E∩F|
|E4F|+2|E∩F|

=
2 ∑

x∈X
Tt(δF(x),δE(x))+Tt(1−ηE(x),1−ηF(x))

∑
x∈X

δE(x)+δF(x)+(1−ηF(x))+(1−ηE(x)) for (α, λ, β, γ) = (0, 1, 2, 0).

(d). Intuitionistic Rogers and Tanimoto (Ψt
IRT) =

n−|E4F|
n+|E4F|

=
2n− ∑

x∈X
δE(x)+δF(x)+(1−ηE(x))+(1−ηF(x))−2Tt(δE(x),δF(x))−2Tt(1−ηE(x),1−ηF(x))

2n+ ∑
x∈X

δE(x)+δF(x)+(1−ηF(x))+(1−ηE(x))−2Tt(δE(x),δF(x))−2Tt(1−ηF(x),1−ηE(x)) for (α, λ, β, γ)

= (0, 2, 1, 1).
(e). Intuitionistic Sokal and Sneath 1 (Ψt

ISK1) =
|E∩F|

|E∩F|+2|E4F|

=
∑

x∈X
Tt(δF(x),δE(x))+Tt(1−ηE(x),1−ηF(x))

∑
x∈X

2δE(x)+2δF(x)+2(1−ηE(x))+2(1−ηF(x))−3Tt(δF(x),δE(x))−3Tt(1−ηF(x),1−ηE(x)) for (α, λ, β, γ)

= (0, 2, 1, 0).
(f). Intuitionistic Sokal and Sneath 2 (Ψt

ISK2)= 1− |E4F|
2n−|E4F|

=
4n−2 ∑

x∈X
δE(x)+δF(x)+(1−ηE(x))+(1−ηF(x))−2Tt(δF(x),δE(x))−2Tt(1−ηE(x),1−ηF(x))

4n− ∑
x∈X

δE(x)+δF(x)+(1−ηE(x))+(1−ηF(x))−2Tt(δE(x),δF(x))−2Tt(1−ηF(x),1−ηE(x)) for

(α, λ, β, γ) = (0, 1, 2, 2).

Theorem 1. For all E, F, G ∈ IFS(X), the members Ψt
k, k = I J, ISM, ID, IRT, ISK1, ISK2 of

the family Ψt obey the following properties:
(a) Ψt

k(E, E) = 1, for t = M;
(b) Ψt

k(E, Ec) = 1⇔ δE(x) = ηE(x), ∀ x ∈ X ; t = M;
(c-1) Ψt

k(E, Ec) = 0⇔ E = 1Υ or E = 0Υ; t = M, P;
(c-2) Ψt

k(E, Ec) = 0⇔ E is a fuzzy set; t = L;
(d) Ψt

k(E, F) = Ψt
k(F, E); t = M, P, L;

(e) For E ⊆ F ⊆ G, Ψt
k(E, G) ≤ Ψt

k(F, G) and Ψt
k(E, G) ≤ Ψt

k(E, F) where k = I J and t = M.

Proof. As an example, we prove (b), (c-1), (e) for k = I J and t = M and (c-2) for k = I J and
t = L
(b) ΨM

I J (E, Ec) = 1
⇔min(δE(x), ηE(x)) + min(1− ηE(x), 1− δE(x))
= max(δE(x), ηE(x)) + max(1− ηE(x), 1− δE(x)), ∀ x ∈ X
⇔ δE(x) = ηE(x), ∀ x ∈ X.
(c-1) Ψt

I J(E, Ec) = 0
⇔ ∑

x∈X
Tt(δE(x), ηE(x)) + Tt(1− ηE(x), 1− δE(x)) = 0

⇔
Tt(δE(x), ηE(x)) + Tt(1− ηE(x), 1− δE(x)) = 0 , ∀ x ∈ X. (1)

Let us fix t = M in (1)
then min(1− ηE(x), 1− δE(x)) = 0 and min(δE(x), ηE(x)) = 0, ∀ x ∈ X.
⇔ either [ηE(x) = 0 and 1− δE(x) = 0] or [δE(x) = 0 and 1− ηE(x) = 0] ∀ x ∈ X
⇔ either [ηE(x) = 0 and δE(x) = 1] or [δE(x) = 0 and ηE(x) = 1] ∀ x ∈ X
⇔ either E = 1Υ or E = 0Υ.
(c-2) ΨL

I J(E, Ec) = 0
⇔ ∑

x∈X
TL(δE(x), ηE(x)) + TL(1− ηE(x), 1− δE(x)) = 0
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⇔
TL(δE(x), ηE(x)) + TL(1− ηE(x), 1− δE(x)) = 0,∀ x ∈ X. (2)

⇔max(0, δE(x) + ηE(x)− 1) + max(0, (1− ηE(x) + (1− δE(x))− 1) = 0, ∀ x ∈ X
⇔max(0, δE(x) + ηE(x)− 1, 1− ηE(x)− δE(x)) = 0
⇔ δE(x) + ηE(x)− 1 = 0
⇔ E is fuzzy set.
(e) Let E ⊆ F ⊆ G,
⇒ δE(x) ≤ δF(x) ≤ δG(x) and ηE(x) ≥ ηF(x) ≥ ηG(x)
⇒min(δE(x), δF(x)) = min(δE(x), δG(x))
and min(1− ηE(x), 1− ηF(x)) = min(1− ηE(x), 1− ηG(x))
⇒max(δE(x), δF(x)) ≤ max(δE(x), δG(x))
and max(1− ηF(x), 1− ηE(x)) ≤ max(1− ηG(x), 1− ηE(x))
⇒ min(1−ηG(x),1−ηE(x))+min(δG(x),δE(x))

max(δE(x),δG(x))+max(1−ηE(x),1−ηG(x))

≤ min(1−ηE(x),1−ηF(x))+min(δE(x),δF(x))
max(δF(x),δE(x))+max(1−ηE(x),1−ηF(x)) , ∀ x ∈ X

⇒ ΨM
I J (E, G) ≤ ΨM

I J (E, F)
similarly we can obtain ΨM

I J (E, G) ≤ ΨM
I J (F, G).

Corollary 1. For all E, F, G ∈ IFS(X), the fuzzy similarity measure Ψt
I J , t = M defines a fuzzy

equivalence relation on IFS(X).

3. Medical Diagnosis of Coronavirus (COVID-19) by Parametric Family of Fuzzy
Similarity Measures for IFSs

In recent times, the medical industry has widely accepted fuzzy logic in areas including
the construction of knowledge-based systems in medicine with objective of interpretation
of medical findings, for an actual and timely monitoring of patients’ records, for medicine
syndrome differentiations involving diagnosis in modern medicine and the selection of
the best possible medical procedure employing western/eastern medical knowledge of
medicine [20,21]. However, with the advancement of such medical knowledge, the real-
time situations occurred that demanded the description of a medical problem in a more
generalized way rather than by mere use of a fuzzy linguistic variable involving member-
ship function only. The Intuitionistic fuzzy set (IFS), introduced by Atanassov [15] among
many generalizations of fuzzy sets originated as a real-time solution to this highly demand-
ing situation of medical diagnosis that requires flexibility due to the possible existence of
hesitation at every step of evaluation.

In this section, we present an efficient and easy method of diagnosis based on the
new class of similarity measures Ψ. The method initially involves the construction of a
database, i.e., a comprehensive description of symptoms collection; a set of diagnoses and
the patient’s medical state based on the knowledge of his/her medical test results. All this
information/data is presented in the form of an IFS, which is built on the basis of different
attributes of symptoms and diseases.

The complete three-stage diagnosis process is as follows:

(1) Symptom identification;
(2) Formation of medical information employing IFSs;
(3) Disease diagnosis technique by pattern recognition employing Ψt

k where k = I J, ISM,
ID, IRT, ISK1, ISK2, and t = M, P, L.

In this particular case study, we have a patient ρ whose initial medical examina-
tion reveals the presence of the following symptoms: Temperature, Headache, Nausea
with Weakness, Sore Throat with Cough, and Stuffed Nose/Trouble Breathing, all having
different levels of intensity.

In the first stage of this diagnosis procedure, the medical expert working on this case
formulates a set Ω of symptoms that are an ordinary set acting as a universe of discourse.
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In this particular case study, it is: Ω = {Ω1(Temperature), Ω2(Headache), Ω3(Nausea with
Weakness), Ω4(Sore Throat with Cough), Ω5(Stuffed Nose/Trouble Breathing)}.

In the next stage, the medical expert by utilizing all of his/her medical expertise and
previous knowledge composes all possible diagnoses for this case and will formulate a set
of diagnosis say ∆ = {∆1(HINI), ∆2(COVID-19), ∆3(H5NI), ∆4(Hanta Virus), ∆5(SARS)} with
each of these diagnoses acting as an intuitionistic fuzzy set on Ω say given as (Table 1):

Table 1. Diseases vs. Symptoms.

Ω1 Ω2 Ω3 Ω4 Ω5

∆1 (0.40, 0.0) (0.30, 0.50) (0.10, 0.70) (0.40, 0.30) (0.10, 0.70)
∆2 (0.70, 0.0) (0.20, 0.60) (0.0, 0.90) (0.70, 0.0) (0.10, 0.80)
∆3 (0.30, 0.30) (0.60, 0.10) (0.20, 0.70) (0.20, 0.60) (0.10, 0.90)
∆4 (0.10, 0.70) (0.20, 0.40) (0.80, 0.0) (0.20, 0.70) (0.20, 0.70)
∆5 (0.10, 0.80) (0.0, 0.80) (0.20, 0.80) (0.20, 0.80) (0.80, 0.10)

The Table 1 relates every disease to every symptom assigning it a possible degree of
belonging and a degree of non-belonging depending on medical databases collected from
different sources. For instance, the first entry (0.40, 0.0) of the table states the fact the symp-
tom Ω1(Temperature) has appeared in ∆1(HINI) up to 40 percent while its nonappearance is
recorded as 0 percent.

In addition, according to this technique, the medical state of the patient ρ is represented
by an IFS on the set of symptoms Ω. For this particular case study, let it be (Table 2):

Table 2. Patient vs. Symptoms.

Ω1 Ω2 Ω3 Ω4 Ω5

ρ(Patient) (0.80, 0.10) (0.60, 0.10) (0.20, 0.80) (0.60, 0.10) (0.10, 0.60)

Clearly, in Table 2, we see that the symptom Ω1(Temperature) has appeared in patient ρ
up to 80 percent while its nonappearance is recorded as 10 percent.

In the last stage of this diagnosis problem, the expert applies the pattern recognition
technique for the classification of the pattern ρ in one of the classes ∆1, ∆2, ∆3, ∆4, and ∆5.
The proper diagnosis ∆θ among θ = 1, 2, 3, 4, 5 is derived according to the formula:

ξ = arg Max
1≤θ≤5

{
Ψt

k(ρ, ∆θ)
}

(3)

where k = I J, ISM, ID, IRT, ISK1, ISK2 and t = M, P, L.

Now, particularly for this example, we shall present here both the diagnosis table along
with a graphical representation of the pattern recognition result obtained for Ψt

k(ρ, ∆θ),
k = I J and t = M, P, L ; while for the rest of the members of the family Ψt

k; where
k = ISM, ID, IRT, ISK1, ISK2 and t = M, P, L the calculational results are represented
graphically only (see Figures 1–3) (Table 3):

Table 3. Results with Ψt
I J(ρ, ∆θ), t = M, P, L.

Ψt
I J(ρ, ∆θ) θ = 1 θ = 2 θ = 3 θ = 4 θ = 5

t = M 0.67240 0.69490 0.64910 0.35210 0.31430
t = P 0.43280 0.50830 0.39670 0.24680 0.21370
t = L 0.27630 0.40850 0.27030 0.12940 0.1220
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Figure 1. Degree graphs for k = I J, ISM.

Figure 2. Degree graphs for k = ID, IRT.

Figure 3. Degree graphs for k = ISK1, ISK2.

Now, when we apply the Formula (3) to every k = I J, ISM, ID, IRT, ISK1, ISK2, and
t = M, P, L we obtain results for 18 intuitionistic fuzzy similarity measures belonging to
this family and each of these remarkably assigned the same diagnosis ∆2(COVID-19) to
the patient ρ utilizing recognition principal (see Figure 4).
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Figure 4. Diagnosis by all 6 measures for each t = M, P, L.

4. Conclusions

In this study, we have introduced a family of fuzzy similarity measures for intuitionis-
tic fuzzy sets called The Parametric family of Fuzzy similarity Measures for IFSs involving four
parameters along with a pair of IF Frank t-norms with their respective dual co-norms as the
candidates of intersection and union of intuitionistic fuzzy sets. Moreover, we studied their
properties that showed some interesting results, such as the IF- Jaccard coefficient obeyed
most of all the axioms of a similarity measure existing in the literature. We presented a case
study utilizing 18 of these measures in the field of medical diagnosis of Corona (COVID-19)
and remarkably all of the measures generated the same result. Moreover, it was revealed
that a variation of t-norms within the same measure resulted into different measurements
of similarity between the same pair of sets. For instance, a variation of three basic t-norms
within the Jaccard measure Ψt

I J will be more practical in a decision process as this variation
will generate the option of selection among all the three measures for the decision-maker
who may be an optimist, pessimist, or the one always maintaining a neutral behavior
according to a situation in which he is placed. Thus, we are in a position to claim that
an intuitionistic Jaccard coefficient (or the other proposed measures) variant is capable
of providing a more flexible, workable, yet reliable decision-making environment in real
life situations.

Next, we will state some of the open problems that can lead to different future research
explorations in this area:

• In this work, a scalar cardinality-based family of similarity measures involving only
operations of addition/subtraction is presented. We do find other measures in the
mathematical literature, such as the cosine coefficient, which are based on the mul-
tiplication of cardinalities and clearly are not members of the suggested family of
similarity measures. Thus, by utilizing other mathematical operations besides addi-
tion/subtraction, we can design many new families of similarity measures that may
have the ability to represent such constructions. This definitely can be regarded as an
open challenge.

• Similarly, the proposed parametric family employs only scalar cardinality for IFSs. A
selection of a different type of cardinality measures for intuitionistic fuzzy sets other
than a scalar cardinality can produce new constructions of cardinality-based measures
of similarity for the IFS.

• Likewise, a choice of only four parameters in this family seems too restrictive as it
surely reduces the chance for the appearance of the intuitionistic version of many other
famous crisp similarity measures existing in the literature. This particular problem can
be resolved by involving more parameters, for example, six instead of four. Further
research in this direction could lead to some remarkable results.
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