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Abstract: High-order iterative techniques without derivatives for multiple roots have wide-ranging
applications in the following: optimization tasks, where the objective function lacks explicit deriva-
tives or is computationally expensive to evaluate; engineering; design finance; data science; and
computational physics. The versatility and robustness of derivative-free fourth-order methods make
them a valuable tool for tackling complex real-world optimization challenges. An optimal extension
of the Traub–Steffensen technique for finding multiple roots is presented in this work. In contrast
to past studies, the new expanded technique effectively handles functions with multiple zeros. In
addition, a theorem is presented to analyze the convergence order of the proposed technique. We
also examine the convergence analysis for four real-life problems, namely, Planck’s law radiation,
Van der Waals, the Manning equation for isentropic supersonic flow, the blood rheology model, and
two well-known academic problems. The efficiency of the approach and its convergence behavior are
studied, providing valuable insights for practical and academic applications.

Keywords: multiple roots; nonlinear equations; convergence; derivative-free method

MSC: 65G99; 65H10

1. Introduction

Diverse areas of optimization and numerical analysis present obstacles for the devel-
opment of derivative-free approaches. Traditional iterative techniques rely on higher-order
derivatives, or only first-order derivatives in the case of multi-point classes, to guide the
search for optimal solutions. However, due to the lack of formal mathematical formulations,
deriving derivatives in real-world situations may be computationally expensive, impracti-
cal, or even impossible. This restriction makes it difficult for standard methodologies to
be applied to complicated systems and real-world issues. Such difficulties are addressed
by derivative-free approaches, which only rely on function evaluations. A considerable
problem still exists in constructing such algorithms with great efficiency, convergence,
and robustness. Due to this, novel strategies must be created that can successfully handle
optimization issues without the use of explicit derivatives. The one-point modified Traub–
Steffensen [1] approach is one among the most well-known derivative-free techniques for
multiple roots, as indicated by

tk+1 = tk − n
Φ(tk)

Φ[uk, tk]
, k = 0, 1, 2, . . . , (1)

where uk = tk + b Φ(tk), b ∈ R− {0}, Φ[uk, tk] =
Φ(uk)−Φ(tk)

uk−tk
, and n is the multiplicity of

the root.
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A system’s stability can also be examined using multiple roots. Multiple roots in a
dynamical system correlate to several equilibrium points, and researching the stability of
these points can aid in understanding how the system behaves under various circumstances.
In numerous domains, including optimization, system analysis, and stability analysis,
the utilization of multiple roots of nonlinear equations can yield useful information. We
can better comprehend the problem and create more effective remedies by identifying
multiple roots.

For numerous zeros of nonlinear functions, various authors recently devised opti-
mal and non-optimal (in terms of the Kung–Traub hypothesis; see [2]) non-derivative
approaches [3–7].

In order to attain a high order of convergence with a minimal amount of function
evaluations, a high-efficiency non-derivative technique for the multiple-roots method is
proposed. On the basis of these ideas, we create a two-step derivative-free approach that
converges to the fourth order. The proposed method is optimal in terms of the Kung–Traub
hypothesis [2] since it only performs three function evaluations throughout each cycle.

We compare our new derivative method with existing methods of the same order,
i.e., with a derivative [8–13] and without a derivative [3–5]. In the numerical section, new
methods and existing methods are applied to real-life problems, i.e., Planck law radiation,
Van der Waals, Manning for isentropic supersonic flow, the blood rheology model and
two academics problems. The van der Waals equation is an equation of state that attempts
to explain how the behavior of real gas molecules, which have finite sizes and interact
with one another, differs from that of an ideal gas. The spectrum distribution of energy
emitted by a black body at a specific temperature is described by the Planck law equation,
a fundamental equation in quantum mechanics. It is used to explain the black body
radiation that is seen and how temperature affects it. The flow rate of a fluid through
a channel is determined using the empirical Manning equation in open channel flow.
In order to calculate the fluid flow rate, the channel’s shape, slope, and roughness are all
taken into consideration. In isentropic supersonic flow, where the fluid is moving at a high
velocity and the pressure waves it generates are moving at or above the speed of sound,
this equation is specifically used. Models of blood rheology use mathematics to illustrate
how blood moves through the circulatory system. These simulations take into account
properties like viscosity, elasticity, and shear stress to comprehend the intricate dynamics
of blood flow. Comparing the newly proposed method to the current iterative root-finding
method, the convergence area is wider.

The outline of the paper is given as follows: Section 2 of the paper delves into the
development of this proposed scheme and provides three essential theorems, each specifi-
cally designed for n = 2, n = 3, and n = 4. These theorems establish the foundation for the
subsequent sections. In Section 3, the main general theorem for the convergence order is
unveiled, elucidating the scheme’s efficiency. Moreover, Section 4 expounds on the authors’
numerical experiments, where they rigorously test the scheme’s efficacy on both real-life
and academic problems. Finally, Section 5 offers concluding remarks, summarizing the
paper’s contributions and outlining potential future research directions.

2. Development of Scheme

Consider the following iterative approach for n > 1,

vk = tk − n
Φ(tk)

Φ[uk, tk]

tk+1 = vk − n
wk

d1 + d2wk

Φ(tk)

d3Φ[vk, tk] + d4Φ[vk, uk]
, (2)

where d1, d2, d3 and d4 are the unknown parameters with wk =
n
√

Φ(vk)
Φ(tk)

.
In order to establish the validity of our result, we conducted rigorous testing by

varying the value of n across multiple instances. Through extensive experimentation and
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analysis, we consistently observed the same outcome, thus providing compelling evidence
for the generalizability and reliability of our findings across different values of n. We first
examine the situation n = 2 and demonstrate the validity of the following theorem.

Theorem 1. With n = 2 of Φ, let’s assume that t = alpha is a multiple solution. We presume
Φ : D ⊂ C → C is an analytic function in D vicinity of the zero α. So, the algorithm (2) has
convergence order four, when d1 = 2

d3+d4
, d2 = − 4

d3+d4
and d3 = d4.

Proof. εk = tk − α is used to indicate an error at the k-th stage. As a result of Taylor’s
expansion of Φ(tk) about α, we yield

Φ(tk) =
Φ(2)(α)

2!
ε2

k
(
1 + N1εk + N2ε2

k + N3ε3
k + N4ε4

k + · · ·
)
, (3)

where Nm = 2!
(2+m)!

Φ(2+m)(α)

Φ(2)(α)
for m ∈ N, Φ(α) = 0, Φ′(α) = 0 and Φ(2)(α) 6= 0.

Similarly, we have that Φ(uk) about α

Φ(uk) =
Φ(2)(α)

2!
ε2

uk

(
1 + N1εuk + N2ε2

uk
+ N3ε3

uk
+ N4ε4

uk
+ · · ·

)
, (4)

where εuk = uk − α = εk +
∆2
2! ε2

k
(
1 + N1εk + N2ε2

k + N3ε3
k + · · ·

)
and ∆2 = bΦ(2)(α).

From the first step of (2), we obtain

εvk = vk − α

=
1
2

(∆2
2

+ N1

)
ε2

k −
1

16
(
∆2

2 − 8∆2N1 + 12N2
1 − 16N2

)
ε3

k + O(ε4
k). (5)

Expanding Φ(vk) around α, it yields

Φ(vk) =
Φ(2)(α)

2!
ε2

wk

(
1 + N1εwk + N2ε2

wk
+ N3ε3

wk
+ · · ·

)
. (6)

Using (3) and (6), we have

wk =
1
2

(∆2

2
+ N1

)
εk −

1
16
(
∆2

2 − 6bΦ(2)(α)N1 + 16(N2
1 − N2)

)
ε2

k

+
1

64
(
∆3

2 − 22∆2N2
1 + 4

(
29N3

1 + 14∆2N2
)

− 2N1
(
3∆2

2 + 104N2
)
+ 96N3

)
ε3

k + O(ε4
k).

(7)

Inserting (3), (4), (6) and (7) in the last step of (2), and after some calculations, yields

εk+1 =
(d3d1 + d1d4 − 2)

4d1(d3 + d4)

(
∆2 + 2N1

)
ε2

k +
1

16d2
1(d3 + d4)2

[
∆2

2

(
− (d1d3)

2

+ d3(4d1 + 2d2 − 2d2
1d4) + d4(8d1 + 2d2 − d2

1d4)
)
+ 4∆2

(
2(d3d1)

2

+ d4(d1 + 2d2 + 2d2
1d4) + d3(2d2 − d1 + 4d2

1d4)
)

N1 − 4(d3 + d4)
(

3d2
1(d3 + d4)

− 10d1 − 2d2

)
N2

1 + 16d1(d3 + d4)(d3d1 + d1d4 − 2)N2

]
ε3

k + ψmε4
k + O(ε5

k),
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where

ψm = ψm(b, d1, d2, d3, d4, N1, N2, N3),

= − 1
64d3

1(d3 + d4)3

[
8d2

1d2
3∆3

2 + 6d1d2d2
3∆3

2 + 2d2
2d2

3∆3
2 − d3

1d3
3∆3

2 + 28d2
1d3d4∆3

2

+ 16d1d2d3d4∆3
2 + 4d2

2d3d4∆3
2 − 3d3

1d2
3d4∆3

2 + 28d2
1d2

4∆3
2 + 10d1d2d2

4∆3
2

+ 2d2
2d2

4∆3
2 − 3d3

1d3d2
4∆3

2 − d3
1d3

4∆3
2 + 4(d3 + d4)

(
6d2

2(d3 + d4)

+ 5d3
1(d3 + d4)

2 + d2
1(−5d3 + 3d4) + 2d1d2(5d3 + 7d4)

)
∆2N2

1

− 8(d3 + d4)
2(−45d2

1 − 18d1d2 − 2d2
2 + 9d3

1(d3 + d4))N3
1

− 16d1(d3 + d4)(d1(−3d3 + d4) + 4d2(d3 + d4) + 4d2
1(d3 + d4)

2)∆2N2

+ 2N1

{
(6d2

2(d3 + d4)
2 + 5d3

1(d3 + d4)
3 − 2d1d2(d2

3 − 2d3d4 − 3d2
4)

− 2d2
1(5d2

3 + 16d3d4 + 7d2
4))∆

2
2 − 16d1(d3 + d4)

2
(

17d1 + 4d2

− 5d2
1(d3 + d4)

)
N2

}
+ 192d2

1d2
3N3 − 96d3

1d3
3N3 + 384d2

1d3d4N3

− 288d3
1d2

3d4N3 + 192d2
1d2

4N3 − 288d3
1d3d2

4N3 − 96d3
1d3

4N3

]
.

Now, fixing the coefficients of ε2
k and ε3

k to zero, we obtain

d1 =
2

d3 + d4
, d2 = − 4

d3 + d4
, d3 = d4. (8)

Now, by using (8) in (2), we have

εk+1 = − 1
64
(
∆2 + 2N1

)(
3∆2

2 + 10∆2N1 − 2N2
1 + 8N2

)
ε4

k + O(ε5
k).

Theorem 2. If Theorem 1 is adopted, then the algorithm (2) for n = 3 has at least an order of four
of convergence if d1 = 3

d3+d4
and d2 = − 6

d3+d4
.

Proof. Considering that Φ(α) = Φ′(α) = Φ(2)(α) = 0 and Φ(3)(α) 6= 0, expanding Φ(tk)
around α by Taylor series gives

Φ(tk) =
Φ(3)(α)

3!
ε3

k
(
1 + N̄1εk + N̄2ε2

k + N̄3ε3
k + N̄4ε4

k + · · ·
)
, (9)

where N̄m = 3!
(3+m)!

Φ(3+m)(α)

Φ(3)(α)
for m ∈ N.

Similarly, expanding Φ(uk) about α yields

Φ(uk) =
Φ(3)(α)

3!
ε3

uk

(
1 + N̄1εuk + N̄2ε2

uk
+ N̄3ε3

uk
+ N̄4ε4

uk
+ · · ·

)
, (10)

where εuk = uk − α.
Inserting (9) and (10) in (2), yields
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σvk = vk − α

=
N̄1
3

ε2
k +

1
18

(
3bΦ(3)(α)− 8N̄2

1 + 12N̄2

)
ε3

k +
(16

27
N̄3

1 +
N̄1
9
(2bΦ(3)(α)− 13N̄2) (11)

+ N̄3

)
ε4

k + O(ε5
k). (12)

In a similar fashion, expanding Φ(vk) about α, we have

Φ(vk) =
Φ(3)(α)

3!
ε3

vk

(
1 + N̄1εvk + N̄2ε2

vk
+ N̄3ε3

vk
+ N̄4ε4

vk
+ · · ·

)
. (13)

From (9) and (13), we have

wk =
N̄1

3
εk +

( bΦ(3)(α)

6
− 5

9
N̄2

1 +
2
3

N̄2

)
ε2

k

+
(23

27
N̄3

1 +
N̄1

18
(3bΦ(3)(α)− 32N̄2) + N̄3

)
ε3

k + O(ε4
k).

(14)

By using (9)–(14) in the last step of (2), we obtain

εk+1 =
1
3

(
1− 3

d1(d3 + d4)

)
N̄1ε2

k +
1

18d2
1(d3 + d4)

(
(36d1 + 6d2 − 8d2

1(d3 + d4))N̄2
1

+ 3d1(−3 + d3d1 + d1d4)(bΦ(3)(α) + 4N̄2)
)

ε3
k + ϕmε4

k + O(ε5
k), (15)

where ϕm = ϕm(b, d1, d2, d3, d4, N̄1, N̄2, N̄3).
The equations can now be solved by setting the coefficients of ε2

k and ε3
k to zero.

We have

d1 =
3

d3 + d4
, d2 = − 6

d3 + d4
. (16)

The error Equation (15) is given by

εk+1 =
N̄1

54(d3 + d4)

(
4(d3 + d4)N̄2

1 − 3(bΦ(3)(α)(d3 − d4) + 2(d3 + d4)N̄2)
)

ε4
k + O(ε5

k).

Hence, Theorem 2 is proved.

Now, we state the theorem for n = 4.

Theorem 3. If Theorem 1 is adopted, then the algorithm (2) for n = 4 has at least 4th order of
convergence if d1 = 4

d3+d4
and d2 = − 8

d3+d4
. Furthermore, the error equation for (2) is provided by

εk+1 =
( 5

128
¯̄N3

1 −
1
16

¯̄N1
¯̄N2

)
ε4

k + O(ε5
k),

where ¯̄Nm = 4!
(4+m)!

Φ(4+m)(α)

Φ(4)(α)
for m ∈ N.

3. Generalization of the Method

Theorem 4. If Theorem 1 is adopted, then the algorithm (2) for n ≥ 4 has at least an order of four
of convergence, if d1 = n

d3+d4
and d2 = − 2n

d3+d4
. Moreover, the error equation of (2) is given by

εk+1 =
(1 + n

2n3 P3
1 −

1
n2 P1P2

)
ε4

k + O(ε5
k).



Mathematics 2023, 11, 3146 6 of 16

Proof. First, we expand Φ(tk) about α, and we have

Φ(tk) =
Φn(α)

n!
εn

k
(
1 + P1εk + P2ε2

k + P3ε3
k + P4ε4

k + · · ·
)
, (17)

where Pm = n!
(m+n)!

Φ(m+n)(α)

Φ(n)(α)
for m ∈ N with Φ(j)(α) = 0, j = 0, 1, 2, ..., n − 1, and that

Φn(α) 6= 0,.
Similarly, expanding Φ(uk) about α leads to

Φ(uk) =
Φn(α)

n!
εn

uk

(
1 + P1εuk + P2ε2

uk
+ P3ε3

uk
+ P4ε4

uk
+ · · ·

)
, (18)

where εuk = uk − α = εk +
bΦn(α)

n! εn
k
(
1 + P1εk + P2ε2

k + P3ε3
k + · · ·

)
.

From the first step of Equation (2) results

εvk = vk − α

=
P1
n

ε2
k +

1
n2

(
2nP2 − (1 + n)P2

1
)
ε3

k +
1

n3

(
(1 + n)2P3

1 − n(4 + 3n)P1P2 + 3n2P3
)
ε4

k + O(ε5
k). (19)

Expanding Φ(vk) around α further yields

Φ(vk) =
Φn(α)

n!
εn

vk

(
1 + P1εvk + P2ε2

vk
+ P3ε3

vk
+ P4ε4

vk
+ · · ·

)
. (20)

Using (17) and (20) in the expressions of wk, we have that

wk =
P1

n
εk +

1
n2

(
2nP2 − (2 + n)P2

1
)
ε2

k

+
1

2n3

(
(7 + 7n + 2n2)P3

1 − 2n(7 + 3n)P1P2 + 6n2P3
)
ε3

k + O(ε4
k).

(21)

Inserting (17)–(21) in the second step of (2) gives

εk+1 =
1
n

(
1− n

d1d3 + d1d4

)
P1ε2

k +
1

n2d2
1(d3 + d4)

(
((3n + n2)d1 + nd2 − (n + 1)d2

1(d3 + d4))P2
1

+ 2nd1(−n + d1(d3 + d4))P2
)
ε3

k + φmε4
k + O(ε5

k), (22)

where φm = φm(n, d1, d2, d3, d4, P1, P2, P3).
Again, fixing the coefficients of ε2

k and ε3
k equal to zero, we obtain

d1 =
n

d3 + d4
d2 = − 2n

d3 + d4
. (23)

The error Equation (22) is given by

εk+1 =
(1 + n

2n3 P3
1 −

1
n2 P1P2

)
ε4

k + O(ε5
k). (24)

Thus, the theorem is proved.

Remark 1. Assuming that the requirements of Theorem 4 are met, the algorithm (2) approaches
fourth convergence order. To accomplish this convergence rate, only three functional evaluations
Φ(tk), Φ(uk) and Φ(vk), are utilized per iteration. As a result, the algorithm (2) is optimal [2].

Remark 2. It is crucial to keep in mind that the variable b, which is utilized in uk, only appears
when n = 2 and n = 3, rather than in the scenario where n ≥ 4. However, we discovered that
it does so for n ≥ 4 in terms of ε5

k and higher order. Calculating such terms is often expensive.
Furthermore, the requisite fourth-order convergence need not be shown using these terms.
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Remark 3. The algorithm (2) is written as follows for future reference:

vk = tk − n
Φ(tk)

Φ[uk, tk]

tk+1 = vk −
2wk

1− 2wk

Φ(tk)

Φ[vk, tk] + Φ[vk, uk]
. (25)

For the numeric examples, the scheme (25) is known as NM.

4. Numerical Results

To resolve some nonlinear equations, we use the NM with (b = 0.01). The examples
support the theoretical findings while also demonstrating the method’s viability and
effectiveness. In the continuation, we use the formula (see [14])

COC =
ln |(tk+2 − α)/(tk+1 − α)|

ln |(tk+1 − α)/(tk − α)| , k = 1, 2, . . . (26)

to compute the computational order of convergence. The new algorithm’s performance is
compared to that of the nine existing methods:

(i) Li et al. [9] iteration function (LLC):

vτ = στ −
2µ

µ + 2
Φ(στ)

Φ′(στ)
,

στ+1 = στ −
µ(µ− 2)

( µ
µ+2

)−µΦ′(vτ)− µ2Φ′(στ)

Φ′(στ)−
( µ

µ+2
)−µΦ′(vτ)

Φ(στ)

2Φ′(στ)
.

(ii) Li et al. [10] iteration function (LCN):

vτ = στ −
2µ

µ + 2
Φ(στ)

Φ′(στ)
,

στ+1 = στ − α1
Φ(στ)

Φ′(vτ)
− Φ(στ)

α2Φ′(στ) + α3Φ′(vτ)
,

where

α1 = − 1
2

( µ
µ+2

)µ
µ(µ4 + 4µ3 − 16µ− 16)

µ3 − 4µ + 8
,

α2 = − (µ3 − 4µ + 8)2

µ(µ4 + 4µ3 − 4µ2 − 16µ + 16)(µ2 + 2µ− 4)
,

α3 =
µ2(µ3 − 4µ + 8)( µ

µ+2
)µ
(µ4 + 4µ3 − 4µ2 − 16µ + 16)(µ2 + 2µ− 4)

.

(iii) Sharma and Sharma [11] iteration function (SSM):

vτ = στ −
2µ

µ + 2
Φ(στ)

Φ′(στ)
,

στ+1 = στ −
µ

8

[
(µ3 − 4µ + 8)− (µ + 2)2

( µ

µ + 2

)µ Φ′(στ)

Φ′(vτ)

×
(

2(µ− 1)− (µ + 2)
( µ

µ + 2

)µ Φ′(στ)

Φ′(vτ)

)] Φ(στ)

Φ′(στ)
.
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(iv) Iteration function from Zhou et al. [13] (ZCS):

vτ = στ −
2µ

µ + 2
Φ(στ)

Φ′(στ)
,

στ+1 = στ −
µ

8

[
µ3
(µ + 2

µ

)2µ(Φ′(vτ)

Φ′(στ)

)2
− 2µ2(µ + 3)

(µ + 2
µ

)µ Φ′(vτ)

Φ′(στ)

+ (µ3 + 6µ2 + 8µ + 8)
] Φ(στ)

Φ′(στ)
.

(v) Iteration function from Soleymani et al. [12] (SBM):

vτ = στ −
2µ

µ + 2
Φ(στ)

Φ′(στ)
,

στ+1 = στ −
Φ′(vτ)Φ(στ)

q1(Φ′(vτ))2 + q2Φ′(vτ)Φ′(στ) + q3(Φ′(στ))2 ,

where

q1 =
1

16
µ3−µ(µ + 2)µ,

q2 =
8− µ(µ + 2)(µ2 − 2)

8m
,

q3 =
1

16
(µ− 2)µµ−1(µ + 2)3−µ.

(vi) Iteration function from Kansal et al. [8] (KKB):

vτ = στ −
2µ

µ + 2
Φ(στ)

Φ′(στ)
,

στ+1 = στ −
µ

4
Φ(στ)

(
1 +

µ4 p−2µ
(

pµ−1 − Φ′(vτ)
Φ′(στ)

)2
(pµ − 1)

8(2pµ + µ(pµ − 1))

)

×
(4− 2µ + µ2(p−µ − 1)

Φ′(στ)
− p−µ(2pµ + µ(pµ − 1))2

Φ′(στ)−Φ′(vτ)

)
,

where p = µ
µ+2 .

(vii) Iteration function from Sharma et al. [3] (SKJ):

vτ = στ − µ
Φ(στ)

Φ[uτ , στ ]
,

στ+1 = vτ −
(
wτ + µ w2

τ + (µ− 1)xτ + µ wτ xτ

) Φ(στ)

Φ[uτ , στ ]
.

(viii) Iteration function from Behl et al. [4] (BAM):

vτ = στ − µ
Φ(στ)

Φ[uτ , στ ]
,

στ+1 = vτ − µ
wτ + xτ

2(1− 2wτ)

Φ(στ)

Φ[uτ , στ ]
,

where xτ = n
√

Φ(vτ)
Φ(uτ)

.
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(ix) Iteration function from Kumar et al. [5] (KKS):

vτ = στ − µ
Φ(στ)

Φ[uτ , στ ]
,

στ+1 = vτ −
(µ + 2)wτ

1− 2wτ

Φ(στ)

Φ[uτ , στ ] + Φ[vτ , uτ ]
.

The computations are made using multiple-precision arithmetic in Mathematica [15].
The multiplicities of the considered functions are demonstrated in Table 1. In addition,
Tables 2–7 contain the following points:

1. The multiplicity n of the relevant function.
2. The number of iterations (k) mentioned on the basis of stopping criteria |tk+1 − tk|+

|Φ(tk)| ≤ 10−100.
3. The first three estimated errors |tk+1 − tk| of the iterative methods are recorded.
4. Utilize (26) in order to compute the COC.
5. The amount of CPU time required to run a program is determined by the Mathematica

command “TimeUsed[ ]”. Figures 1–6 display the CPU timing consumed by our and
the existing methods.

LLC LCN SSM
ZCS SBM

KKB SKJ BAM KKS NM

Methods0.00

0.02

0.04

0.06

0.08

0.10

Time Consumed by Methods

Figure 1. Bar chart of problem Φ1(t).
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LCN SSM ZCS

SBM

KKB

SKJ

BAM

KKS NM

Methods0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time Consumed by Methods

Figure 2. Bar chart of problem Φ2(t).
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Figure 3. Bar chart of problem Φ3(t).
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KKB

SKJ BAM KKS NM Methods0.0
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0.4
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Figure 4. Bar chart of problem Φ4(t).
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SKJ
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Figure 5. Bar chart of problem Φ5(t).
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Time Consumed by Methods

Figure 6. Bar chart of problem Φ6(t).
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Example 1. Van der Waals equation [16]: The Van der Waals equation is a non-differential equation
that models the behavior of real gases, taking into account intermolecular forces and the finite size of
gas molecules. Compared to the ideal gas law, it offers a more accurate explanation of gas behavior.
The equation introduces correction terms for attractive forces and molecular volume. The Van der
Waals equation finds applications in thermodynamics, chemical engineering, and material science,
enabling the study of real gas behavior and phase transitions under various conditions:

(
P +

a1n2

V2

)
(V − na2) = nRT, (27)

where we have the following:
R: universal gas constant;
V: volume;
P: pressure;
T: temperature.

To calculate the value of V, we can write (27) as

PV3 − (na2P + nRT)V2 + a1n2V − a1a2n2 = 0. (28)

There are values of n, P, R, T, a1 and a2 of a particular gas. In this way, the expression (28)
has three solutions. So by using a specific set of values, we have

Φ1(t) = t3 + 9.0825t− 5.22t2 − 5.2675.

It has the following three roots: 1.72, 1.75, and 1.75. The desired root is therefore alpha = 1.75.
The approaches are evaluated using the initial estimate of t0 = 2.3. Table 2 presents the computed results.

Example 2. Planck’s radiation law problem [16]: The mathematical equation for Planck’s law of
radiation is given by

ϕ(λ) = B(λ, T) =
2hc2

λ5 ∗
1

ehc/λ∗kT − 1
, (29)

where we have the following:
B(λ, T) represents the spectral radiance or energy density per unit wavelength at a given wavelength
λ and temperature T.
k and h stand for the Boltzmann and Planck constants, respectively.
c is the speed of light in vacuum.
λ is the wavelength of radiation.
T stand for temperature in Kelvin.

The equation expresses the spectral distribution of radiation emitted by a black body at a specific
temperature T across different wavelengths λ. It shows how the radiance or intensity of the emitted
radiation changes with both the temperature and wavelength.

The Planck law radiation problem focuses on the spectral distribution of radiation emitted by a
blackbody at different temperatures. It describes the relationship between the intensity or energy
density of radiation and the wavelength, providing insights into the behavior of electromagnetic
radiation and its thermal properties in various physical systems.

From (29), we obtain

ϕ′(λ) =
( 2c2hλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5
)
= AB.

It is clear that a maximum value for varphi occurs when B = 0, implying that

( (ch/λkT)ech/λkT

ech/λkT − 1

)
= 5.
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By choosing t = ch/λkT, we have

1− x
5
= e−t. (30)

We examined this case three times and produced the necessary nonlinear function

Φ2(t) =
(

e−t − 1 +
t
5

)3
. (31)

It is clear from the above equation that it has a multiple root t = 0 but it is not taken into
account. Bardie [16] has more information. Hence, we choose α ≈ 4.96511423 as a multiple root
with t0 = 5.4. Table 3 displays the numerical results.

Example 3. The Manning equation is used to approximate the mean flow velocity in open channel
flow (see [17]). The mathematical equation is as follows:

δ =
√

b

tan−1

√
M2

2 − 1
b

− tan−1

√
M2

1 − 1
b

− tan−1
√

M2
2 − 1 + tan−1

√
M2

1 − 1.

Then, it shows the relationship between the Mach numbers M1 and M2 before and after the
corner, and b = γ+1

γ−1 , γ is the specific heat ratio of the gas. The Manning equation is widely used
in civil engineering and hydraulic applications for estimating flow velocities and designing open
channel systems. It provides a practical approach to estimate flow characteristics in a variety of
channel configurations.

We resolve the equation for M2 in a unique case study when M1 = 3
2 , γ = 7

5 and δ = 100.
As it is, we have

arctan
(√5

2

)
− arctan(

√
t2 − 1) +

√
6
(

arctan
(√ t2 − 1

6
)
− arctan

(1
2

√
5
6

))
− 11

63
= 0,

where t = M2.
We took this case into consideration four times and discovered the necessary nonlinear function.

Φ3(t) =

[
arctan

(√
5

2

)
− arctan

√
t2 − 1 +

√
6

{
arctan

(√
t2 − 1

6

)
− arctan

(
1
2

√
5
6

)}
− 11

63

]4

.

The above function has zero at α = 1.8411294068 . . .. Utilizing the original estimate t0 = 1.5,
this zero is determined. Table 4 presents the numerical outcomes.

Example 4. Blood rheology model: We take into account the research on the blood rheology model,
which looks at the physical and flow properties of blood. The term Caisson fluid is used to describe
blood, a non-Newtonian fluid. The Caisson fluid model predicts how fundamental fluids flow in
tubes so that there is a velocity gradient from wall to wall and the fluid’s central core travels like a
plug with little distortion. When analyzing the plug flow of Caisson fluids, the function

H =
t4

21
+

4t
3
− 16

√
t

7
+ 1

is used as a nonlinear equation.
We use the non-linear equation

Φ4(t) =
1

441
t8 − 8

63
t5 − 2

21
t4 +

16
9

t2 − 376
147

t + 1,

to calculate the flow rate reduction for H = 0. This function has zero α = 1. To compute this zero,
let us use the original estimate t0 = −2.5. Table 5 displays the computed findings.
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Example 5. Now, we consider the preceding standard complex root problem:

Φ5(t) = t(t2 + 1)(2et2+1 + t2 − 1) cosh3
(πt

2

)
.

This function has zero α = i. Let us choose the initial approximation t0 = 1.3i to compute this
zero. Table 6 depicts the computed findings.

Example 6. As a final consideration, we look at a non-differential function at t = 0, which is
given by

Φ6(t) =
(t2 + t− 1)(t− 3)4

et − 1
.

This function has zero α = 3. As a starting point, let us compute this zero using the
approximation t0 = 0.2. The computed outcomes are shown in Table 7 of the report.

To find the multiplicity of the above-chosen functions, adopt the following formula:

n =
tk − t0

dk − d0
,

where dk = Φ(tk)
gk

and gk = Φ(tk+Φ(tk))−Φ(tk)
Φ(tk)

. We obtain the multiplicity by using this
formula with our new approach, NM. In Table 1, the calculated outcomes are displayed.

Table 1. Multiplicity of considered functions.

Problems Multiplicity

Φ1(t) 2
Φ2(t) 3
Φ3(t) 4
Φ4(t) 3
Φ5(t) 5
Φ6(t) 4

Table 2. Results of the methods for problem Φ1(t).

Methods k |t2− t1| |t3− t2| |t4− t3| COC CPU

LLC 6 6.59(−2) 4.67(−3) 3.77(−6) 4.000 0.0941
LCN 6 6.59(−2) 4.67(−3) 3.77(−6) 4.000 0.0939
SSM 6 6.72(−2) 5.05(−3) 5.32(−6) 4.000 0.0933
ZCM 6 6.99(−2) 5.90(−3) 1.09(−6) 4.000 0.0872
SBM 6 6.59(−2) 4.67(−3) 3.77(−6) 4.000 0.0927
KKB 6 6.50(−2) 4.39(−3) 2.49(−6) 4.000 0.0814
SKJ 6 7.17(−2) 6.50(−3) 1.86(−5) 4.000 0.0821

BAM 6 5.78(−2) 2.74(−3) 2.96(−7) 4.000 0.0836
KKS 5 5.59(−2) 2.36(−3) 1.22(−7) 4.000 0.0801
NM 5 5.40(−2) 2.00(−3) 3.81(−8) 4.000 0.0799
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Table 3. Results of the methods for problem Φ2(t).

Methods k |t2− t1| |t3− t2| |t4− t3| COC CPU

LLC 4 1.95(−5) 1.17(−22) 1.51(−91) 4.000 0.8192
LCN 4 1.95(−5) 1.17(−22) 1.51(−91) 4.000 0.9367
SSM 4 1.95(−5) 1.17(−22) 1.53(−91) 4.000 0.9523
ZCS 4 1.96(−5) 1.18(−22) 1.58(−91) 4.000 0.9681
SBM 4 1.95(−5) 1.18(−22) 1.54(−91) 4.000 1.1543
KKB 4 1.95(−5) 1.16(−22) 1.44(−91) 4.000 0.9367
SKJ 3 2.76(−6) 8.00(−27) 0 4.000 0.3371

BAM 3 2.41(−6) 3.85(−27) 0 4.000 0.5150
KKS 3 2.42(−6) 3.93(−27) 0 4.000 0.3435
NM 3 2.43(−6) 3.98(−27) 0 4.000 0.3281

Table 4. Results of the methods for problem Φ3(t).

Methods k |t2− t1| |t3− t2| |t4− t3| COC CPU

LLC 4 1.07(−3) 1.14(−14) 1.46(−58) 4.000 1.6220
LCN 4 1.07(−3) 1.13(−14) 1.43(−58) 4.000 1.7322
SSM 4 1.07(−3) 1.12(−14) 1.35(−58) 4.000 1.6847
ZCS 4 1.07(−3) 1.10(−14) 1.23(−58) 4.000 1.7000
SBM 4 1.07(−3) 1.08(−14) 1.16(−58) 4.000 1.9821
KKB 4 1.07(−3) 1.19(−14) 1.82(−58) 4.000 1.7476
SKJ 4 2.64(−5) 6.95(−21) 3.34(−83) 4.000 1.3955

BAM 4 2.63(−5) 4.59(−21) 4.23(−84) 4.000 2.2621
KKS 4 2.63(−5) 4.57(−21) 4.18(−84) 4.000 1.3401
NM 4 2.63(−5) 4.56(−21) 4.13(−84) 4.000 1.3219

Table 5. Results of the methods for problem Φ4(t).

Methods k |t2− t1| |t3− t2| |t4− t3| COC CPU

LLC - - - - - -
LCN - - - - - -
SSM 10 64.4 35.5 14.9 4.000 0.0323
ZCS 6 2.18 4.55(−1) 3.46(−4) 4.000 0.0622
SBM 5 1.36 2.80(−2) 3.78(−9) 4.000 0.0454
KKB 261 666 396 162 4.000 0.5319
SKJ 5 3.39(−1) 9.76(−5) 1.12(−18) 4.000 0.0187

BAM 5 5.97(−1) 4.45(−4) 1.90(−16) 4.000 0.0310
KKS 5 6.50(−1) 5.19(−4) 3.11(−16) 4.000 0.0183
NM 5 7.00(−1) 5.92(−4) 4.79(−16) 4.000 0.0180

Table 6. Results of the methods for problem Φ5(t).

Methods k |t2− t1| |t3− t2| |t4− t3| COC CPU

LLC 4 3.04(−4) 3.16(−15) 3.68(−59) 4.000 1.4352
LCN 4 3.04(−4) 3.16(−15) 3.70(−59) 4.000 2.1376
SSM 4 3.04(−4) 3.17(−15) 3.76(−59) 4.000 2.1383
ZCS 4 3.04(−4) 3.18(−15) 3.84(−59) 4.000 2.1845
SBM 4 3.04(−4) 3.23(−15) 4.14(−59) 4.000 2.6374
KKB 4 3.04(−4) 3.11(−15) 3.40(−59) 4.000 2.1690
SKJ 4 3.23(−5) 2.14(−19) 4.16(−76) 4.000 0.4578

BAM 4 3.34(−5) 1.52(−19) 6.41(−77) 4.000 0.6860
KKS 4 3.09(−5) 1.11(−19) 1.83(−77) 4.000 0.4527
NM 4 2.75(−5) 6.96(−20) 2.85(−78) 4.000 0.4498
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Table 7. Results of the methods for problem Φ6(t).

Methods k |t2− t1| |t3− t2| |t4− t3| COC CPU

LLC - - - - - -
LCN - - - - - -
SSM - - - - - -
ZCS - - - - - -
SBM 7 2.06(−1) 1.68 1.68(−1) 4.000 0.5169
KKB - - - - - -
SKJ - - - - - -

BAM - - - - - -
KKS 10 2.42 1.98 8.02(−1) 2.000 0.2663
NM 7 2.27 1.94 6.17(−1) 4.000 0.1725

Remark 4. Tables 2–7 demonstrate that the suggested technique exhibits a constant convergence
behavior and follows the conclusions made in Sections 2 and 3. In all of the issues, it appears
that the provided algorithm goes through k iterations, as few as or as many as the approaches
under consideration. The estimated errors of the algorithm described are shown in Tables 2–7 to be
comparable to those of other approaches. Our new approach is more consistent than other approaches
and produces results that are reliable and reproducible. Our approach produces consistent results
throughout the considered problem. Additionally, the results demonstrate the new method’s high
efficiency when compared to the CPU time of approaches in the same domain that were also under
consideration. Figure 1 through Figure 6, which demonstrate how efficiently the new algorithm
outperforms the existing one, also indicate the time consumption. Similar numerical studies on a
wide range of other problems also support this result. By reducing the amount of time needed to
finish, our new method has a clear benefit over other methods. By using our method, researchers can
benefit from improved productivity and expedited results, which ultimately improves their work flow.

5. Conclusions

This research study concludes by presenting the creation of an ideal derivative-free
method for locating multiple roots. The method demonstrates a remarkable convergence
rate of order four, as proven by a theorem. Moreover, the practical applications of this
method extend to various real-life problems, including the Van der Waals equation, Planck’s
radiation, the Manning problem, and the blood rheology model. The numerical results
obtained from applying the proposed method surpass those of existing iterative methods.
The improved accuracy and efficiency of the derivative-free approach make it a valuable
tool for solving problems with multiple roots.

Overall, this research contributes to the field of numerical analysis by providing a
robust and efficient method for finding multiple roots. Its applications in diverse scientific
and engineering domains highlight its versatility and effectiveness. The promising results
obtained pave the way for the further exploration and implementation of this method in
various practical scenarios.
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