
Citation: Demidovskij, A.; Tugaryov,

A.; Trutnev, A.; Kazyulina, M.;

Salnikov, I.; Pavlov, S. Lightweight

and Elegant Data Reduction

Strategies for Training Acceleration

of Convolutional Neural Networks.

Mathematics 2023, 11, 3120. https://

doi.org/10.3390/math11143120

Academic Editor: Javier Alcaraz

Received: 13 June 2023

Revised: 4 July 2023

Accepted: 12 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Lightweight and Elegant Data Reduction Strategies for Training
Acceleration of Convolutional Neural Networks
Alexander Demidovskij 1,2,* , Artyom Tugaryov 1 , Aleksei Trutnev 1 , Marina Kazyulina 1 , Igor Salnikov 1

and Stanislav Pavlov 1

1 NN AI Team, Huawei Russian Research Institute, ul. Maksima Gorkogo, 117,
Nizhny Novgorod 603006, Russia

2 Department of Informatics, Mathematics and Computer Sciences, National Research University Higher
School of Economics, ul. Bolshaya Pecherskaya, 25/12, Nizhny Novgorod 603155, Russia

* Correspondence: alexandr.demidovskiy@huawei.com

Abstract: Due to industrial demands to handle increasing amounts of training data, lower the cost
of computing one model at a time, and lessen the ecological effects of intensive computing resource
consumption, the job of speeding the training of deep neural networks becomes exceedingly challenging.
Adaptive Online Importance Sampling and IDS are two brand-new methods for accelerating training
that are presented in this research. On the one hand, Adaptive Online Importance Sampling accelerates
neural network training by lowering the number of forward and backward steps depending on how poorly
a model can identify a given data sample. On the other hand, Intellectual Data Selection accelerates
training by removing semantic redundancies from the training dataset and subsequently lowering the
number of training steps. The study reports average 1.9x training acceleration for ResNet50, ResNet18,
MobileNet v2 and YOLO v5 on a variety of datasets: CIFAR-100, CIFAR-10, ImageNet 2012 and MS
COCO 2017, where training data are reduced by up to five times. Application of Adaptive Online
Importance Sampling to ResNet50 training on ImageNet 2012 results in 2.37 times quicker convergence
to 71.7% top-1 accuracy, which is within 5% of the baseline. Total training time for the same number of
epochs as the baseline is reduced by 1.82 times, with an accuracy drop of 2.45 p.p. The amount of time
required to apply Intellectual Data Selection to ResNet50 training on ImageNet 2012 is decreased by
1.27 times with a corresponding decline in accuracy of 1.12 p.p. Applying both methods to ResNet50
training on ImageNet 2012 results in 2.31 speedup with an accuracy drop of 3.5 p.p.

Keywords: deep learning training; training acceleration; convolutional neural networks; sample
importance; dataset reduction

MSC: 68T05

1. Introduction

In recent years, Deep Learning (DL) has gained significant traction as a preferred tech-
nology in diverse application domains. Examples of these domains include computer vision
(CV) [1], signal processing [2], natural language processing [3], robotics [4], autonomous
driving [5,6], and reinforcement learning [7].

The ubiquitous adoption of DL in various industrial applications can be attributed
to the steady advancement of computational power in modern hardware and the over-
whelming availability of data for analysis. According to a corresponding study [8] on
digitization, it is posited that the volume of data is projected to reach 175 zettabytes by
2025 [8]. Simultaneously, it is evident that contemporary datasets intended for the purpose
of training deep neural networks (DNN) aimed at CV have grown considerably. Specifically,
the number of images used for training such networks has increased from 14.2 million in
the ImageNet challenge in 2015 [9] to 300 million in JFT-300M in 2017 [10], and to 3 billion
images in JFT-3B 2022 [11].

Mathematics 2023, 11, 3120. https://doi.org/10.3390/math11143120 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143120
https://doi.org/10.3390/math11143120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3605-6332
https://orcid.org/0009-0007-5540-1775
https://orcid.org/0009-0001-9905-1398
https://orcid.org/0000-0002-1427-7591
https://orcid.org/0009-0003-9444-8737
https://orcid.org/0000-0002-0244-900X
https://doi.org/10.3390/math11143120
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143120?type=check_update&version=2

Mathematics 2023, 11, 3120 2 of 25

DNN excel in the task of selecting salient features from input data and subsequently
making decisions based on the processed data. Therefore, it can be reasonably postulated
that by augmenting the size of DNN, one can possibly enhance their cognitive capacities
and enable them to handle voluminous data with greater proficiency. The present discourse
highlights the remarkable surge in model parameters observed in the field of machine
learning over the past decade. Specifically, the number of parameters in the models
intensified from a mere 60 million in AlexNet in 2012 [12] to an astounding figure of
175 billion in GPT-3 that came into existence in 2020 [13]. Furthermore, it is projected that
GPT-4 [14] possesses a parameter count of approximately 100 trillion [15].

The training of DNN is frequently depicted as an iterative endeavor, wherein the
number of iterations is directly proportional to the quantity of data samples present in the
training dataset. As indicated by the previously mentioned collection of datasets and the
necessity of numerous epochs in the training of extensive models, it can be inferred that a
scientist would be expected to undertake a significant quantity of iterations, potentially
reaching hundreds of thousands [16]. One pertinent illustration is that the Transformer-
large model necessitated a duration of 3.5 days to attain the essential level of accuracy [3].
One of the primary challenges in this particular field is to decrease the expenses associated
with training, while also ensuring that the precision of the generated model is not signifi-
cantly impacted [17]. Various endeavors have been devoted to the development of novel
approaches and methodologies aimed at mitigating the expenses of training, chiefly the
temporal outlays related to training. This paper offers a primary focus on Convolutional
Neural Networks (CNN) in light of their substantial uptake in industry and a pressing
need for novel advancements in this domain [18].

The present study warrants the following pivotal contributions. This research paper
offers a comprehensive evaluation of current methods for training acceleration, emphasiz-
ing the use of lightweight algorithms and methods that facilitate seamless integration into
current training protocols. This research presents the design of two innovative methods that
aim to accelerate the training of CNN. These methods can be used independently, as well as
in conjunction, to achieve higher levels of training acceleration as demonstrated in Figure 1.
The proposed methods allow a reduction in the amount of data required to train a model of
quality close to the baseline (full training). In addition, they are designed to scale to other
CV and NLP tasks and to be combined with other methods, for example, fine-tuning [19].
The present study conducts a comparative analysis with contemporary, high-performance
methodologies and establishes the superiority of the suggested methods over existing
approaches, namely Selective Backpropagation (SB) [20] and Self-Supervised Prototypes
(SSP) [21]. For example, our findings indicate that the proposed ADONIS methodology
enables accelerated training, demonstrating speedups of 1.15–1.38× in comparison to SB.

The structure of the paper is as follows. Section 2 provides a comprehensive synopsis of
current approaches to enhancing training speed. In Section 3, novel methods for expediting
the process of training are presented. Section 4 provides an elaborate assessment of the
proposed methods. Section 5 elucidates the findings of the study and underscores salient
avenues for future inquiry.

Mathematics 2023, 11, 3120 3 of 25

Train loop

R
D

Fo
rw

ar
d

Ba
ck

w
ar

d

C
N

N

Pr
e-

tra
in

ed
FE

O
rig

in
al

da
ta

se
t ID

S

AD
O

N
IS

R
D

Figure 1. The proposed methods in the context of CNN training. The proposed methods are marked
with green: IDS stands for Intellectual Data Selection, ADONIS denotes Adaptive Online Importance
Sampling. Full and reduced datasets are marked in orange. Overall training acceleration methodology
is as follows. First, a full training dataset is provided to IDS, which builds a sorted registry of samples
based on a pre-trained feature extractor (FE). This happens before training at the so-called offline stage.
Based on this index, the full dataset is reduced (reduced dataset, RD). Second, during CNN training
(online stage) ADONIS further reduces a dataset by selecting samples based on losses information,
thus producing a second version of RD. As a result, data are reduced up to 5×.

2. Related Works
2.1. Problem Definition

To explicate diverse strategies for CNN training acceleration, we need to first introduce
certain terms that will be used throughout the paper. Let w ∈ Rm represent the parameters
of a model. Those weights are optimized to fit fw on a dataset D = {(xi, yi), i = 1, . . . , N},
where xi ∈ Rd is a data sample and yi is a ground truth label. The model prediction is
denoted as fw(xi) and means the output of a model on a given data sample xi. The objective
of a DNN training is to minimize the loss l(fw(xi), yi) between predictions given by a model
and ground truth values in a whole training dataset (1), where F(x) is an empirical risk.

min
w

F(w) =
1
N

N

∑
i=1

l(fw(xi), yi) (1)

Within DL field, gradient descent methods are widely adopted for training CNN in an
iterative manner. After neural network parameters are initialized as w(0), they are updated
with respect to the gradient of the loss function (2).

w(k+1) = w(k) − ηkgk

gk =
1
N

N

∑
i=1
∇w(k) l(fw(xi), yi),

(2)

where η is the learning rate, k is the training iteration and gt is the gradient of loss. This
update process happens unless either number of iterations exceeds the specified threshold
or the model is converged so that

∥∥∇w(k+1) l(fw(xi), yi)−∇w(k) l(fw(xi), yi)
∥∥ < ε, where ε

is a small constant.
An empirical approach is typically employed by authors of training pipelines to define

the number of epochs, denoted by E, in which the training process is segregated for practical
purposes. During each epoch, the data from the dataset D is segregated into smaller units
of data called mini-batches, each comprising a quantity of n samples. During each epoch, the
model parameters are updated a total of [D

n] times. In summary, the majority of proposals
related to training acceleration pertain to diminishing the overall training duration, which
is necessary for achieving the convergence of a model or for completing a given number
of epochs. This objective may be attained through the minimization of the duration of
a single epoch or by ensuring an expedited convergence of the model. Simultaneously,
the utilization of a novel training algorithm frequently leads to a reduction in accuracy in
contrast to the level of accuracy achieved with a full baseline. In addition to the temporal

Mathematics 2023, 11, 3120 4 of 25

resources necessary for training, an auxiliary metric for assessing novel training algorithms
exists, which is accuracy reduction. It is maximum acceptable value is defined by project
demands. For instance, it could be set at a maximum of 5% drop from the full training or
even less.

2.2. Key Research Directions in the Field

There exist several methods that are targeted toward decreasing the time taken for
training and accelerating the speed at which a model converges. However, it can be
observed that the aforementioned methods approach this objective through varying van-
tage points. Therefore, they are often not listed together in dedicated surveys, for exam-
ple, dataset distillation methods overview [22,23] does not consider distributed methods
overview [24–26] and vice versa. In this section, we provide a succinct overview of the
predominant research avenues in this domain.

2.2.1. Quantization and Pruning Methods

The practice of quantization is regarded as a prominent approach in expediting the
training and inference of CNN. The method of quantization can be utilized to condense
the model as a whole by lowering the accuracy of its parameters [27,28]. Alternatively,
quantization can be applied to the gradients required for updating the parameters [29,30].
Moreover, the research on accelerating training encompasses model pruning as one of its
focal points, wherein the elimination of model weights is determined by their impact on
the accuracy of the resultant model [31,32].

2.2.2. Distributed Training

The second strategy involves the application of distributed computing concepts to the
process of training DNN [24–26]. On one hand, a proliferation of novel DL chips and cir-
cuits, such as the Google Edge TPU [33], NVIDIA GPU [34], and Huawei Ascend [35], have
emerged from various vendors. Conversely, contemporary methodologies capitalize on
the innate parallelism exhibited by DNN. The training of DNN can be carried out through
pipeline-parallel, model-parallel, or data-parallel methods [24,26]. However, the employ-
ment of distributed training is often associated with mounting training expenditures and
potential security susceptibilities. Simultaneously, in computational settings comprising
a group of low-power edge devices, commonly referred to as the Internet of Things (IoT)
or decentralized systems, DL assumes paramount significance and, thus, merits extensive
consideration [36,37].

2.2.3. Dataset Reduction

One of the cardinal aspects pertains to data selection, as the third direction in the study.
As contemporary training datasets grow exponentially in size, the task of managing and
processing them, as well as training CNN on such data, becomes increasingly arduous.
Hence, one of the preeminent avenues of research pertains to the reduction of the dataset
size. It can be posited that not all samples from a given dataset possess equal importance,
thereby enabling their exclusion from training without any discernible effect on accuracy.
Conversely, certain samples may necessitate multiple iterations to be correctly identified by
a DNN [38,39].

The present study enumerates three principal approaches utilized in the field of data
science, namely dataset condensation or distillation [22,40,41], core-set selection [17,42,43],
and importance sampling [20,44–46]. The principal disparity pertains to the definition
of what constitutes a reduced version of the training dataset. Data distillation methods
propose producing instances as synthesized entities based on certain statistics derived from
the initial dataset. Core-set selection methods enable the automated identification of a
subset from the initial dataset, such that the resultant model achieves a level of accuracy
comparable to the baseline, within a specified threshold, typically 5%. The utilization of
core-set selection and dataset distillation methods is primarily intended for active learning

Mathematics 2023, 11, 3120 5 of 25

scenarios rather than the acceleration of training. The primary objective of active learning is
to identify and designate pertinent data samples for the purpose of training or refining DNN
to optimize their precision. The selection of data is constrained by an upper limit, often
referred to as a budget). Moreover, the quality of the data chosen is directly proportional
to the quality of the fine-tuned model. The data selection direction encompasses a third
approach that involves the utilization of importance sampling. This approach aims to
select samples that are more likely to bring about significant updates to the weights during
(online) training and thereby impart greater informational value to the process of CNN
training [44,45]. Selection is executed based on knowledge obtained from the presently
trained model via additional forward propagation on novel data, thereby gathering data on
said samples. Nevertheless, these methods introduce supplementary costs to the training
procedure, which may involve conducting an additional forward pass for all instances
within a given dataset [44], or deploying a separate network in parallel [45]. Two of the
most notable methods that rely on this concept include DL with Importance Sampling [46],
and Selective Backpropagation (SB) [20].

2.2.4. New Training Strategies

The fourth aspect of training acceleration pertains to expediting the training process by
means of novel training methodologies. In the realm of this particular field, numerous novel
concepts and auspicious outcomes have been observed. An illustrative instance pertains to
the substitution of backpropagation with layer-wise updates for the purpose of deep super-
vised hashing [47]. An alternative method involves utilizing the Koopman operator theory
to simulate the dynamics of weight updates in DNN, as opposed to relying on gradient
descent methods [48]. Considerable attention has been directed toward the application
of the Hebbian learning rule and its adaptations for training CNN [49,50]. To this end,
mixed strategies (SGD + Hebbian learning) have been introduced and have demonstrated
training speedup of up to 1.5× [51]. Additionally, implementation optimizations have been
proposed in the literature [52–54]. Hebbian winner-take-all models are deemed feasible for
neuromorphic computing in light of their characteristic of local and unsupervised weight
update rule [55,56]. In contrast to previously mentioned approaches, the Hebbian learning
method has demonstrated reasonable levels of convergence when used for training on
large datasets such as ImageNet [57,58], while also exhibiting training time comparable
to backpropagation [59]. Despite the progress made in the field, opportunities remain for
improvement. One such area pertains to the lack of comprehensive assessments concerning
the generability and efficacy of mixed strategies in the context of CNN training.

In conclusion, the field of training acceleration presents a multitude of potential
avenues for exploration and advancement. This study presents novel methodologies that
facilitate the expeditious training of CNN, which are hardware agnostic, implying that
they can be implemented across a diverse range of hardware types and quantities. Both
methods have been thoroughly described in Section 3.

3. Proposed Methods for Training Acceleration
3.1. Adaptive Online Importance Sampling

One of the important ideas is to reduce overall training time by decreasing the num-
ber of training steps through the implementation of specific rules. The current status of
advancement in this domain has been accomplished through the utilization of a Selective
Backpropagation (SB) approach [20]. This method exhibits superior performance over
alternative methods [46]. This is due to its ability to operate independently of the loss
distribution within a batch and its insensitivity to variable starting conditions. The present
paper proposes a novel methodology, referred to as Adaptive Online Importance Sam-
pling, which draws on various concepts and principles from SB. Our research findings,

Mathematics 2023, 11, 3120 6 of 25

as elucidated in Section 4, demonstrate the superior performance of our methodology in
comparison to SB.

choose(p, θ) =

{
1, p > θ
0, p ≤ θ

(3)

The proposed design of Adaptive Online Importance Sampling is elucidated in
Algorithm 1. The present approach is consonant with existing online importance sampling
methodologies and endeavors to curtail the frequency of backward passes. The aforemen-
tioned accomplishment is carried out through the selection of samples for these passes
from the pool of obtainable training data, and the creation of fresh training batches that
exclusively comprise the chosen elements. The act of executing a model on a designated
training subset is commonly referred to as a forward pass, while a backward pass entails
updating the neural network based on gradients obtained for the applicable training subset.

In the context of training a model, forward passes are executed on a set of input data
that represents a specific subset of the training dataset with a defined size denoted as ρ,
referred to as the original batch. Backward passes are executed on batches of data specifically
designated for training purposes. In the absence of importance sampling or selection
rules applied to an initial batch, the original batch and the subsequent training batch will
represent identical sets of data samples.

Algorithm 1 Adaptive Online Importance Sampling training algorithm

1: H ← deque(γ): history of losses as double-ended queue of size γ
2: batchtrain ← []: batch for CNN training, |batchtrain| = ρ
3: η, η ∈ N, η ≥ 1: number of epochs when loss information is considered actual
4: losses← []: loss history
5: E: number of epochs to train
6: ω: number of epoch to start ADONIS
7: last_update← 0: number of last epoch when loss history was updated
8: k← 1: CNN training step
9: while epoch i < E do

10: for batch bj from D do
11: if i ≤ ω then
12: batchtrain ← bj
13: fw(k) ← trainBatch(btrain, fw(k−1))
14: k← k + 1
15: batchtrain ← []
16: continue
17: end if
18: if i− last_update < η then
19: losses← fw(k)(j)
20: end if
21: for example e from bj, loss l from losses do
22: H ← H ∪ l
23: Φ← buildHistogram(H): losses histogram representing losses
24: p← PMF(Φ, l): give preference to the most frequent losses
25: is_chosen← choose(p): defined in (3)
26: if is_chosen = 1 then
27: batchtrain ← batchtrain ∪ e
28: end if
29: if |batchtrain| = ρ then
30: fw(k) ← trainBatch(btrain, fw(k−1))
31: batchtrain ← []
32: end if
33: end for
34: end for
35: end while

Mathematics 2023, 11, 3120 7 of 25

The process of selecting samples for backward passes is probabilistic in nature. Each
sample is accompanied by a loss value, and its selection probability pi = P(l(fw(xi), yi)) is
determined based on this metric before being ultimately selected. To calculate the losses
for every sample present in the initial batch, a forward pass is executed, during which
l(fw(xi), yi) is computed. To generate each training batch of a predetermined size, denoted
as ρ, for use in the backward process, it is necessary to perform forward passes on multiple
training batches of size ρ. After the accumulation of the complete training batch, a singular
backpropagation iteration is executed.

The probability of single sample selection denoted by pi is derived from the Proba-
bility Mass Function (PMF) for losses incurred for every training sample. As the precise
distribution of losses cannot be predetermined, an effective approach is to construct an ap-
proximation using a histogram. The initial phase involves the construction of a histogram.
The number of bins is defined in accordance with the Sturges rule [60] (4). It is postulated
that all bins have an equal width that is equivalent to h.

k = dlog2 ne+ 1, (4)

where k is the number of bins in a histogram. Let sample xi results in loss l(fw(xi), yi). Let
this loss be placed into j-th bin with a width of h and the corresponding bin density is dj.

Then a probability value that corresponds to this sample will be equal to
⌈ dj

L

⌉
× h.

Pertaining to the sample selection strategy, the mechanics thereof entail the evaluation
of each original batch employing a contemporaneous state of a model that has undergone
an update using gradients derived from the antecedent training batch. The aforementioned
statement implies that the probabilities of samples lose their relevance as a result of weight
adjustments in the model. Consequently, the model is capable of discerning distinctions
between the current and prior states of a sample. Consequently, the aforementioned task
necessitates the computation of selection probabilities for the entirety of the training data.
With respect to the extensive amount of training data, this process entails a substantial
computational burden that in turn mitigates the potential advantages associated with
the reduction of backpropagation passes. As per the guidelines put forth in SB [20], it is
preferable to adopt an approach wherein the re-calculation of PMF after each update (5) is
replaced with an approximation achieved by maintaining a running tally of the losses of
last R samples (6).

Ptheoretical(l(fw(xi), yi)) = PMF(l(fw(xi), yi)) (5)

Papproximate(l(fw(xi), yi)) = PMFR(l(fw(xi), yi)) =
f reqj

R
,

s.t. j← Φ(l(fw(xi), yi)),
(6)

where Φ is a histogram function that maps the given loss value to the bin number that
corresponds to it.

For a better understanding of ADONIS dynamics, it is important to inspect selected
samples through the training process. This is further demonstrated by comparing selected
samples during ResNet18 training on CIFAR-100 at 15th and 190th epochs. To begin with,
the loss history is updated with every forward batch (Figure 2).

After that, the new state of the loss history is analyzed from the perspective of loss
distribution and clipped due to a certain amount of standard distribution σ, as depicted in
Figure 3.

During the next step, a histogram is built from the current loss history and only bins
that exceed the given probability threshold θ are accepted for the selection (Figure 4).

Mathematics 2023, 11, 3120 8 of 25

128 512 640
Sample

0.0

2.0

4.0

6.0

8.0

Lo
ss

Discarded Remaining Added

(a) 15th epoch.

128 512 640
Sample

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Discarded Remaining Added

(b) 190th epoch.
Figure 2. ADONIS. Updating the loss history with next the forward batch. The gray color stands for
loss values that are dropped from history, the black color denotes samples that remain in history, and
the red color designates new losses from forward batch that are added to history.

µ
− 2σ µ

µ
+

2σ

µ
+

4σ

Loss

0

10

20

30

40

50

Fr
eq

ue
nc

y

µ
−
σ

µ
+
σ

Clipped Accepted

(a) 15th epoch.

µ
− 2σ µ

µ
+

2σ

µ
+

4σ

µ
+

6σ

µ
+

8σ

µ
+

10
σ

µ
+

12
σ

Loss

0

100

200

300

400

Fr
eq

ue
nc

y

µ
−
σ

µ
+
σ

Clipped Accepted

(b) 190th epoch.

Figure 3. ADONIS. Clipping losses frequency histogram regarding σ. The violet color denotes
samples that are clipped, and the orange color signifies losses that remain unchanged.

1 2 3 4
Loss

0.0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

θ

Accepted Rejected

(a) 15th epoch.

0 0.1 0.2 0.3
Loss

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

θ

Accepted Rejected

(b) 190th epoch.
Figure 4. ADONIS. Identifying candidates for selection regarding θ. The green color highlights
bins of losses that will be used for filtering, and the yellow color marks bins that do not satisfy the
threshold criterion.

Finally, as illustrated in Figure 5, only samples that correspond to accepted bins are
selected from a batch and are put into the training batch that is later used for backward step.

Mathematics 2023, 11, 3120 9 of 25

0.0 25.0 50.0 75.0 100.0 125.0
Sample

0.0

2.0

4.0

6.0

Lo
ss

Selected Not selected

(a) 15th epoch.

0.0 25.0 50.0 75.0 100.0 125.0
Sample

0.0

0.5

1.0

1.5

Lo
ss

Selected Not selected

(b) 190th epoch.
Figure 5. ADONIS. Selecting samples from forward batch regarding α. Blue color symbolizes rejected
samples, red color indicates selected samples.

There are three distinct variances between the revised algorithm and its original
counterpart. Initially, it is suggested to employ the novel ω parameter prior to transitioning
to the training phase utilizing ADONIS (Algorithm 1). The second concept pertains to the
computation of probabilities via the PMF in contrast to the initial proposition of utilizing the
Cumulative Distribution Function (CDF). The proposed approach centers on prioritizing the
most commonly occurring samples over the anomalous ones that incur the greatest losses
because they might not only represent “hard” samples, but also wrongly annotated samples
and outliers. The third approach involves the utilization of a deterministic probability
threshold in the selection phase (3). This method stands in contrast to the probabilistic
mode employed by the original SB. Given that ADONIS represents a notable advancement
beyond the SB algorithm, it is of considerable import to elucidate the pertinent contrasts
vis-à-vis extant implementations. There exist two open-source implementations: the first
is the source code of the original paper as per reference [61], whereas the second is a
constituent of the Composer library offering as per references [62,63]. The implementation
of the Composer algorithm is not in line with the SB algorithm. Specifically, it utilizes a
fixed number of chosen samples per batch, the selection is solely executed on the highest
layer of a given batch, and it disregards loss history. Moreover, the computations for
selection probabilities are not contingent on the actual loss values, while backpropagation
is executed for each batch despite the fact that it may not be complete, resulting in costly
additional backpropagation passes from a computational standpoint.

3.2. Intellectual Data Selection

A conceptual notion for expediting the period of model training involves minimizing
the number of samples before training actually starts. The act of diminishing the number of
samples present in the training dataset results in a reduction of the overall epoch time and
not a decrease in the step time. Such a reduction in sample quantity can potentially lead
to optimization processes achieving better computational efficiency. The rationale behind
the presence of redundant information in datasets has been extensively explored and
documented in scholarly literature [20,21,64]. The identification of a core set for a particular
dataset presents various obstacles, such as clearly defined selection criteria, restricted time
allocations for the selection process, and the requirement for proof of convergence [17].

The proposed approach for the filtration of training datasets involves the curation
of a diverse set of samples from every class represented in a dataset. To assess diversity
among samples, it becomes indispensable to establish a distance metric denoted as d(·, ·).
Notably, the utilization of Euclidean distance in the process of image comparison has been
shown to yield inaccurate outcomes [65] if it is applied straightforwardly to images. In
other words, when the distance of two dissimilar images is measured with Euclidean metric
between corresponding tensors they might be considered to be close. For a comprehensive

Mathematics 2023, 11, 3120 10 of 25

list of distance metrics applicable to grayscale images, readers are advised to consult the
work of [66]. Despite the widespread use of metrics such as Peak Signal-to-Noise Ratio
(PSNR) or Structural Similarity Index (SSIM) for image similarity measurement, these
metrics have been reported to be inadequate for accurately reflecting human assessments
of the similarity between images [67]. This is why in this paper we cultivate the idea of
first projecting images to the latent space and calculating the distance between them as the
distance between images with the help of Euclidean distance as a metric.

On the contrary, empirical evidence has shown that the image comparison that utilizes
DL features derived from pre-trained models exhibits superior performance when viewed
with regard to perceptual similarity, surpassing other metrics [67]. It is hereby recom-
mended to commence the projection of dataset samples into a space of Z dimensions by
utilizing the attributes of a pre-trained feature extractor, which will serve as the embedding
function denoted as φ : D → RZ. The present study has conducted experimentation on
ResNet18 to investigate its efficacy. Upon projection into the latent space (Figure 6a), image
similarity can be assessed by determining the Euclidean distance separating their respective
embeddings as depicted in Equation (7).

d2(x, y) =
Z

∑
k=1

(x(k) − y(k))2 x ∈ RZ, y ∈ RZ (7)

Given the inherent structure of classification datasets, we posit the presence of duplica-
tive information within each class, which may be removed without substantial impact on
the ultimate precision of the analysis. As shown in [38], a conservative estimate suggests
that a minimum of 10% of sample instances in both CIFAR-10 and ImageNet 2012 datasets
possess such qualities. In one paper [38], it was proposed to utilize Hierarchical Clustering
as a means to identify and group similar samples, ultimately enabling the removal of all
but one representative from each grouping.

(a) All classes. (b) Samples from class #58 (pear).
Figure 6. IDS. Selection of samples from CIFAR-100 based on pre-trained feature extractor (ResNet18).
In (b): the cyan color denotes selected samples, the orange color signifies rejected samples, and the
black triangle stands for class prototype.

Accordingly, the identification of the prototype of the group is a prerequisite for the
elimination of any individual cases. Considering that every sample is depicted in a latent
space, there might exist diverse strategies to discover the aforementioned prototype. It is
recommended to employ the K-Means clustering algorithm for the purpose of discerning
class centroids. One primary motivation for employing K-Means clustering as opposed
to the hierarchical approach stems from its potential applicability in the context of active
learning. In particular, when novel samples emerge over time, it becomes crucial to assess
their potential value for engaging in supplementary training processes [18].

Mathematics 2023, 11, 3120 11 of 25

After centroids are detected for each class (Figure 6b), we identify samples that should
be selected according to the selection ratio α ∈ (0, 1]. In case α = 1, training is run
on the original dataset. Let all distributed representations of samples in the i-th class
Di = {ξ i

1, ξ i
2, . . . , ξ i

L}, where L denotes number of samples in given class, be sorted in
descending order according to the Euclidean distance to the centroid. Then, we select the
first αL samples from Di. In addition, we insist on adding the last sample to this list, as it
plays the role of the prototype for all samples removed from a class. As a result, we obtain
a subset of the original dataset within a given selection ratio. The formal description of the
proposed method is demonstrated in Algorithm 2 and Figure 6.

Algorithm 2 Intellectual Data Selection (IDS) algorithm

1: Mode: mode of selection {EASY, HARD}
2: α: selection ratio
3: φ: embedding function
4: Q = {}: final dataset
5: for each class Di in D do
6: Li = |Di|: number of samples in class
7: Ξi = {inf}, |Ξi| = Li: distributed representations of samples in Di

8: for each sample j in Di do
9: ξ i

j ← φ(j): obtain distributed sample representation
10: end for
11: λi ← KMeans(Ξi): find centroid of a cluster, i.e., class
12: Θi = {inf}, |Ξi| = Li: distances from samples to centroid λi

13: for each sample j in Di do
14: θi

j ← d(j, λi): calculate distance to centroid
15: end for
16: Oi ← sort(Θ, Mode): sort samples w.r.t to their cluster centroid in ascending order if

mode is EASY, descending otherwise
17: Q ← Q ∪ {Oi

j : j = 1, 2, . . . , dαLie} ∪ {OLi}: add selected samples to final dataset
(including cluster prototype)

18: end for

The key dissimilarity between IDS and SSP is performing clustering within individual
classes as opposed to enumerating a predetermined number of clusters and conducting
the operation on the entire training dataset. This method facilitates the prevention of
imbalanced class selection scenarios and eliminates the requirement for the number of
clusters as an algorithmic hyperparameter. The present proposal advocates the utilization
of the Euclidean metric in lieu of the cosine similarity method as originally posited in the
SSP paradigm.

4. Results

In the context of experimental evaluation, we employed four CV datasets: CIFAR-100 [68],
CIFAR-10, ImageNet 2012 and MS COCO 2017 which are frequently utilized for the purpose
of benchmarking the efficacy of training acceleration algorithms [20,22,51]. CIFAR-100 and
CIFAR-10 datasets are partitioned such that there are 50 K images available for training
purposes, while 10 K images are allotted specifically for testing. For CIFAR-100 there
are 100 classes each containing 600 distinct 32 × 32 RGB examples, for CIFAR-10—10
classes with 6000 distinct 32 × 32 RGB examples. ImageNet 2012 consists of RGB im-
ages from 1000 different classes: 1.28 M for training and 50 K for validation. MS COCO
2017 is a dataset and consists of 118 K of training and 5K of validation RGB samples
for object detection task, where the number of classes is equal to 80. When training
on datasets the following common settings were used. For training on ImageNet 2012:
mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225] were used for samples normalization.
For CIFAR-100: mean = [0.5070751592371323, 0.48654887331495095, 0.4409178433670343],

Mathematics 2023, 11, 3120 12 of 25

std = [0.2673342858792401, 0.2564384629170883, 0.27615047132568404], for CIFAR-10:
mean = [0.49139968, 0.48215827, 0.44653124], std = [0.24703233, 0.24348505, 0.26158768] for.
The number of training epochs on ImageNet 2012 is 90, on CIFAR-100 and CIFAR-10—200,
on MS COCO 2017—100.

With regards to the models that are currently under evaluation, our focus is 4 CV
models: ResNet18 [69], ResNet50, MobileNet v2 [70], YOLO v5. The implementation of
ResNet18, ResNet50 and MobileNet v2 and training pipelines for CIFAR-10 and CIFAR-
100 datasets were taken from the official repository (https://github.com/weiaicunzai/
pytorch-cifar100 (accessed on 15 June 2023)). Implementation of ResNet18, ResNet50 and
MobileNet v2 for ImageNet 2012 was taken from torchvision library [71] v0.14.0. Training
pipeline for YOLO v5 (yolov5m) training on MS COCO 2017 was used from ultralytics
(https://github.com/ultralytics/yolov5 (accessed on 15 June 2023)) GitHub repository. For
the needs of IDS, the pre-trained ResNet18 neural network implemented in the torchvision
library is utilized as the embedding function. This involves the extraction of the 512-
dimensional output from the penultimate layer. The weights for this model were obtained
as a result of ResNet18 training on the ImageNet 2012 dataset [72] and have been made
publicly available in the official repository.

The training protocol for ResNet18, ResNet50 and MobileNet v2 on CIFAR-100 and
CIFAR-10 is as follows: the selected loss function is Cross Entropy, the optimizer is Stochas-
tic Gradient Descent with a learning rate equal to 0.1, momentum is 0.9, and weight decay
is 5 × 10−4. The learning rate is dynamically reduced by a gamma equal to 0.2 during
training at specified milestones: 60th, 120th, and 160th epochs. The data are loaded with
32 workers with a batch size equal to 128, randomly shuffled at each epoch. Each sample is
processed with the following pipeline: random crop to size equal to 32 with padding equal
to 4, then random horizontal flip, random rotation by angle, and sample normalization.

The training protocol for ResNet18 and ResNet50 on ImageNet 2012 is as follows: the
selected loss function is Cross Entropy, the optimizer is Stochastic Gradient Descent with a
learning rate equal to 0.1, momentum is 0.9, and weight decay is 1 × 10−4. The learning
rate is dynamically reduced by a gamma equal to 0.1 at each 30th epoch. The data are
loaded with 32 workers with a batch size equal to 256, randomly shuffled at each epoch.
Each sample is processed with the following pipeline: random crop to size equal to 224
with bilinear interpolation, then random horizontal flip and sample normalization.

The training protocol for MobileNet v2 on ImageNet 2012 is as follows: the selected
loss function is Cross Entropy, the optimizer is Stochastic Gradient Descent with a learning
rate equal to 0.045, momentum is 0.9, and weight decay is 4 × 10−5. The learning rate is
dynamically reduced by a gamma equal to 0.98 at each training epoch. The data are loaded
with 32 workers with a batch size equal to 256, randomly shuffled at each epoch. Each
sample is processed with the following pipeline: random crop to size equal to 224 with
bilinear interpolation, then random horizontal flip and sample normalization.

The training protocol for YOLO v5 on MS COCO 2017 is as follows: the selected loss
is the cumulative sum of bounding box regression, classification, and confidence losses, the
optimizer is Stochastic Gradient Descent with a learning rate equal to 0.01, momentum is
0.937, and weight decay is 4 × 10−5. The learning rate is dynamically reduced by a gamma
equal to 0.98 at each training epoch. The data are loaded with eight workers with a batch
size equal to 16, randomly shuffled at each epoch. All input samples during YOLO v5
training are resized to 640 pixels.

The overall dynamics of training is demonstrated as an example for ResNet18 training
on CIFAR-100 in Figure 7. The present study employed various methodologies and their
corresponding configurations to conduct a comparative analysis. The system under investi-
gation was configured to include the SSP, Random Per Class (RPC), Random Per Dataset
(RPD), ADONIS, and IDS. RPC means offline a reduction in the dataset by keeping only α
samples from each class. RPD means an offline reduction in the dataset by keeping only α
samples from the whole dataset regardless of the class it belongs to. The SB was initialized
with the standard parameters of β = 2, γ = 1024, staleness = 2.

https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/ultralytics/yolov5

Mathematics 2023, 11, 3120 13 of 25

All training experiments were performed on a single GPU device in mixed precision
(full and half-precision floating point format) [73]. Certain hardware optimizations were
enabled: pinning memory for data loaders (pin_memory = True) and benchmarking mode
(cudnn.benchmark = True). For training evaluation experiments, the following hardware was
used: CPU is Intel(R) Xeon(R) Gold 6151 CPU @ 3.00 GHz with 32 cores (frequency not
fixed), OS: Ubuntu 20.04 LTS, kernel version: 5.4.0-136-generic; GPU is 1x NVIDIA Tesla
V100 PCIe 16GB, driver version: 470.129.06, CUDA: 11.7; training framework: PyTorch
1.13.0, programming language: Python 3.9. K-Means algorithm implementation is taken
from scikit-learn library v1.1.2. Additional libraries: imageio library v2.26.0, numpy library
v1.21.5, opencv-python library v4.7.0.72, Pillow library v9.3.0, pycocotools library v2.0.6.

0 50 100 150 200
Epoch

20

30

40

50

60

70

To
p-

1
ac

cu
ra

cy
,%

Baseline
IDS
ADONIS
IDS+ADONIS
Vanilla SB
Vanilla Stale-SB
SSP
RPC
RPD

(a) Full training (200 epochs).

100 120 140 160 180 200
Epoch

64

66

68

70

72

74

76

To
p-

1
ac

cu
ra

cy
,%

Baseline
IDS
ADONIS
IDS+ADONIS
Vanilla SB
Vanilla Stale-SB
SSP
RPC
RPD

(b) Last 100 epochs.

0 50 100 150 200
Epoch

1

1.5

2

2.5

3

3.5

Lo
ss

Baseline
IDS
ADONIS
IDS+ADONIS
Vanilla SB
Vanilla Stale-SB
SSP
RPC
RPD

(c) Train loss (200 epochs).

100 120 140 160 180 200
Epoch

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Lo
ss

Baseline
IDS
ADONIS
IDS+ADONIS
Vanilla SB
Vanilla Stale-SB
SSP
RPC
RPD

(d) Last 100 epochs.
Figure 7. Comparison of validation accuracy trajectories during ResNet18 training on CIFAR-100.
Black - Default baseline full training. Experiments data, including ResNet50, MobileNet v2, YOLO v5
is presented in Table A1.

The present study showcases a comprehensive evaluation of the efficacy of training
acceleration methods, as illustrated in Table A1 for ImageNet 2012, CIFAR-100, CIFAR-
10, employing the aforementioned configurations. The quantification of the decrease in
accuracy, commonly referred to as Accuracy drop, is determined in absolute percentage
points for each method in relation to its corresponding baseline. The present study entails
a comparative analysis of the efficiency of several algorithms, namely IDS, SSP, Random,
and ADONIS, against the default baseline. Additionally, the performance of the Vanilla
SB algorithm is assessed against its eponymous baselines. These findings are presented in
Table 1. Boost is determined by taking the ratio of the duration of training with the standard
baseline approach to the duration of training achieved when utilizing an acceleration
algorithm during training of ResNet18.

The best results for training research models on CIFAR-10, CIFAR-100, ImageNet 2012
and MS COCO 2017 are shown in Table A1. Application of Adaptive Online Importance Sam-
pling to ResNet50 training on ImageNet 2012 results in 2.37 times quicker convergence
to 71.7% top-1 accuracy, which is within 5% from baseline. Total training time for the
same number of epochs as in baseline is reduced by 1.82 times, with an accuracy drop of
2.45 p.p. The amount of time required to apply Intellectual Data Selection to ResNet50
training on ImageNet 2012 is decreased by 1.27 times with a corresponding decline in accu-
racy of 1.12 p.p. Applying both methods to ResNet50 training on ImageNet 2012 results in
2.31 speedup with an accuracy drop of 3.5 p.p.

Mathematics 2023, 11, 3120 14 of 25

Table 1. Evaluation of baseline training.

Model Dataset Acc. Train
Time, s

ResNet18
CIFAR-10 95.09 2518
CIFAR-100 76.43 2540

ImageNet 2012 70.02 55,943

ResNet50
CIFAR-10 95.1 5913
CIFAR-100 79.06 5910

ImageNet 2012 75.6 153,409

MobileNet v2
CIFAR-10 90.89 4074
CIFAR-100 68.26 4173

ImageNet 2012 68.04 94,470

YOLO v5 MS COCO 2017 42.55 110,581

It is imperative to acknowledge that approaches geared toward reducing datasets,
such as SSP and IDS, necessitate preliminary preprocessing of the dataset. The processing
time required by the SSP algorithm for handling CIFAR-100 amounts to 66.10 s, while it
takes 28.82 s to process with IDS. For processing the CIFAR-10 dataset the SSP requires
31.90 s, while IDS will cope in 20.31 s. The SSP preprocessing for the ImageNet 2012 dataset
will take 15,201.03 s, while IDS requires 10,019.81 s. Unlike SSP, IDS is able to process
MS COCO 2017 in 1983.51 s. Evidently, the aforementioned duration is not encompassed
within the documented period of training.

Furthermore, we present empirical evidence of enhanced model convergence through
an evaluation of the rate at which a model trained using the acceleration method attains
particular accuracy thresholds when compared to the ultimate baseline accuracy. As an
illustration, ADONIS with a parameter value of η = 2 exhibits an acceleration ratio of 2.37
when subjected to a 5% reduction in accuracy. The results indicate that the utilization of the
ADONIS algorithm during training of ResNet18 results in an achieved accuracy of 71.53%,
which is found to deviate by no more than 5% from the final accuracy obtained via a default
baseline. Furthermore, this approach yields a notable speedup of 2.37 compared to models
that were trained without the incorporation of the ADONIS algorithm. The per-sample
analysis is demonstrated in Figure 8.

(a)

(b)
Figure 8. Cont.

Mathematics 2023, 11, 3120 15 of 25

(c)

(d)
Figure 8. Samples selectivity analysis for IDS, ADONIS and SSP. (a) IDS. Samples from
class #58 (pear) after K-Means clustering. (b) SSP. Samples from class #58 (pear) af-
ter SSP. (c) ADONIS. Most and least frequently selected samples from class #58 (pear).
(d) ADONIS. Most and least frequently selected samples from the whole training dataset. In (a,b):
the first row contains images that are the closest to the centroid. The second row contains images that
are the most remote from the centroid. The class prototype is the leftmost image. In (c,d): the first
row contains images that are the least frequently selected. The second row contains images that are
the most frequently selected.

Beyond that, the results of measurements of IDS of object detection are presented in
Table A1 and Figure 9. To apply IDS approach to the MS COCO 2017 dataset, where each
sample could contain objects from different classes, we proposed to define one prototype
in the entire dataset results show the possibility of reducing 20% of the MS COCO 2017
dataset with a mAP reduction of 0.76 p.p.

0 20 40 60 80 100
Epoch

10

15

20

25

30

35

40

m
A

P

Baseline
IDS
RPD

(a) Full training (100 epochs).

60 70 80 90 100
Epoch

39.5

40

40.5

41

41.5

42

42.5

m
A

P

Baseline
IDS
RPD

(b) Last 40 epochs.

0 20 40 60 80 100
Epoch

1.6

1.8

2

2.2

2.4

2.6

Lo
ss

Baseline
IDS
RPD

(c) Train loss (100 epochs).

60 70 80 90 100
Epoch

1.6

1.61

1.62

1.63

1.64

1.65

Lo
ss

Baseline
IDS
RPD

(d) Last 40 epochs.
Figure 9. Comparison of validation accuracy trajectories during training YOLO v5 on
MS COCO 2017.

Mathematics 2023, 11, 3120 16 of 25

5. Discussion
5.1. Summary

In the present study, we introduce two novel methods: Adaptive Online Importance
Sampling (ADONIS), and Intellectual Data Selection (IDS). The acceleration of training
using the IDS approach is accomplished through the elimination of semantic redundancies
within the training dataset. This results in a reduction in the number of training samples
utilized for the study. Additionally, this approach involves the coordination of training
procedures through the rigorous categorization of sample sets into distinct groups, namely
those of easy and hard difficulty levels. ADONIS—a novel algorithmic approach—offers
acceleration capabilities by means of minimizing the frequency of forward and backpropa-
gation iterations observed during the training phase of DNN. The extent to which a given
model is unable to appropriately identify certain data samples serves as the determining
factor for the optimization measures imposed by ADONIS.

The proposed methods allow reducing the amount of data required to train a model of
quality close to the baseline (full training), might be easily scaled to other CV and NLP tasks,
and can be combined with other methods, for example during model fine-tuning [19].

5.2. Limitations and Outlook

One of the limitations of the current study pertains to the absence of extensive exper-
imentation to establish the viability of the proposed methods on other CV tasks such as
semantic segmentation. Addressing this limitation would pave the way for future research
to leverage the proposed methods for scaling up image processing algorithms. It is of
utmost significance to appropriately tailor the suggested methodologies to the sphere of
NLP, given its emergence as one of the most arduous subdomains of DL. The application of
distinct pre-trained models for feature extraction and various distance metrics for the train-
ing dataset pruning process represents a promising approach to enhance the performance
of the IDS. Distance metric selection constitutes a pivotal area of investigation within our
research endeavor.

There are several potential areas for improvement in ADONIS. One of the major concepts
is to eliminate the extra step required to calculate selection probabilities and choose samples.
By increasing the batch size in the selection process, this supplement might be lessened. The
second strategy to enhance ADONIS involves computing sample probability using a weighted
histogram. The overall idea is to allow a bigger impact on the most recent losses as they are
obtained with a more up-to-date model. Third, it is possible to eliminate extra computations
of losses that are duplicated for each sample during selection and backward passes. Reusing
calculated loss might significantly increase ADONIS speed as additional forward passes and
losses computations make up the majority of the selection process.

We define the following development horizons from the perspective of IDS improve-
ment. The first direction is linked to the change from looking for one prototype per class to
looking for several prototypes. This makes it possible to identify unused samples more
precisely and prevent accuracy loss. Analyzing the capacity to alter the dataset more than
once using a particular set of γ parameters is another topic of inquiry. We can decrease the
forgetting component of the model, which can boost the resulting accuracy, by repeatedly
swapping the dataset between “easy” and “hard” examples. Finding prototypes without
using the clustering approach is one of the intriguing areas for the development of the IDS.

In conclusion, the presented methodologies exhibit significant promise in enhancing
the efficiency of CNN training through the reduction of training data prior to and during
the training phase while surpassing current solutions in this domain.

Author Contributions: Conceptualization, A.D.; Data curation, A.T. (Artyom Tugaryov) and A.T.
(Aleksei Trutnev); Funding acquisition, S.P.; Investigation, A.D.; Methodology, A.D.; Project adminis-
tration, S.P.; Software, A.T. (Artyom Tugaryov), A.T. (Aleksei Trutnev), M.K. and I.S.; Supervision, A.D.
and S.P.; Validation, A.T. (Artyom Tugaryov), A.T. (Aleksei Trutnev), M.K. and I.S.; Visualization, A.T.

Mathematics 2023, 11, 3120 17 of 25

(Artyom Tugaryov) and A.T. (Aleksei Trutnev); Writing—original draft, A.D.; Writing—review and
editing, A.D. and S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here: CIFAR-100,
CIFAR-10: [https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 15 June 2023)], ImageNet 2012:
[https://www.image-net.org/ (accessed on 15 June 2023)], MS COCO 2017: [https://cocodataset.org/
(accessed on 15 June 2023)].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed Results on CV Datasets

Extended results on evaluation of proposed methods on ImageNet 2012, CIFAR-100,
CIFAR-10 and MS COCO 2017 are demonstrated in Table A1.

Table A1. Evaluation of training acceleration for selected computer vision models on ImageNet 2012,
CIFAR-100, CIFAR-10 and MS COCO 2017. All results are grouped in sections, each section stands
for a unique combination of a model and a dataset. Bold represents a result that is the best across
given range of methods within a section.

Dataset Model Method
Acc. Drop

(Full Train),
p.p.

Train Boost
(Full Train), x

Boost to 5 p.p.
Drop, x

CIFAR-10 ResNet18

IDS (γ = 180) 0.72 1.21 3.91
ADONIS (η = 1) 0.76 1.28 4.0
ADONIS (η = 2) 0.77 1.41 4.05
ADONIS (η = 3) 0.55 1.46 4.35

IDS (γ = 120) + ADONIS (η = 1) 1.27 1.58 4.08
IDS (γ = 120) + ADONIS (η = 2) 1.05 1.75 4.87
IDS (γ = 120) + ADONIS (η = 3) 1.29 1.81 4.99

SSP 0.65 1.24 3.97
RPC 0.74 1.23 3.95
RPD 0.53 1.23 3.93

CIFAR-10 ResNet50

IDS (γ = 180) 0.45 1.22 4.01
ADONIS (η = 1) 0.97 1.35 3.77
ADONIS (η = 2) 0.99 1.52 4.07
ADONIS (η = 3) 0.98 1.69 4.49

IDS (γ = 120) + ADONIS (η = 1) 1.62 1.59 2.62
IDS (γ = 120) + ADONIS (η = 2) 1.69 1.76 2.79
IDS (γ = 120) + ADONIS (η = 3) 1.65 1.93 3.05

SSP 0.78 1.18 3.79
RPC 0.38 1.18 3.87
RPD 0.58 1.19 3.95

CIFAR-10 MobileNet v2

IDS (γ = 180) −0.24 1.27 1.72
ADONIS (η = 1) 0.44 1.39 1.86
ADONIS (η = 2) 0.19 1.59 2.08
ADONIS (η = 3) 0.4 1.68 2.18

IDS (γ = 120) + ADONIS (η = 1) 1.04 1.75 2.31
IDS (γ = 120) + ADONIS (η = 2) 1.17 1.96 2.56
IDS (γ = 120) + ADONIS (η = 3) 0.96 2.04 2.66

SSP 0.55 1.28 1.73
RPC 0.23 1.19 1.62
RPD 0.29 1.13 1.53

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/
https://cocodataset.org/

Mathematics 2023, 11, 3120 18 of 25

Table A1. Cont.

Dataset Model Method
Acc. Drop

(Full Train),
p.p.

Train Boost
(Full Train), x

Boost to 5 p.p.
Drop, x

CIFAR-100 ResNet18

IDS (γ = 120) 2.12 1.15 1.9
ADONIS (η = 1) 2.76 1.16 1.83
ADONIS (η = 2) 2.5 1.23 1.97
ADONIS (η = 3) 2.66 1.27 2.03

IDS (γ = 120) + ADONIS (η = 1) 3.55 1.58 2.5
IDS (γ = 120) + ADONIS (η = 2) 3.26 1.71 2.72
IDS (γ = 120) + ADONIS (η = 3) 3.26 1.75 2.76

Vanilla SB 2.43 0.92 2.84
Vanilla Stale-SB 2.81 1.1 1.8

SSP 2.32 1.14 3.63
RPC 2.49 1.29 2.12
RPD 2.43 1.16 1.91

CIFAR-100 ResNet50

IDS (γ = 120) 1.88 1.22 1.85
ADONIS (η = 1) 2.2 1.32 1.96
ADONIS (η = 2) 2.36 1.56 2.28
ADONIS (η = 3) 2.19 1.63 2.37

IDS (γ = 120) + ADONIS (η = 1) 4.24 1.61 2.21
IDS (γ = 120) + ADONIS (η = 2) 4.65 1.89 2.1
IDS (γ = 120) + ADONIS (η = 3) 4.92 1.9 2.08

SSP 2.74 1.17 1.76
RPC 2.77 1.18 1.79
RPD 2.13 1.18 1.78

CIFAR-100 MobileNet v2

IDS (γ = 120) 1.82 1.3 1.73
ADONIS (η = 1) 1.9 1.54 1.94
ADONIS (η = 2) 1.87 1.7 2.14
ADONIS (η = 3) 1.37 1.77 2.23

IDS (γ = 120) + ADONIS (η = 1) 2.77 1.78 1.96
IDS (γ = 120) + ADONIS (η = 2) 3.41 1.99 2.05
IDS (γ = 120) + ADONIS (η = 3) 3.7 2.08 2.06

SSP 0.96 1.27 1.69
RPC 1.59 1.21 1.6
RPD 1.63 1.21 1.61

ImageNet 2012 ResNet18

IDS (γ = 14) 1.2 1.22 1.72
ADONIS (η = 1) 2.55 1.1 1.53
ADONIS (η = 2) 2.39 1.11 1.54
ADONIS (η = 3) 2.51 1.11 1.54

IDS (γ = 14) + ADONIS (η = 1) 3.64 1.63 2.23
IDS (γ = 14) + ADONIS (η = 2) 3.84 1.66 2.25
IDS (γ = 14) + ADONIS (η = 3) 3.74 1.74 2.35

SSP 4.41 1.22 1.52
RPC 4.64 1.22 1.51
RPD 4.52 1.22 1.52

ImageNet 2012 ResNet50

IDS (γ = 14) 1.12 1.27 1.81
ADONIS (η = 1) 2.18 1.48 2.02
ADONIS (η = 2) 2.4 1.71 2.27
ADONIS (η = 3) 2.45 1.82 2.37

IDS (γ = 14) + ADONIS (η = 1) 3.48 1.77 2.37
IDS (γ = 14) + ADONIS (η = 2) 3.43 2.17 2.88
IDS (γ = 14) + ADONIS (η = 3) 3.5 2.31 3.05

SSP 4.03 1.23 1.67
RPC 4.22 1.25 1.62
RPD 4.17 1.28 1.66

Mathematics 2023, 11, 3120 19 of 25

Table A1. Cont.

Dataset Model Method
Acc. Drop

(Full Train),
p.p.

Train Boost
(Full Train), x

Boost to 5 p.p.
Drop, x

ImageNet 2012 MobileNet v2

IDS (γ = 14) 0.61 1.25 2.61
ADONIS (η = 1) 2.25 1.6 2.46
ADONIS (η = 2) 1.74 1.72 2.66
ADONIS (η = 3) 1.91 1.87 2.99

IDS (γ = 14) + ADONIS (η = 1) 3.36 1.95 2.62
IDS (γ = 14) + ADONIS (η = 2) 3.36 2.19 2.82
IDS (γ = 14) + ADONIS (η = 3) 3.38 2.3 2.95

SSP 0.33 1.24 2.85
RPC 0.73 1.25 2.45
RPD 0.83 1.25 2.69

MS COCO 2017 YOLO v5 IDS (γ = 60) 0.76 1.19 2.41
RPD 0.86 1.23 2.46

Appendix B. Sensitivity Analysis of Hyperparameters Selection in ADONIS

Each hyperparameter of ADONIS algorithm was analyzed in terms of its impact on re-
sulting accuracy of a trained model and training acceleration. Key results are demonstrated
in Figure A1.

The measurement methodology is the following: ResNet18 model was trained on
CIFAR-100 dataset with ADONIS method. Each time different ADONIS configurations
were used and weights were re-initialized. Each experiment used default training settings
enumerated in Table A2 with only one parameter changed—the one that was under close
investigation. The default IDS γ parameter depends on the evaluated dataset. We used
γ = 180 for CIFAR-10, for CIFAR-100—120, for ImageNet 2012—14 and for MS COCO
2017—60.

Table A2. Default settings of training acceleration algorithms.

Method Settings

SSP α = 0.8
RPC α = 0.8
RPD α = 0.8
IDS α = 0.8, φ = resnet18

ADONIS l = 512, k = square, σ = 1, η = 1, θ = 0.12

First, we consider θ as it controls the number of candidate samples by defining the
minimum probability. The best acceleration of 1.79x is achieved with θ = 0.7 but results in
a huge accuracy drop of 23.64 p.p. Optimal trade-off between acceleration and accuracy
drop is achieved with θ = 0.1: 1.36x boost and accuracy drop of 1.73 p.p. The acceptable
range of the parameter is from 0.1 to 0.7. When θ < 0.1 almost all samples are selected for
backpropagation operation, and, therefore, there is no boost in this case. At the same time,
when θ > 0.7 too few samples are selected, and the accuracy drop is dramatically huge.

Second, σ hyperparameter is analyzed. It is responsible for mitigating random outliers
in losses. The maximum boost of 1.38x is achieved with σ = 0.5 also resulting in an
accuracy drop 2.07 p.p. Changing the parameter’s value to σ = 1 results in 1.35x boost and
an accuracy drop of 1.73 p.p. ADONIS is not sensitive to large σ values as the number of
samples considered outliers is close to zero with no influence on final accuracy. It is curious
that for σ = 2 the probabilities are distributed so that they do not exceed a given threshold,
and this forces us to choose a special threshold (θ = 0.1) for this value. This suggests that it
is necessary to select the threshold for each model and dataset separately.

Third, k denotes a rule for the computation of the number of bins in the histogram.
The best acceleration of 1.38x is achieved with k = sqrt and results in the accuracy drop of

Mathematics 2023, 11, 3120 20 of 25

2.02 p.p. At the same time, we suggest configuring k = Sturges because accuracy drop for
the hyperparameter value is 1.73 p.p, however boost is significant 1.35x. ADONIS is not
sensitive to any of the selected rules: Sturges, Square Root, Rice.

Fourth, we inspect the influence of selected history length, defined as hyperparameter
l. Maximum acceleration is achieved with l = 512: 1.36x with an accuracy drop of 1.96 p.p.
Almost the same acceleration (1.35x) can be achieved with a much smaller accuracy drop
(1.57 p.p) by configuring l = 256. We recommend specifying l as a number divisible by
batch size.

Fifth, we analyze the influence of the hyperparameter α that is responsible for con-
trolling the amount of selected samples from the candidate list. The most significant
acceleration of 1.59x is achieved with the value of 0.1 resulting in an accuracy drop of
3.02 p.p. Optimal configuration is α = 0.3 as accuracy drop is smaller—1.73 p.p while boost
is significant—1.35x. Figure A1e demonstrates that low values of this hyperparameter
result in only a few samples being selected and, as a result, a dramatic accuracy drop.
Specifying α > 0.7 results in a larger number of samples to be selected, eliminating any
benefits from ADONIS.

657075

0.1

0.12

0.15

0.3

7.0

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

θ

(a) Probability threshold.

657075

0.5

1.0

1.5

2.0

3.0

4.0

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

σ

(b) Range for outliers detection.

657075

Sturges

Rice

Square Root

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

k

(c) Number of bins.

657075

64

128

256

512

1024

2048

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

l

(d) Length of history.

657075

0.1
0.2
0.3
0.4
0.5
0.6
0.7

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

α

(e) Selection ratio.

657075

1

2

3

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

η

(f) History of loss history update.
Figure A1. Sensitivity analysis of ADONIS parameters.

Finally, parameter η which decreases the number of additional forward steps, delivers
maximum acceleration of 1.53x with an accuracy drop 1.53 p.p for η = 3. Due to Figure A1f
this parameter allows for a considerable boost without compromising accuracy drop.

Mathematics 2023, 11, 3120 21 of 25

To sum up, ADONIS is sensitive to σ, η, θ and α and they are required to be tuned for
a particular model and dataset. At the same time, other parameters such as k and l could
be frozen at recommended values: k = Sturges and l = 512 correspondingly.

Appendix C. Sensitivity Analysis of Hyperparameters Selection in IDS

Each hyperparameter of IDS algorithm was analyzed in terms of its impact on resulting
accuracy of a trained model and training acceleration. Key results are demonstrated in
Figure A2.

The measurement methodology is the following: ResNet18 model was trained on
CIFAR-100 dataset with IDS method. Each time different IDS configurations were used and
weights were re-initialized. Each experiment used default training settings enumerated in
Table A2 with only one parameter changed—the one that was under close investigation.

The most crucial hyperparameter of IDS is selection ratio (α) as it provides an oppor-
tunity to decrease the number of samples used in the training process. The lower α is the
bigger boost and corresponding accuracy drop are. The maximum acceleration of 1.36x is
achieved with α = 0.5 but also results in a considerable accuracy drop of 6.29 p.p. When
the ratio of selected samples is increased to α = 0.8 accuracy drop results in 2.19 p.p. with
a boost of 1.13x. Specifying α < 0.5 is meaningless because it means removing more than
half of a dataset with a quite expected significant accuracy drop as a consequence. On the
other hand, α > 0.9 will not provide any perceptible boost.

Second, we analyzed γ parameter influence on training performance as it allows
us to switch from samples close to the class prototype to samples that are more remote.
Configuring γ > 180 does not allow the model to learn much about newly introduced
samples which is reflected in an accuracy drop up to 2.7 p.p. At the same time, an earlier
switch to the most remote samples (γ = 160) allows for achieve acceptable accuracy drop
of 1.88 p.p. with a boost of 1.21x.

657075

0.5

0.6

0.7

0.8

0.9

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

α

(a) Selection ratio.

657075

0
30
60
90

120
150
180
200

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

γ

(b) Epoch to switch “easy” to “hard” samples.

657075

ResNet18

ResNet18 (5)

ResNet18 (10)

ResNet18 (15)

SwAV

DINOv2

ba
se

lin
e

Top-1 accuracy, %

1.2x 1.4x 1.6x

Boost, x

φ

(c) Feature extractor.
Figure A2. Sensitivity analysis of IDS parameters.

Third, feature extractor φ is considered an important component that deserves anal-
ysis on its impact on training dynamics and final accuracy rates. The reason is that
sample selection within IDS is performed based on the cluster analysis of training data
represented in the latent space. As for feature extractors, several model architectures
were selected. First, is the usage of ResNet18 model [74] with pre-trained weights (https:

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

Mathematics 2023, 11, 3120 22 of 25

//github.com/pytorch/vision/blob/main/torchvision/models/resnet.py (accessed on 15
June 2023)). Second, we used SwAV [75] model with pre-trained weights (https://github.
com/facebookresearch/swav (accessed on 15 June 2023)) and ResNet50 as the backbone.
SwAV is known to be one of the state-of-the-art models that learns visual features via
self-supervised training on ImageNet 2012. Third, a recently proposed DINOv2 model [76]
was inspected. The latter achieves remarkable results on various CV tasks, although being
trained in a self-supervised manner. DINOv2 weights were taken from publicly available
storage (https://github.com/facebookresearch/dinov2 (accessed on 15 June 2023)). There-
fore, it might be considered a robust and qualitative feature extractor. Alongside with
pre-trained models, we also experimented with ResNet18 model snapshots from 5th, 10th,
15th epochs. A summary of used feature extractors is included in Table A3. Evaluation
results are demonstrated in Figure A2c. Reducing a dataset by performing clustering of
samples based on latent representation produced by ResNet18 (15th epoch) negligibly
outperforms other extractors. This is explained by large γ values, which anyway allow a
model to focus on training the majority of samples, while still being able to extract proper
features from training data and achieve appropriate validation accuracy.

Table A3. Feature extractors under evaluation.

Model Latent Space

ResNet18 512
ResNet18 (5) 512
ResNet18 (10) 512
ResNet18 (15) 512
SwAV 2048
DINOv2 384

References
1. Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221. [CrossRef]
2. Tuncer, T.; Ertam, F.; Dogan, S.; Aydemir, E.; Pławiak, P. Ensemble residual network-based gender and activity recognition

method with signals. J. Supercomput. 2020, 76, 2119–2138. [CrossRef]
3. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008 .
4. Andrychowicz, O.M.; Baker, B.; Chociej, M.; Jozefowicz, R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Powell, G.; Ray, A.;

et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res. 2020, 39, 3–20. [CrossRef]
5. Zhu, H.; Yuen, K.V.; Mihaylova, L.; Leung, H. Overview of environment perception for intelligent vehicles. IEEE Trans. Intell.

Transp. Syst. 2017, 18, 2584–2601. [CrossRef]
6. Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and state of the art. Found.

Trends® Comput. Graph. Vis. 2020, 12, 1–308. [CrossRef]
7. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

8. Rydning, D.R.J.G.J.; Reinsel, J.; Gantz, J. The digitization of the world from edge to core. Fram. Int. Data Corp. 2018, 16, 1–28.
9. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
10. Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of

the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 843–852.
11. Zhai, X.; Kolesnikov, A.; Houlsby, N.; Beyer, L. Scaling vision transformers. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12104–12113.
12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
13. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
14. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.
15. Knight, W. A New Chip Cluster Will Make Massive AI Models Possible. 2023. Available online: https://www.wired.com/story/

cerebras-chip-cluster-neural-networks-ai/ (accessed on 15 June 2023).

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/dinov2
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1007/s11227-020-03205-1
http://dx.doi.org/10.1177/0278364919887447
http://dx.doi.org/10.1109/TITS.2017.2658662
http://dx.doi.org/10.1561/0600000079
http://dx.doi.org/10.1126/science.aar6404
http://www.ncbi.nlm.nih.gov/pubmed/30523106
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1145/3065386
https://www.wired.com/story/cerebras-chip-cluster-neural-networks-ai/
https://www.wired.com/story/cerebras-chip-cluster-neural-networks-ai/

Mathematics 2023, 11, 3120 23 of 25

16. Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for deep learning in NLP. arXiv 2019, arXiv:1906.02243.
17. Mirzasoleiman, B.; Bilmes, J.; Leskovec, J. Coresets for data-efficient training of machine learning models. In Proceedings of the

International Conference on Machine Learning, PMLR, Virtual Event, 13–18 July 2020; pp. 6950–6960.
18. Sener, O.; Savarese, S. Active learning for convolutional neural networks: A core-set approach. arXiv 2017, arXiv:1708.00489.
19. Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. Lora: Low-rank adaptation of large language

models. arXiv 2021, arXiv:2106.09685.
20. Jiang, A.H.; Wong, D.L.K.; Zhou, G.; Andersen, D.G.; Dean, J.; Ganger, G.R.; Joshi, G.; Kaminksy, M.; Kozuch, M.; Lipton, Z.C.;

et al. Accelerating deep learning by focusing on the biggest losers. arXiv 2019, arXiv:1910.00762.
21. Sorscher, B.; Geirhos, R.; Shekhar, S.; Ganguli, S.; Morcos, A.S. Beyond neural scaling laws: Beating power law scaling via data

pruning. arXiv 2022, arXiv:2206.14486.
22. Cui, J.; Wang, R.; Si, S.; Hsieh, C.J. DC-BENCH: Dataset Condensation Benchmark. arXiv 2022, arXiv:2207.09639.
23. Lei, S.; Tao, D. A Comprehensive Survey to Dataset Distillation. arXiv 2023, arXiv:2301.05603.
24. Mayer, R.; Jacobsen, H.A. Scalable deep learning on distributed infrastructures: Challenges, techniques, and tools. ACM Comput.

Surv. (CSUR) 2020, 53, 1–37. [CrossRef]
25. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning.

Acm Comput. Surv. (CSUR) 2020, 53, 1–33.
26. Wang, H.; Qu, Z.; Zhou, Q.; Zhang, H.; Luo, B.; Xu, W.; Guo, S.; Li, R. A comprehensive survey on training acceleration for large

machine learning models in IoT. IEEE Internet Things J. 2021, 9, 939–963.
27. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the

International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 1737–1746.
28. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. Dorefa-net: Training low bitwidth convolutional neural networks with low

bitwidth gradients. arXiv 2016, arXiv:1606.06160.
29. Seide, F.; Fu, H.; Droppo, J.; Li, G.; Yu, D. 1-bit stochastic gradient descent and its application to data-parallel distributed training

of speech dnns. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association,
Singapore, 14–18 September 2014.

30. Wen, W.; Xu, C.; Yan, F.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. Adv. Neural Inf. Process. Syst. 2017, 30, 1509–1519 .

31. Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing 2021, 461, 370–403.

32. Lym, S.; Choukse, E.; Zangeneh, S.; Wen, W.; Sanghavi, S.; Erez, M. Prunetrain: Fast neural network training by dynamic sparse
model reconfiguration. In Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, Denver, CO, USA, 17–22 November 2019; pp. 1–13.

33. Google. Edge TPU. 2023. Available online: https://cloud.google.com/edge-tpu/ (accessed on 26 January 2023).
34. Corporation, N. GeForce RTX 30 Series. 2023. Available online: https://www.nvidia.com/en-gb/geforce/graphics-cards/30

-series/ (accessed on 15 June 2023).
35. Huawei Technologies Co., Ltd. Ascend 910 Series. 2023. Available online: https://e.huawei.com/ae/products/cloud-computing-

dc/atlas/ascend-910 (accessed on 15 June 2023).
36. Vepakomma, P.; Gupta, O.; Swedish, T.; Raskar, R. Split learning for health: Distributed deep learning without sharing raw

patient data. arXiv 2018, arXiv:1812.00564.
37. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the

cloud and mobile edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [CrossRef]
38. Birodkar, V.; Mobahi, H.; Bengio, S. Semantic Redundancies in Image-Classification Datasets: The 10% You Do not Need. arXiv

2019, arXiv:1901.11409.
39. Toneva, M.; Sordoni, A.; Combes, R.T.d.; Trischler, A.; Bengio, Y.; Gordon, G.J. An empirical study of example forgetting during

deep neural network learning. arXiv 2018, arXiv:1812.05159.
40. Cazenavette, G.; Wang, T.; Torralba, A.; Efros, A.A.; Zhu, J.Y. Dataset distillation by matching training trajectories. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 4750–4759.

41. Wang, T.; Zhu, J.Y.; Torralba, A.; Efros, A.A. Dataset distillation. arXiv 2018, arXiv:1811.10959.
42. Coleman, C.; Yeh, C.; Mussmann, S.; Mirzasoleiman, B.; Bailis, P.; Liang, P.; Leskovec, J.; Zaharia, M. Selection via proxy: Efficient

data selection for deep learning. arXiv 2019, arXiv:1906.11829.
43. Shim, J.h.; Kong, K.; Kang, S.J. Core-set sampling for efficient neural architecture search. arXiv 2021, arXiv:2107.06869.
44. Johnson, T.B.; Guestrin, C. Training deep models faster with robust, approximate importance sampling. Adv. Neural Inf. Process.

Syst. 2018, 31, 7265–7275 .
45. Katharopoulos, A.; Fleuret, F. Biased importance sampling for deep neural network training. arXiv 2017, arXiv:1706.00043.
46. Katharopoulos, A.; Fleuret, F. Not all samples are created equal: Deep learning with importance sampling. In Proceedings of the

International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 2525–2534.

http://dx.doi.org/10.1145/3363554
https://cloud.google.com/edge-tpu/
https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/
https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/
https://e.huawei.com/ae/products/cloud-computing-dc/atlas/ascend-910
https://e.huawei.com/ae/products/cloud-computing-dc/atlas/ascend-910
http://dx.doi.org/10.1145/3093337.3037698

Mathematics 2023, 11, 3120 24 of 25

47. Zhang, Z.; Chen, Y.; Saligrama, V. Efficient training of very deep neural networks for supervised hashing. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1487–1495.

48. Dogra, A.S.; Redman, W. Optimizing neural networks via Koopman operator theory. Adv. Neural Inf. Process. Syst. 2020,
33, 2087–2097.

49. Lagani, G.; Falchi, F.; Gennaro, C.; Amato, G. Hebbian semi-supervised learning in a sample efficiency setting. Neural Netw. 2021,
143, 719–731. [CrossRef]

50. Amato, G.; Carrara, F.; Falchi, F.; Gennaro, C.; Lagani, G. Hebbian learning meets deep convolutional neural networks. In
Proceedings of the Image Analysis and Processing–ICIAP 2019: 20th International Conference, Trento, Italy, 9–13 September 2019;
Proceedings, Part I 20; Springer: Berlin/Heidelberg, Germany, 2019; pp. 324–334.

51. Krithivasan, S.; Sen, S.; Venkataramani, S.; Raghunathan, A. Accelerating DNN Training Through Selective Localized Learning.
Front. Neurosci. 2022, 15, 759807. [CrossRef]

52. Talloen, J.; Dambre, J.; Vandesompele, A. PyTorch-Hebbian: Facilitating local learning in a deep learning framework. arXiv 2021,
arXiv:2102.00428.

53. Miconi, T. Hebbian learning with gradients: Hebbian convolutional neural networks with modern deep learning frameworks.
arXiv 2021, arXiv:2107.01729.

54. Cekic, M.; Bakiskan, C.; Madhow, U. Towards robust, interpretable neural networks via Hebbian/anti-Hebbian learning: A
software framework for training with feature-based costs. Softw. Impacts 2022, 13, 100347. [CrossRef]

55. Moraitis, T.; Toichkin, D.; Journé, A.; Chua, Y.; Guo, Q. SoftHebb: Bayesian inference in unsupervised Hebbian soft winner-take-all
networks. Neuromorphic Comput. Eng. 2022, 2, 044017. [CrossRef]

56. Tang, J.; Yuan, F.; Shen, X.; Wang, Z.; Rao, M.; He, Y.; Sun, Y.; Li, X.; Zhang, W.; Li, Y.; et al. Bridging biological and artificial
neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761.
[CrossRef]

57. Lagani, G.; Gennaro, C.; Fassold, H.; Amato, G. FastHebb: Scaling Hebbian Training of Deep Neural Networks to ImageNet
Level. In Proceedings of the Similarity Search and Applications: 15th International Conference, SISAP 2022, Bologna, Italy, 5–7
October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 251–264.

58. Journé, A.; Rodriguez, H.G.; Guo, Q.; Moraitis, T. Hebbian deep learning without feedback. arXiv 2022, arXiv:2209.11883.
59. Lagani, G.; Falchi, F.; Gennaro, C.; Amato, G. Comparing the performance of Hebbian against backpropagation learning using

convolutional neural networks. Neural Comput. Appl. 2022, 34, 6503–6519. [CrossRef]
60. Sturges, H.A. The choice of a class interval. J. Am. Stat. Assoc. 1926, 21, 65–66. [CrossRef]
61. Jiang, A.H. Official Repository with Source Code for Selective Backpropagation Algorithm. 2023. Available online: https:

//github.com/angelajiang/SelectiveBackprop (accessed on 15 June 2023).
62. Team, T.M.M. Composer. 2021. Available online: https://github.com/mosaicml/composer/ (accessed on 15 June 2023).
63. MosaicML. Selective Backpropagation Implementation within Composer Library. 2023. Available online: https://github.com/

mosaicml/composer/tree/dev/composer/algorithms/selective_backprop (accessed on 15 June 2023).
64. Zhang, J.; Yu, H.F.; Dhillon, I.S. Autoassist: A framework to accelerate training of deep neural networks. Adv. Neural Inf. Process.

Syst. 2019, 32. Available online: https://proceedings.neurips.cc/paper_files/paper/2019/file/9bd5ee6fe55aaeb673025dbcb8f939
c1-Paper.pdf (accessed on 15 June 2023).

65. Wang, L.; Zhang, Y.; Feng, J. On the Euclidean distance of images. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1334–1339.
[CrossRef] [PubMed]

66. Eskicioglu, A.M.; Fisher, P.S. Image quality measures and their performance. IEEE Trans. Commun. 1995, 43, 2959–2965. [CrossRef]
67. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 586–595.

68. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 15 June 2023).

69. weiaicunzai. Pytorch-CIFAR100. 2022. Available online: https://github.com/weiaicunzai/pytorch-cifar100 (accessed on 15 June
2023).

70. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

71. PyTorch. Torchvision Library. 2023. Available online: https://pytorch.org/vision/stable/index.html (accessed on 15 June 2023).
72. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
73. Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.;

et al. Mixed precision training. arXiv 2017, arXiv:1710.03740.
74. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

http://dx.doi.org/10.1016/j.neunet.2021.08.003
http://dx.doi.org/10.3389/fnins.2021.759807
http://dx.doi.org/10.1016/j.simpa.2022.100347
http://dx.doi.org/10.1088/2634-4386/aca710
http://dx.doi.org/10.1002/adma.201902761
http://dx.doi.org/10.1007/s00521-021-06701-4
http://dx.doi.org/10.1080/01621459.1926.10502161
https://github.com/angelajiang/SelectiveBackprop
https://github.com/angelajiang/SelectiveBackprop
https://github.com/mosaicml/composer/
https://github.com/mosaicml/composer/tree/dev/composer/algorithms/selective_backprop
https://github.com/mosaicml/composer/tree/dev/composer/algorithms/selective_backprop
https://proceedings.neurips.cc/paper_files/paper/2019/file/9bd5ee6fe55aaeb673025dbcb8f939c1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9bd5ee6fe55aaeb673025dbcb8f939c1-Paper.pdf
http://dx.doi.org/10.1109/TPAMI.2005.165
http://www.ncbi.nlm.nih.gov/pubmed/16119271
http://dx.doi.org/10.1109/26.477498
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/weiaicunzai/pytorch-cifar100
https://pytorch.org/vision/stable/index.html

Mathematics 2023, 11, 3120 25 of 25

75. Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting cluster
assignments. Adv. Neural Inf. Process. Syst. 2020, 33, 9912–9924.

76. Oquab, M.; Darcet, T.; Moutakanni, T.; Vo, H.; Szafraniec, M.; Khalidov, V.; Fernandez, P.; Haziza, D.; Massa, F.; El-Nouby, A.; et al.
DINOv2: Learning Robust Visual Features without Supervision. arXiv 2023, arXiv:2304.07193.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	Problem Definition
	Key Research Directions in the Field
	Quantization and Pruning Methods
	Distributed Training
	Dataset Reduction
	New Training Strategies

	Proposed Methods for Training Acceleration
	Adaptive Online Importance Sampling
	Intellectual Data Selection

	Results
	Discussion
	Summary
	Limitations and Outlook

	Appendix A
	Appendix B
	Appendix C
	References

