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Abstract: A well-known result of Posner’s second theorem states that if the commutator of each
element in a prime ring and its image under a nonzero derivation are central, then the ring is
commutative. In the present paper, we extended this bluestocking theorem to an arbitrary ring with
involution involving prime ideals. Further, apart from proving several other interesting and exciting
results, we established the ∗-version of Vukman’s theorem. Precisely, we describe the structure of
quotient ring A/L, where A is an arbitrary ring and L is a prime ideal of A. Further, by taking
advantage of the ∗-version of Vukman’s theorem, we show that if a 2-torsion free semiprime A with
involution admits a nonzero ∗-centralizing derivation, then A contains a nonzero central ideal. This
result is in the spirit of the classical result due to Bell and Martindale (Theorem 3). As the applications,
we extended and unified several classical theorems. Finally, we conclude our paper with a direction
for further research.

Keywords: derivation; ∗-centralizing derivation; ∗-commuting derivation; involution; prime ideal;
prime ring; semiprime ring
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1. Introduction

The motivation for this paper lies in an attempt to extend in some way the famous
results due to Posner [1], Vukman [2] and Ali-Dar [3]. A number of authors have generalized
these theorems in several ways (see, for example, [4–11], where further references can be
found). Throughout this article, A will represent an associative ring with center Z(A).
The standard polynomial identity s4 in four variables is defined as s4(`1, `2, `3, `4) =

∑σ∈s4
(−1)σ`σ(1)`σ(2)`σ(3)`σ(4), where (−1)σ is +1 or −1 according to σ being an even or

odd permutation in symmetric group s4. For any s, t ∈ A, the symbol [s, t] = st− ts stands
for a commutator, while the symbol s ◦ t will stand for the anti-commutator st + ts. The
higher-order commutator is defined as follows: for any s, t ∈ A,

[s, t]0 = s, [s, t]1 = [s, t] = st− ts and [s, t]2 = [[s, t], t],

and, inductively, we write [s, t]k = [[s, t]k−1, t] (where k > 1 is a fixed integer), which
is called the commutator of order k or simply the kth-commutator. It is also known as
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the Engel condition in the literature (viz.; [8]). Analogously, we define the higher-order
anti-commutator as follows:

s ◦0 t = s, s ◦1 t = st + ts and s ◦2 t = (s ◦1 t) ◦ t,

and, inductively, we set s ◦k t = (s ◦k−1 t) ◦ t, (where k > 1 is a fixed integer), which is
called the anti-commutator of order k or simply the kth-anti-commutator.

Recall that a ring A is called prime if, for `, ϑ ∈ A, `Aϑ = (0) implies that ` = 0 or
ϑ = 0. By a prime ideal of a ring A, we mean a proper ideal L and, for `, ϑ ∈ A, `Aϑ ⊆ L

implies that ` ∈ L or ϑ ∈ L. We note that, for a prime ring A, (0) is the prime ideal of A and
A/L is a prime ring. An ideal L of a ring A is called semiprime if it is the intersection of
prime ideals or, alternatively, if `A` ⊆ L implies that ` ∈ L for any ` ∈ A. A ring A is said to
be n-torsion free if n` = 0, ` ∈ A implies that ` = 0. An additive mapping ` 7→ `∗ satisfying
(`ϑ)∗ = ϑ∗`∗ and (`∗)∗ = ` is called an involution. A ring equipped with an involution
is known as a ring with involution or ∗-ring. An element ` in a ring with involution ∗ is
said to be Hermitian if `∗ = ` and skew-Hermitian if `∗ = −`. The sets of all Hermitian
and skew-Hermitian elements of A will be denoted by H(A) and S(A), respectively. If
A is 2-torsion free, then every ` ∈ A can be uniquely represented as 2` = h + k, where
h ∈ H(A) and k ∈ S(A). The involution is said to be of the first kind if H(A) ⊆ Z(A);
otherwise, it is said to be of the second kind. We refer the reader to [12,13] for justification
and amplification for the above mentioned notations and key definitions.

A map e : A → A is a derivation of a ring A if e is additive and satisfies e(`ϑ) =
e(`)ϑ + `e(ϑ) for all `, ϑ ∈ A. A derivation e is called inner if there exists a ∈ A such that
e(`) = [a, `] for all ` ∈ A. An additive map F : A→ A is called a generalized derivation if
there exists a derivation e of A such that F(`ϑ) = F(`)ϑ + `e(ϑ) for all `, ϑ ∈ A (see [14] for
details). For a nonempty subset S of A, a mapping ξ : S → A is called commuting (resp.
centralizing) on S if [ξ(`), `] = 0 (resp. [ξ(`), `] ∈ Z(A)) for all ` ∈ S. The investigation
into the commuting and centralizing mappings goes back to 1955 when Divinsky [15]
established a significant result. Specifically, Divinsky demonstrated that a simple Artinian
ring is commutative if it has a commuting automorphism different from the identity
mapping. Two years later, Posner [1] showed that a prime ring must be commutative
if it admits a nonzero centralizing derivation. In 1970, Luh [16] generalized Divinsky’s
result for prime rings. Later, Mayne [17] established the analogous result of Posner for
nonidentity centralizing automorphisms. The culminating results in this series can be
found in [2,6–8,18–23]. In ([2], Theorem 1), Vukman generalized Posner’s second theorem
for the second-order commutator and established that, if a prime ring of characteristic
different from 2 admits a nonzero derivation e such that [e(`), `]2 = 0 for all ` ∈ A, then A is
commutative. In this sequel, Bell and Martindale [18] generalized the result of Mayne [24]
for nonzero left ideals. Precisely, they proved that if a semiprime ring A admits a derivation
e that is nonzero on U and centralizing on U, where U is a nonzero left ideal of A, then A

contains a nonzero central ideal. The most classical and elegant generalization of Posner’s
second theorem is due to Lanski [25]. Precisely, he proved that, if a prime ring A admits a
nonzero derivation e such that [e(`), `]k = 0 for all ` ∈ L, where L is a non-commutative Lie
ideal of A and k > 0 is a fixed integer, then char(A) = 2 and A ⊆ M2(F) for a field F. These
results have been extended in various ways (viz.; [10,11,26–28] and references therein). The
goal of this paper was to study these results in the setting of arbitrary rings with involution
engaging prime ideals and to describe the structure of a quotient ring A/L, where A is an
arbitrary ring and L is a prime ideal of A.

Let A be a ring with involution ∗ and S be a nonempty subset of A. Following [3,29],
a mapping φ of A onto itself is called ∗-centralizing on S if φ(`)`∗ − `∗φ(`) ∈ Z(A) for all
` ∈ S. In the special case where φ(`)`∗ − `∗φ(`) = 0 for all ` ∈ S, the mapping φ is said
to be ∗-commuting on S. In [3,29], the first author together with Dar initiated the study of
these mappings and proved that the existence of a nonzero ∗-centralizing derivation of a
prime ring with second-kind involution forces the ring to be commutative. Apart from the
characterizations of these mappings of prime and semiprime rings with involution, they
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also proved ∗-version of Posner’s second theorem and its related problems. Precisely, they
established that: let A be a prime ring with involution ∗ such that char(A) 6= 2. Let e be a
nonzero derivation of A such that [e(`), `∗] ∈ Z(A) for all ` ∈ A and e(S(A) ∩ Z(A)) 6= (0).
Then, A is commutative. Further, they showed that every ∗-commuting map f : A →
A on a semiprime ring with involution of a characteristic different from two is of the
form f (`) = λ`∗ + µ′(`) for all ` ∈ A, λ ∈ C (the extended centroid of A) and that
µ′ : A → C is an additive mapping. In the sequel, recently, Nejjar et al. ([4], Theorem
3.7) established that, if a 2-torsion free prime ring with involution of the second kind
admits a nonzero derivation e such that e(`)`∗ − `∗e(`) ∈ Z(A) for all ` ∈ A, then A

is commutative. In 2020, Alahmadi et al. [30] extended the above mentioned result for
generalized derivations. Over the last few years, the interest on this topic has been increased
and numerous papers concerning these mappings on prime rings have been published
(see [4,9,30–37] and references therein). In [38], Creedon studied the action of derivations of
prime ideals and proved that if e is a derivation of a ring A and L is a semiprime ideal of A
such that A/L is characteristic-free and ek(L) ⊆ L, then e(L) ⊆ L for some positive integer
k. Very recently, Idrissi and Oukhtite [39] investigated the structure of a quotient ring A/L
via the action of generalized derivations on the prime ideal of L. For more recent works,
see [40–42] and references therein. In view of the above observations and motivation, the
aim of the present paper was to prove the following main theorems.

Theorem 1. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If e1 and e2 are derivations of A such that e1(`)`

∗ − `∗e2(`) ∈ L for all
` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. e1(A) ⊆ L and e2(A) ⊆ L;
3. A/L is a commutative integral domain.

Theorem 2. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A
such that S(A) ∩ Z(A) 6⊆ L. If e1 and e2 are derivations of A such that [e1(`), `∗] + [`, e2(`

∗)] +
[`, `∗] ∈ L for all ` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. A/L is a commutative integral domain.

Theorem 3. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that e(``∗)− e(`∗)e(`) ∈ L for all ` ∈ A,
then one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L.

Theorem 4. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that [[e(`), `∗], `∗] ∈ L for all ` ∈ A, then
one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L;
3. A/L is a commutative integral domain.

Theorem 5. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A
admits a nonzero ∗-centralizing derivation e, i.e., [e(`), `∗] ∈ Z(A) for all ` ∈ A, then A contains
a nonzero central ideal.

In view of ∗-centralizing mappings [3,29], Theorems 4 and 5 are recognized as the ∗-
versions of well-known theorems due to Vukman [2] and Posner [1]. As the applications of
Theorems A to E just mentioned above, we extended and unified several classical theorems
proved in [1–4,23,29,32]. Since these results are in a new direction, there are various interesting
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open problems related to our work. Hence, we conclude our paper with a direction for further
research in this new and exciting area of theory of rings with involution.

We performed a large amount of calculation with commutators and anti-commutators,
routinely using the following basic identities: For all s, t, w ∈ A;

[st, w] = s[t, w] + [s, w]t and [s, tw] = t[s, w] + [s, t]w

s ◦ (tw) = (s ◦ t)w− t[s, w] = t(s ◦ w) + [s, t]w

(st) ◦ w = s(t ◦ w)− [s, w]t = (s ◦ w)t + s[t, w].

2. Preliminary Results

Let A be a ∗-ring. Following [33,43], an additive mapping e : R → R is called
a ∗-derivation of A if e(`ϑ) = e(`)ϑ∗ + `e(ϑ) for all `, ϑ ∈ A. An additive mapping
e : A → A is called a Jordan ∗-derivation of A if e(`2) = e(`)`∗ + `e(`) for all ` ∈ A.
In [19], Brešar showed that if a prime ring A admits nonzero derivations e1 and e2 of
A such that e1(`)` − `e2(`) ∈ Z(A) for all ` ∈ I, where I is a nonzero left ideal of A,
then A is commutative. Further, this result was extended by Argac [44] as follows: let A
be a semiprime ring and e1, e2 be derivations of A such that at least one is nonzero. If
e1(`)`− `e2(`) ∈ Z(A) for all ` ∈ A, then A contains a nonzero central ideal. Motivated
by the above mentioned results, the first author together with Alhazmi et al. [35] studied
a more general problem in the setting of rings with involution. Precisely, they proved
that if a (m + n)!-torsion free prime ring with involution of the second kind admit Jordan
∗-derivations e and g of A such that e(`m)`n ± `ng(`m) = 0 for all ` ∈ A (where m and n are
fixed positive integers), then e = g = 0 or A is commutative. In the sequel, very recently,
Nejjar et al. ([4] Theorem 3.7) established that if a 2-torsion free prime ring with involution
of the second kind admits a nonzero derivation e such that e(`)(`)∗ − (`)∗e(`) ∈ Z(A) for
all ` ∈ A, then A is commutative. The goal of this section is to initiate the study of a more
general concept than ∗-centralizing mappings; that is, we consider the situation where the
mappings φ and ξ of a ring A satisfy φ(`)(`)∗ − (`)∗ξ(`) ∈ L for all ` ∈ A, where A is an
arbitrary ring and L is a prime ideal of A. Precisely, we prove the following theorem.

Theorem 6. Let A be a ring with involution ∗ of the second kind and L be a prime ideal such that
S(A) ∩ Z(A) 6⊆ L. If e1 and e2 are derivations of A such that e1(`)(`)

∗ − (`)∗e2(`) ∈ L for all
` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. e1(A) ⊆ L and e2(A) ⊆ L;
3. A/L is a commutative integral domain.

The following are the immediate consequences of Theorem 6. In fact, Corollary 1 is in
the spirit of the result due to Posner’s second theorem.

Corollary 1. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that [e(`), (`)∗] ∈ L for all ` ∈ A, then
one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L;
3. A/L is a commutative integral domain.

Corollary 2. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that e(`) ◦ (`)∗ ∈ L for all ` ∈ A, then
one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L.
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Corollary 3. Let A be a prime ring with involution ∗ of the second kind such that char(A) 6= 2. If
A admits a ∗-commuting derivation e, then e = 0 or A is a commutative integral domain.

Corollary 4. Let A be a prime ring with involution ∗ of the second kind such that char(A) 6= 2. If
A admits a derivation e such that e(`) ◦ (`)∗ = 0 for all ` ∈ A, then e = 0.

For the proof of Theorem 6, we need the following lemmas, some of which are of
independent interest. We begin our discussions with the following.

Lemma 1 ([42] (Lemma 2.1)). Let A be a ring and L be a prime ideal of A. If e is a derivation of A
satisfying the condition [e(`), `] ∈ L for all ` ∈ A, then e(A) ⊆ L or A/L is commutative.

Lemma 2 ([45] (Lemma 1)). Let A be a ring, L be a prime ideal of A, e1 and e2be derivations of
A. Then, e1(`)`− `e2(`) ∈ L for all ` ∈ A if and only if e1(A) ⊆ L and e2(A) ⊆ L or A/L is a
commutative integral domain.

Lemma 3. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If [`, (`)∗] ∈ L for all ` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. A/L is a commutative integral domain.

Proof. We assume that char(A/L) 6= 2. By that assumption, we have

[`, (`)∗] ∈ L (1)

for all ` ∈ A. Direct linearization of relation (1) gives

[`, ϑ∗] + [ϑ, (`)∗] ∈ L (2)

for all `, ϑ ∈ A. Replacing ` with `k in (2), where 0 6= k ∈ S(A) ∩ Z(A), we obtain

k[`, (ϑ)∗]− k[ϑ, (`)∗] ∈ L

for all `, ϑ ∈ A. Since S(A) ∩ Z(A) * L, it follows that

[`, (ϑ)∗]− [ϑ, (`)∗] ∈ L (3)

for all `, ϑ ∈ A. Combining (2) and (3), we obtain

2[`, (ϑ)∗] ∈ L

for all `, ϑ ∈ A. This implies that
[`, ϑ] ∈ L (4)

for all `, ϑ ∈ A. Since elements of A/L are cosets, and noticing that ` ∈ L implies that
`+ L = L, the above equation gives

`ϑ− ϑ`+ L = L (5)

for all `, ϑ ∈ A; hence, we infer that

`ϑ + L = ϑ`+ L (6)

for all `, ϑ ∈ A. This can be written as

(`+ L)(ϑ + L) = (ϑ + L)(`+ L) (7)
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for all `, ϑ ∈ A. This implies that A/L is commutative. Now, we show that A/L is an
integral domain. We suppose that

(`+ L)(ϑ + L) = L

for all `, ϑ ∈ A. This is equivalent to the expression

`ϑ + L = L

for all `, ϑ ∈ A. This implies that `ϑ ∈ L for all `, ϑ ∈ A. For any r ∈ A, we have r(`ϑ) ∈ L

for all `, ϑ ∈ A. This gives `rϑ ∈ L. Hence, `Aϑ ⊆ L. Thus, we obtain ` ∈ L or ϑ ∈ L. This
further implies that `+ L = L or ϑ + L = L. This shows that A/L is an integral domain.
Consequently, we conclude that A/L is a commutative integral domain. This proves the
lemma.

In view of Lemmas 1 and 3, we conclude the following result.

Lemma 4. Let A be a ring and L be a prime ideal of A. If e is a derivation of A satisfying the
condition [e(`), `] ∈ L for all ` ∈ A, then e(A) ⊆ L or A/L is a commutative integral domain.

We are now ready to prove our first main theorem.

Proof of Theorem 6. We assume that char(A/L) 6= 2. By that assumption, we have

e1(`)(`)
∗ − (`)∗e2(`) ∈ L for all ` ∈ A. (8)

Linearizing (8), we have

e1(`)(ϑ)
∗ + e1(ϑ)(`)

∗ − (`)∗e2(ϑ)− (ϑ)∗e2(`) ∈ L for all `, ϑ ∈ A. (9)

Replacing ` with `h in (9), where 0 6= h ∈ H(A) ∩ Z(A), we obtain

(e1(`)(ϑ)
∗ + e1(ϑ)(`)

∗ − (`)∗e2(ϑ)− (ϑ)∗e2(`))h + `(ϑ)∗e1(h)− (ϑ)∗`e2(h) ∈ L for all `, ϑ ∈ A.

Applying (9),

`(ϑ)∗e1(h)− (ϑ)∗`e2(h) ∈ L for all `, ϑ ∈ A.

This gives
`ϑe1(h)− ϑ`e2(h) ∈ L for all `, ϑ ∈ A. (10)

We replace h with k2 in (10), where 0 6= k ∈ S(A) ∩ Z(A) 6⊆ L, to obtain

`ϑe1(k)− ϑ`e2(k) ∈ L for all `, ϑ ∈ A. (11)

Substituting `k in place of ` in (9), where 0 6= k ∈ S(A) ∩ Z(A), we arrive at

e1(`)(ϑ)
∗k + `(ϑ)∗e1(k)− e1(ϑ)(`)

∗k + (`)∗e2(ϑ)k− (ϑ)∗`e2(k)− (ϑ)∗e2(`)k ∈ L (12)

for all `, ϑ ∈ A. From (9), we have

e1(`)(ϑ)
∗k + e1(ϑ)(`)

∗k− (`)∗e2(ϑ)k− (ϑ)∗e2(`)k ∈ L for all `, ϑ ∈ A. (13)

Adding (12) and (13), we obtain

2e1(`)(ϑ)
∗k− 2(ϑ)∗e2(`)k + `(ϑ)∗e1(k)− (ϑ)∗`e2(k) ∈ L for all `, ϑ ∈ A

this implies
2e1(`)ϑk− 2ϑe2(`)k + `ϑe1(k)− ϑ`e2(k) ∈ L (14)
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for all `, ϑ ∈ A. Using (11) in (14), we have

2e1(`)ϑk− 2ϑe2(`)k ∈ L for all `, ϑ ∈ A.

Since char(A/L) 6= 2 and S(A) ∩ Z(A) * L, we have

e1(`)ϑ− ϑe2(`) ∈ L for all `, ϑ ∈ A. (15)

In particular, for ϑ = `, we obtain e1(`)`− `e2(`) ∈ L for all ` ∈ A. Therefore, from
Lemma 2, we conclude that e1(A) ⊆ L and e2(A) ⊆ L or A/L is a commutative integral
domain.

Corollary 5. Let A be a prime ring with involution ∗ of the second kind such that char(A) 6= 2. If
A admits derivations e1 and e2 such that e1(`)(`)

∗− (`)∗e2(`) = 0 for all ` ∈ A, then e1 = e2 = 0
or A is a commutative integral domain.

We now prove another theorem in this vein.

Theorem 7. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that [e(`), (`)∗] + [`, (`)∗] ∈ L for all
` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. A/L is a commutative integral domain.

Proof. Suppose that char(A/L) 6= 2. By that assumption, we have

[e(`), (`)∗] + [`, (`)∗] ∈ L (16)

for all ` ∈ A. First, we assume that e(A) ⊆ L. Then, the result follows by Lemma 3.
Henceforward, we suppose that e(A) 6⊆ L. Linearizing (16), we obtain

[e(`), (ϑ)∗] + [e(ϑ), (`)∗] + [`, (ϑ)∗] + [ϑ, (`)∗] ∈ L (17)

for all `, ϑ ∈ A. Replacing ` with `h in (17), where 0 6= h ∈ H(A) ∩ Z(A), we obtain

e(h)[`, (ϑ)∗] ∈ L

for all `, ϑ ∈ A. Replacing h with k2 in the last relation, where 0 6= k ∈ S(A) ∩ Z(A) 6⊆ L,
and using the hypothesis, we arrive at

e(k)[`, (ϑ)∗] ∈ L (18)

for all `, ϑ ∈ A. Replacing ` with `k in (17), where 0 6= k ∈ S(A) ∩ Z(A) 6⊆ L, we find that

e(k)[`, (ϑ)∗] + k[e(`), (ϑ)∗]− k[e(ϑ), (`)∗] + k[`, (ϑ)∗]− k[ϑ, (`)∗] ∈ L (19)

for all `, ϑ ∈ A. Using (18) and the condition S(A) ∩ Z(A) 6⊆ L in (19), we obtain

[e(`), (ϑ)∗]− [e(ϑ), (`)∗] + [`, (ϑ)∗]− [ϑ, (`)∗] ∈ L (20)

for all `, ϑ ∈ A. The addition of (17) and (20) gives

2([e(`), (ϑ)∗] + [`, (ϑ)∗]) ∈ L

for all `, ϑ ∈ A. This implies that

[e(`), ϑ] + [`, ϑ] ∈ L



Mathematics 2023, 11, 3117 8 of 20

for all `, ϑ ∈ A. In particular, for ϑ = `, we have

[e(`), `] ∈ L

for all ` ∈ A. In view of Lemma 4, we conclude that A/L is a commutative integral
domain.

The following result is interesting in itself.

Theorem 8. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If e1 and e2 are derivations of A such that [e1(`), (`)∗] + [`, e2((`)

∗)] +
[`, (`)∗] ∈ L for all ` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. A/L is a commutative integral domain.

Proof. Assume that char(A/L) 6= 2. By that assumption, we have

[e1(`), (`)∗] + [`, e2((`)
∗)] + [`, (`)∗] ∈ L (21)

for all ` ∈ A. We divide the proof in three cases.

Case (i): First, we assume that e2(A) ⊆ L. Then, relation (21) reduces to

[e1(`), (`)∗] + [`, (`)∗] ∈ L

for all ` ∈ A. In view of Theorem 7, we obtain the required result.

Case (ii): Now, we assume that e1(A) ⊆ L. Then, relation (21) reduces to

[`, e2((`)
∗)] + [`, (`)∗] ∈ L

for all ` ∈ A. This can be further written as

[e2((`)
∗), `] + [(`)∗, `] ∈ L (22)

for all ` ∈ A. If e2(A) ⊆ L, then the result follows by Lemma 3. Henceforward, we suppose
that e2(A) 6⊆ L. Linearizing (22), we obtain

[e2((`)
∗), ϑ] + [e2((ϑ)

∗), `] + [(`)∗, ϑ] + [(ϑ)∗, `] ∈ L (23)

for all `, ϑ ∈ A. Replacing ` with `h in (23), where 0 6= h ∈ H(A) ∩ Z(A), we obtain

e2(h)[(`)∗, ϑ] ∈ L

for all `, ϑ ∈ A. This implies that
e2(h)[`, ϑ] ∈ L

for all `, ϑ ∈ A. Replacing h with k2 in the last relation, where 0 6= k ∈ S(A) ∩ Z(A), we
arrive at

2e2(k)[`, ϑ]k ∈ L

for all `, ϑ ∈ A. Since char(A/L) 6= 2, the last relation gives

e2(k)[`, ϑ]k ∈ L (24)

for all `, ϑ ∈ A. Replacing ` with `k in (23), where 0 6= k ∈ S(A) ∩ Z(A), we find that

− e2(k)[(`)∗, ϑ]− k[e2((`)
∗), ϑ] + k[e2((ϑ)

∗), `]− k[(`)∗, ϑ] + k[(ϑ)∗, `] ∈ L (25)
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for all `, ϑ ∈ A. Left multiplying in (23) by k, we obtain

k[e2((`)
∗), ϑ] + k[e2((ϑ)

∗), `] + k[(`)∗, ϑ] + k[(ϑ)∗, `] ∈ L (26)

for all `, ϑ ∈ A. Combining (25) and (26), we obtain

− e2(k)[(`)∗, ϑ] + 2k[e2((ϑ)
∗), `] + 2k[(ϑ)∗, `] ∈ L (27)

for all `, ϑ ∈ A. Replacing ϑ with ϑk in (27) and using (24), where 0 6= k ∈ S(A) ∩ Z(A),
we obtain

2k2([e2(ϑ), `] + [ϑ, `]) ∈ L

for all `, ϑ ∈ A. Using the assumption char(A/L) 6= 2, we find that

k2([e2(ϑ), `] + [ϑ, `]) ∈ L (28)

for all `, ϑ ∈ A. Application of the primeness of L yields k2 ∈ L or [e2(ϑ), `] + [ϑ, `] ∈ L.
The first case k2 ∈ L implies that k ∈ L, which gives a contradiction. Thus, we have

[e2(ϑ), `] + [ϑ, `] ∈ L

for all `, ϑ ∈ A. In particular, for ϑ = `, we have [e2(`), `] ∈ L for all ` ∈ A. Therefore, in
view of Lemma 4, we conclude that A/L is a commutative integral domain.

Case (iii): Finally, we assume that e1(A) 6⊆ L and e2(A) 6⊆ L. Then, direct linearization
of (21) gives

[e1(`), (ϑ)∗] + [e1(ϑ), (`)∗] + [`, e2((ϑ)
∗)] + [ϑ, e2((`)

∗)] + [`, (ϑ)∗] + [ϑ, (`)∗] ∈ L (29)

for all `, ϑ ∈ A. Replacing ` with `h in (29), where 0 6= h ∈ H(A) ∩ Z(A), and using it, we
obtain

e1(h)[`, (ϑ)∗] + e2(h)[ϑ, (`)∗] ∈ L (30)

for all `, ϑ ∈ A. Replacing ` with `k in (30), where 0 6= k ∈ S(A) ∩ Z(A) *∈ L, we obtain

e1(h)[`, (ϑ)∗]− e2(h)[ϑ, (`)∗] ∈ L (31)

for all `, ϑ ∈ A. The combination of (30) and (31) yields

2e1(h)[`, (ϑ)∗] ∈ L for all `, ϑ ∈ A,

which implies that
e1(h)[`, ϑ] ∈ L for all `, ϑ ∈ A.

Replacing h with k2 in the last relation and using the hypothesis of theorem, we obtain

e1(k)[`, ϑ] ∈ L for all `, ϑ ∈ A.

This implies either e1(k) ∈ L or [`, ϑ] ∈ L. If [`, ϑ] ∈ L, then, by Lemma 3, A/L is a
commutative integral domain. On the other hand, we have e1(k) ∈ L. Similarly, we can
find e2(k) ∈ L. Writing `k instead of ` in (29), where 0 6= k ∈ S(A) ∩ Z(A) * L, and using
the fact that e1(k), e2(k) ∈ L, we arrive at

[e1(`), (ϑ)∗]− [e1(ϑ), (`)∗] + [`, e2((ϑ)
∗)]− [ϑ, e2((`)

∗)] + [`, (ϑ)∗]− [ϑ, (`)∗] ∈ L (32)

for all `, ϑ ∈ A. Comparing (29) and (32), we obtain

2([e1(`), (ϑ)∗] + [`, e2((ϑ)
∗)] + [`, (ϑ)∗]) ∈ L for all `, ϑ ∈ A.
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This implies that

[e1(`), ϑ] + [`, e2(ϑ)] + [`, ϑ] ∈ L for all `, ϑ ∈ A.

Now, replacing ` with `r in the above expression, we obtain

e1(`)[r, ϑ] + [`, ϑ]e1(A) ∈ L for all `, ϑ, r ∈ A.

In particular, for ϑ = `, we have e1(`)[r, `] ∈ L for all `, r ∈ A. This gives e1(`)A[r, `] ⊆
L for all `, r ∈ A. The primeness of L infers that e1(`) ∈ L or [r, `] ∈ L. Set A = {` ∈
A | e1(`) ∈ L} and B = {` ∈ A | [r, `] ∈ L}. Clearly, A and B are additive subgroups
of A such that A ∪ B = A. But, a group cannot be written as a union of its two proper
subgroups; consequently, A = A or B = A. The first case contradicts our supposition that
e1(A) 6⊆ L. Thus, we have [r, `] ∈ L for all r, ` ∈ A. Therefore, in view of Lemma 3, A/L is
a commutative integral domain. This completes the proof of theorem.

Using a similar approach with necessary variations, one can establish the following result.

Theorem 9. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If e1 and e2 are derivations of A such that [e1(`), (`)∗] + [`, e2((`)

∗)]−
[`, (`)∗] ∈ L for all ` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. A/L is a commutative integral domain.

In view of Theorems 8 and 9, we have the following corollaries:

Corollary 6. Let A be a prime ring with involution ∗ of the second kind such that char(A) 6= 2. If
A admits derivations e1 and e2 such that [e1(`), (`)∗] + [`, e2((`)

∗)]± [`, (`)∗] = 0 for all ` ∈ A,
then A is a commutative integral domain.

Corollary 7. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A)) 6⊆ L. If A admits a derivation e such that e([`, (`)∗])± [`, (`)∗] ∈ L for all
` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. A/L is a commutative integral domain.

Corollary 8. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A)) 6⊆ L. If A admits a derivation e such that e(`(`)∗)± `(`)∗ ∈ L for all ` ∈ A,
then one of the following holds:

1. char(A/L) = 2;
2. A/L is a commutative integral domain.

Corollary 9 ([29], Theorem 3.4). Let A be a prime ring with involution ∗ of the second kind such
that char(A) 6= 2. If A admits a derivation e such that e([`, (`)∗])± [`, (`)∗] = 0 for all ` ∈ A,
then A is a commutative integral domain.

We leave the question open as to whether or not the assumption S(A) ∩ Z(A) 6⊆ L

(where L is prime ideal of an arbitrary ring A) can be removed in Theorems 6 and 8. In
view of Theorem 6 and Theorem 4.4 of [35], we conclude this section with the following
conjecture.

Conjecture: Let m and n be fixed positive integers. Next, let A be a ∗-ring with
suitable torsion restrictions and L be a prime ideal of A. If A admits Jordan ∗-derivations e
and g of A such that e(`)m(`)∗n ± (`)∗ng(`m) ∈ L for all ` ∈ A, then what can we say about
the structure of A and the forms of e, g ?
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3. Derivations Act as Homomorphisms and Anti-Homomorphisms on Prime Ideals

Ring homomorphisms are mappings between two rings that preserve both addition
and multiplication. In particular, we are concerned with ring homomorphisms between
two rings. If A is the real number field, then the zero map and the identity are typical
examples of ring homomorphisms on A. Let S be a nonempty subset of A and e be a
derivation on A. If e(`ϑ) = e(`)e(ϑ) or e(`ϑ) = e(ϑ)e(`) for all `, ϑ ∈ S, then e is said to be
a derivation that acts as a homomorphism or an anti-homomorphism on S, respectively.
Of course, derivations that act as endomorphisms or anti-endomorphisms of a ring A

may behave as such on certain subsets of A; for example, any derivation e behaves as the
zero endomorphism on the subring T consisting of all constants (i.e., elements ` for which
e(`) = 0). In fact, in a semiprime ring A, e may behave as an endomorphism on a proper
ideal of A. As an example of such A and e, let S be any semiprime ring with a nonzero
derivation δ, take A = S⊕ S and define e by e(r1, r2) = (δ(r1), 0). However in case of prime
rings, Bell and Kappe [46] showed that the behavior of e is somewhat more restricted by
proving that if A is a prime ring and e is a derivation of A that acts as a homomorphism
or an anti-homomorphism on a nonzero right ideal of A, then e = 0 on A. Further, Ali et
al. obtained [47] the above mentioned result for Lie ideals. Recently, Mamouni et al. [48]
studied the above mentioned problem for prime ideals of an arbitrary ring by considering
the identity e(`ϑ)− e(`)e(ϑ) ∈ L for all `, ϑ ∈ A or e(`ϑ)− e(ϑ)e(`) ∈ L for all `, ϑ ∈ A,
where L is prime ideal of A. In the present section, our objective was to extend the above
study in the setting of rings with involution involving prime ideals. In fact, we prove the
following result:

Theorem 10. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that e(`(`)∗)− e((`)∗)e(`) ∈ L for all
` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L.

Proof. Assume that char(A/L) 6= 2. By that hypothesis, we have

e(`(`)∗)− e((`)∗)e(`) ∈ L (33)

for all ` ∈ A. Linearization of (33) gives

e(`(ϑ)∗) + e(ϑ(`)∗)− e((`)∗)e(ϑ)− e((ϑ)∗)e(`) ∈ L (34)

for all `, ϑ ∈ A. Replacing ` with `h in (34), where 0 6= h ∈ H(A) ∩ Z(A), we obtain

e(h)(`(ϑ)∗ + ϑ(`)∗ − (`)∗e(ϑ)− e((ϑ)∗)`) ∈ L (35)

for all `, ϑ ∈ A. Taking h = k2 in (35), where 0 6= k ∈ S(A) ∩ Z(A) 6⊆ L, and using the
hypothesis of the theorem, we obtain

e(k)(`(ϑ)∗ + ϑ(`)∗ − (`)∗e(ϑ)− e((ϑ)∗)`) ∈ L

for all `, ϑ ∈ A. Invoking the primeness of A yields e(k) ∈ L or `(ϑ)∗ + ϑ(`)∗ − (`)∗e(ϑ)−
e((ϑ)∗)`) ∈ L for all `, ϑ ∈ A. Consider the case where

`(ϑ)∗ + ϑ(`)∗ − (`)∗e(ϑ)− e((ϑ)∗)` ∈ L (36)

for all `, ϑ ∈ A. Replacing ` with `k in (36) and combining with the obtained relation, we
obtain

2(`(ϑ)∗ − e((ϑ)∗)`) ∈ L
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for all `, ϑ ∈ A. This implies that
`ϑ− e(ϑ)` ∈ L (37)

for all `, ϑ ∈ A. In particular, for ` = k, where k ∈ S(A) ∩ Z(A), we have ϑ − e(ϑ) ∈ L

for all ϑ ∈ A. Substituting ϑr for ϑ in the last relation, we obtain ϑe(A) ∈ L. This yields
e(A)Ae(A) ⊆ L for all r ∈ A. Since L is a prime ideal of A, we have e(A) ⊆ L. On the other
hand, consider the case e(k) ∈ L. Replacing ` with `k in (34), where 0 6= k ∈ S(A)∩ Z(A) 6⊆
L, we obtain

e(`(ϑ)∗)− e(ϑ(`)∗) + e((`)∗)e(ϑ)− e((ϑ)∗)e(`) ∈ L (38)

The combination of (34) and (38) gives

2(e(`(ϑ)∗)− e((ϑ)∗)e(`)) ∈ L

for all `, ϑ ∈ A. This implies that

e(`ϑ)− e(ϑ)e(`) ∈ L

for all `, ϑ ∈ A. Taking ϑ = k in the above relation and using e(k) ∈ L, we obtain ke(`) ∈ L

for all ` ∈ A. Since S(A) ∩ Z(A) 6⊆ L, one can conclude that e(A) ⊆ L.

Applying an analogous argument, we have the following result.

Theorem 11. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A)) 6⊆ L. If A admits a derivation e such that e(`(`)∗)− e(`)e((`)∗) ∈ L for all
` ∈ A, then one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L.

Corollary 10. Let A be a prime ring with involution ∗ of the second kind such that char(A) 6= 2.
If A admits a derivation e such that e(`(`)∗) = e((`)∗)e(`) or e(`(`)∗) = e(`)e((`)∗) for all
` ∈ A, then e = 0.

Theorem 12. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A
admits a derivation e such that e(`(`)∗)− e((`)∗)e(`) = 0 for all ` ∈ A, then e = 0.

Proof. Assume that char(A/L) 6= 2. By that assumption, we have

e(`(`)∗)− e((`)∗)e(`) = 0 for all ` ∈ A.

By the semiprimeness of A, there exists a family L = {Lα : α ∈ ∧} of prime ideals
such that

⋂
α
Lα = (0) (see [49] for details). For each Lα in L, we have

e(`(`)∗)− e((`)∗)e(`) ∈ Lα for all ` ∈ A.

Invoking Theorem 10, we conclude that e(A) ⊆ Lα. Consequently, we obtain e(A) ⊆⋂
α
Lα = (0) and hence the result follows. Thereby, the proof is completed.

Analogously, we can prove the following result.

Theorem 13. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A
admits a derivation e such that e(`(`)∗)− e(`)e((`)∗) = 0 for all ` ∈ A, then e = 0.

4. Applications

In this section, we present some applications of the results proved in Section 2. Vuk-
man ([2] Theorem 1) generalized the classical result due to Posner (Posner’s second theo-
rem) [1] and proved that, if e is a derivation of a prime ring A of a characteristic different
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from 2, such that [[e(`), `], `] = [e(`), `]2 = 0 for all ` ∈ A, then e = 0 or A is commutative.
In fact, in view of Posner’s second theorem, he merely showed that e is commutin; that is,
[e(`), `] = 0 for all ` ∈ A. In [50], Deng and Bell extended the above mentioned result for a
semiprime ring and established that if a 6-torsion free semiprime ring admits a derivation e
such that [[e(`), `], `] = 0 for all ` ∈ I with e(I) 6= (0), where I is a nonzero left ideal of A,
then A contains a nonzero central ideal. These results were further refined and extended
by a number of algebraists (see, for example, [10,26–28,51]). It is our aim in this section
to study and extend Vukman’s and Posner’s results for arbitrary rings with involution
involving prime ideals. In fact, we prove the ∗-versions of these theorems. Moreover, our
approach is somewhat different from those employed by other authors. Precisely, we prove
the following result.

Theorem 14. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that [[e(`), (`)∗], (`)∗] ∈ L for all ` ∈ A,
then one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L;
3. A/L is a commutative integral domain.

A derivation e : A→ A is said to be ∗-centralizing if [e(`), (`)∗] ∈ Z(A) for all ` ∈ A.
The last expression can be written as [[e(`), (`)∗], (`)∗] = [e(`), (`)∗]2 = 0 for all ` ∈ A.
Consequently, Theorem 14 is regarded as the ∗-version of Vukman’s theorem [2]. Applying
Theorem 14, we also prove that if a 2-torsion free semiprime ring A with involution ∗ of the
second kind admits a nonzero ∗-centralizing derivation, then A must contain a nonzero
central ideal. In fact, we prove the following result.

Theorem 15. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If
A admits a nonzero ∗-centralizing derivation e, i.e., [e(`), (`)∗] ∈ Z(A) for all ` ∈ A, then A

contains a nonzero central ideal.

As an immediate consequence of Theorem 15, we obtain the following result.

Corollary 11. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A
admits a nonzero ∗-commuting derivation e, i.e., [e(`), (`)∗] = 0 for all ` ∈ A, then A contains a
nonzero central ideal.

In order to prove Theorem 15, we need the proof of Theorem 14.

Proof of Theorem 14. Assume that char(A/L) 6= 2. By that hypothesis, we have

[[e(`), (`)∗], (`)∗] ∈ L for all ` ∈ A. (39)

A linearization of (39) yields

[[e(`), (ϑ)∗], (ϑ)∗] + [[e(`), (ϑ)∗], (`)∗] + [[e(ϑ), (ϑ)∗], (`)∗] + [[e(ϑ), (`)∗], (`)∗] (40)

+[[e(`), (`)∗], (ϑ)∗] + [[e(ϑ), (`)∗], (ϑ)∗] ∈ L

for all `, ϑ ∈ A. Putting ` = −` in (40), we obtain

−[[e(`), (ϑ)∗], (ϑ)∗] + [[e(`), (ϑ)∗], (`)∗]− [[e(ϑ), (ϑ)∗], (`)∗] + [[e(ϑ), (`)∗], (`)∗] (41)

+[[e(`), (`)∗], (ϑ)∗]− [[e(ϑ), (`)∗], (ϑ)∗] ∈ L

for all `, ϑ ∈ A. Combining (40) and (41), we obtain

[[e(`), (ϑ)∗], (`)∗] + [[e(ϑ), (`)∗], (`)∗] + [[e(`), (`)∗], (ϑ)∗] ∈ L (42)
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for all `, ϑ ∈ A. Replacing ϑ with ϑh in (42), where h ∈ H(A) ∩ Z(A), we deduce that

e(h)[[ϑ, (`)∗], (`)∗] ∈ L for all `, ϑ ∈ A.

Taking h = k2, where k ∈ S(A) ∩ Z(A) * L, and using the hypothesis, we have

e(k)[[ϑ, (`)∗], (`)∗] ∈ L for all `, ϑ ∈ A. (43)

Now, substituting ϑk in place of ϑ in (42), where k ∈ S(A) ∩ Z(A), we obtain

−k[[e(`), (ϑ)∗], (`)∗] + k[[e(ϑ), (`)∗], (`)∗] + e(k[[ϑ, (`)∗], (`)∗])− k[[e(`), (`)∗], (ϑ)∗] ∈ L

for all `, ϑ ∈ A. The application of (43) and the condition S(A) ∩ Z(A) * L yields

−[[e(`), (ϑ)∗], (`)∗] + [[e(ϑ), (`)∗], (`)∗]− [[e(`), (`)∗], (ϑ)∗] ∈ L (44)

for all `, ϑ ∈ A. From (42) and (44), we can obtain

2([[e(ϑ), (`)∗], (`)∗]) ∈ L for all `, ϑ ∈ A.

This implies that
[[e(ϑ), `], `] ∈ L for all `, ϑ ∈ A.

Writing `+ z instead of `, we obtain

[[e(ϑ), `], z] + [[e(ϑ), z], `] ∈ L for all `, ϑ, z ∈ A. (45)

Replacing z with zr in (45), we find that

[z, `][e(ϑ), r] + [e(ϑ), z][r, `] ∈ L for all r, `, ϑ, z ∈ A.

In particular, for r = `, we have

[z, `][e(ϑ), `] ∈ L for all `, ϑ, z ∈ A.

This gives
[z, `]A[e(ϑ), `] ⊆ L for all `, ϑ, z ∈ A. (46)

Since L is a prime ideal of A, we have [z, `] ∈ L for all z ∈ A or [e(ϑ), `] ∈ L for all
ϑ ∈ A. Let us set A = {` ∈ A | [`, z] ∈ L} and B = {` ∈ A | [e(ϑ), `] ∈ L}. Clearly, A and
B are additive subgroups of A whose union is A. Because a group cannot be written as a
union of its two proper subgroups, it follows that either A = A or B = A. In the first case,
A/L is a commutative integral domain from Lemma 3. On the other hand, if [e(ϑ), `] ∈ L

for all `, ϑ ∈ A, then we obtain [e(`), (`)∗] ∈ L for all ` ∈ A. Hence, in view of Corollary 1,
we conclude that e(A) ⊆ L or A/L is a commutative integral domain. This completes the
proof of theorem.

Proof of Theorem 15. We are given that e : A → A is a ∗-centralizing derivation; that
is, [e(`), (`)∗] ∈ Z(A) for all ` ∈ A. This implies that [[e(`), (`)∗], ϑ] = 0 for all `, ϑ ∈ A.
This gives

[[e(`), (`)∗], (`)∗] = 0 for all ` ∈ A.

In view of the semiprimeness of A, there exists a family P = {Lα : α ∈ ∧} of prime
ideals such that

⋂
α
Lα = (0) (see [49] for more details). Let L denote a fixed one of the Lα.

Thus, we have

[[e(`), (`)∗], (`)∗] ∈ L for all ` ∈ A and for all L ∈ P .
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From the proof of Theorem 14, we observe that, for each `, either

[z, `] ∈ L for all z ∈ A (I)

or
[e(ϑ), `] ∈ L for all ϑ ∈ A (I I)

Define AI to be the set of z ∈ A for which (I) holds and AI I to be the set of ϑ ∈ A for
which (I I) holds. Note that both are additive subgroups of A and that their union is equal
to A. Thus, either AI = A or AI I = A, and hence L satisfies one of the following:

[z, `] ∈ L for all `, z ∈ A (I′)

or
[e(ϑ), `] ∈ L for all `, ϑ ∈ A (I I′)

Call a prime ideal in P a type-one prime if it satisfies (I′), and call all other members
of P type-two primes. Define L1 and L2 as the intersection of all type-one primes and the
intersection of all type-two primes, respectively, and note that

L1L2 = L2L1 = L1 ∩ L2 = {0}.

Clearly, from both cases, we can conclude that [e(`), `] ∈ L for all ` ∈ A for all L ∈ P .
This implies that [e(`), `] ∈ ⋂

L∈T
L = {0} for all ` ∈ A; that is, [e(`), `] = 0 for all ` ∈ A.

Hence, in view of ([18] Theorem 3), A contains a nonzero central ideal.

The Jordan product version of Theorem 14 is the following.

Theorem 16. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that (e(`) ◦ (`)∗) ◦ (`)∗ ∈ L for all ` ∈ A,
then one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L.

Proof. Assume that char(A/L) 6= 2. By that hypothesis, we have

(e(`) ◦ (`)∗) ◦ (`)∗ ∈ L for all ` ∈ A. (47)

A linearization of (47) yields

(e(`) ◦ (ϑ)∗) ◦ (ϑ)∗ + (e(`) ◦ (ϑ)∗) ◦ (`)∗ + (e(ϑ) ◦ (ϑ)∗) ◦ (`)∗ + (e(ϑ) ◦ (`)∗) ◦ (`)∗ (48)

+(e(`) ◦ (`)∗) ◦ (ϑ)∗ + (e(ϑ) ◦ (`)∗) ◦ (ϑ)∗ ∈ L

for all `, ϑ ∈ A. Putting ` = −` into (48), we obtain

−((e(`) ◦ (ϑ)∗) ◦ (ϑ)∗) + ((e(`) ◦ (ϑ)∗) ◦ (`)∗)− ((e(ϑ) ◦ (ϑ)∗) ◦ (`)∗) (49)

+((e(ϑ) ◦ (`)∗) ◦ (`)∗) + ((e(`) ◦ (`)∗) ◦ (ϑ)∗)− ((e(ϑ) ◦ (`)∗) ◦ (ϑ)∗) ∈ L

for all `, ϑ ∈ A. Combining (48) and (49), we obtain

(e(`) ◦ (ϑ)∗) ◦ (`)∗ + (e(ϑ) ◦ (`)∗) ◦ (`)∗ + (e(`) ◦ (`)∗) ◦ (ϑ)∗ ∈ L (50)

for all `, ϑ ∈ A. The substitution of ϑh with ϑ in (50), where h ∈ H(A) ∩ Z(A), produces

e(h)((ϑ ◦ (`)∗) ◦ (`)∗) ∈ L for all `, ϑ ∈ A.
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Taking h = k2, where k ∈ S(A) ∩ Z(A) * L, and using the hypothesis, we have

e(k)((ϑ ◦ (`)∗) ◦ (`)∗) ∈ L for all `, ϑ ∈ A. (51)

Next, substituting ϑk in place of ϑ in (50), where k ∈ S(A) ∩ Z(A), we obtain

−k((e(`) ◦ (ϑ)∗) ◦ (`)∗) + k((e(ϑ) ◦ (`)∗) ◦ (`)∗) + e(k)((ϑ ◦ (`)∗) ◦ (`)∗))− k((e(`) ◦ (`)∗) ◦ (ϑ)∗) ∈ L

for all `, ϑ ∈ A. The application of (51) and the condition S(A) ∩ Z(A) * L yields

−((e(`) ◦ (ϑ)∗) ◦ (`)∗) + ((e(ϑ) ◦ (`)∗) ◦ (`)∗)− ((e(`) ◦ (`)∗) ◦ (ϑ)∗) ∈ L (52)

for all `, ϑ ∈ A. From (50) and (52), we can obtain

2((e(ϑ) ◦ (`)∗) ◦ (`)∗) ∈ L for all `, ϑ ∈ A;

that is,

(e(ϑ) ◦ `) ◦ ` ∈ L (53)

for all `, ϑ ∈ A. A linearization for ` in (53) yields that

(e(ϑ) ◦ `) ◦ t + (e(ϑ) ◦ t) ◦ ` ∈ L (54)

for all `, ϑ, t ∈ A. Replacing ` with `t in (54), we have

((e(ϑ) ◦ `)t− `[e(ϑ), t]) ◦ t + ((e(ϑ) ◦ t) ◦ `)t− `[e(ϑ) ◦ t, t] ∈ L for all `, ϑ, t ∈ A,

which can be written as

((e(ϑ) ◦ `) ◦ t)t− (`[e(ϑ), t]) ◦ t + ((e(ϑ) ◦ t) ◦ `)t− `[e(ϑ) ◦ t, t] ∈ L for all `, ϑ, t ∈ A.

Using (54), we have

−(`[e(ϑ), t]) ◦ t− `[e(ϑ) ◦ t, t] ∈ L for all `, ϑ, t ∈ A.

This implies that

`([e(ϑ), t] ◦ t + [e(ϑ) ◦ t, t])− [`, t][e(ϑ), t] ∈ L for all `, ϑ, t ∈ A. (55)

Replacing ` with `r in the last relation, we have

`r([e(ϑ), t] ◦ t + [e(ϑ) ◦ t, t])− `[r, t][e(ϑ), t]− [`, t]r[e(ϑ), t] ∈ L for all `, ϑ, t, r ∈ A.

The application of (55) gives

[`, t]r[e(ϑ), t] ∈ L for all `, ϑ, t, r ∈ A;

that is,
[`, t]A[e(ϑ), t] ⊆ L for all `, ϑ, t ∈ A. (56)

The above relation is the same as (46). Therefore, using the same arguments as we
used after (46), we obtain that e(A) ⊆ L or A/L is a commutative integral domain. If
e(A) ⊆ L, then the proof is achieved. On the other hand, if A/L is a commutative integral
domain, then (54) reduces as

8`te(ϑ) ∈ L for all `, ϑ, t ∈ A.



Mathematics 2023, 11, 3117 17 of 20

Since char(A/L) 6= 2, the above relation becomes

e(ϑ)Ae(ϑ) ⊆ L for all ϑ ∈ A.

The primeness of L forces that e(A) ⊆ L. Thus, the proof is complete now.

The following results are immediate corollaries of Theorems 14 and 15.

Corollary 12. Let A be a ring with involution ∗ of the second kind and L be a prime ideal of A such
that S(A) ∩ Z(A) 6⊆ L. If A admits a derivation e such that [[e(`), (`)∗], ϑ] ∈ L for all `, ϑ ∈ A,
then one of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L;
3. A/L is a commutative integral domain.

Corollary 13 ([4], Theorem 3.7). Let A be a prime ring with involution ∗ of the second kind such
that char(A) 6= 2. If A admits a derivation e such that [e(`), (`)∗] ∈ Z(A) for all ` ∈ A, then
e = 0 or A is a commutative integral domain.

Corollary 14. Let A be a prime ring with involution ∗ of the second kind such that char(A) 6= 2.
If A admits a derivation e such that (e(`) ◦ (`)∗) ◦ (`)∗ = 0 for all ` ∈ A, then e = 0.

Theorem 17. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A
admits a derivation e such that (e(`) ◦ (`)∗) ◦ (`)∗ = 0 for all ` ∈ A, then e = 0.

Proof. Given that
(e(`) ◦ (`)∗) ◦ (`)∗ = 0 for all ` ∈ A,

by the semiprimeness of A, there exists a family L = {Lα : α ∈ ∧} of prime ideals such that⋂
α
Lα = (0). For each Lα in L, we have

(e(`) ◦ (`)∗) ◦ (`)∗ ∈ Lα for all ` ∈ A.

The application of Theorem 16 gives that e(A) ⊆ Lα. Thus, e(A) ⊆ ⋂
α
Lα = (0) and

hence e = 0. Thereby, the proof is complete.

We feel that Theorem 14 (resp. Theorem 16) can be proved without the assumption
S(A) ∩ Z(A) 6⊆ L for any prime ideal L of an arbitrary ring A, but, unfortunately, we are
unable to carry this out. Hence, Theorem 14 leads to the following conjecture.

Conjecture: Let A be a ring with involution ∗ of the second kind and L be a prime
ideal of A. If A admits a derivation e such that [[e(`), (`)∗], (`)∗] ∈ L for all ` ∈ A, then one
of the following holds:

1. char(A/L) = 2;
2. e(A) ⊆ L;
3. A/L is a commutative integral domain.

5. A Direction for Further Research

Throughout this section, we assume that k1, k2, m and n are fixed positive integers.
Several papers in the literature show evidence of how the behavior of some additive
mappings is closely related to the structure of associative rings and algebras (cf.; [3,6,7,9,
19,28,30,34]. A well-known result proved by Posner [1] states that a prime ring must be
commutative if [e(`), `] = 0 for all ` ∈ A, where e is a nonzero derivation of A. In [2,23],
Vukman extended Posner’s theorem for commutators of order two and three and described
the structure of prime rings whose characteristic is not two and satisfes [[e(`), `], `] = 0
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for every ` ∈ A. The most famous and classical generalization of Posner’s and Vukman’s
results is the following theorem due to Lanski [8] for kth-commutators.

Theorem 18 ([8] (Theorem 1)). Let m, n and k be fixed positive integers and A be a prime ring. If
a derivation e of A satisfies [e(`m), `m]k = 0 for all ` ∈ I, where I is a nonzero left ideal of A, then
e = 0 or A is commutative.

In [52], Lee and Shuie studied that, if a noncommutative prime ring A admits a
derivation e such that [e(`m)`n, `r]k = 0 for all ` ∈ I, where I is a nonzero left ideal, then
e = 0 except when A ∼= M2(GF(2)). In the year 2000, Carini and De Filippis [27] studied
Posner’s classical result for power central values. In particular, they discussed this situation
for A of a characteristic that is not two and proved that, if ([e(`), `])n ∈ Z(A) for all ` ∈ L, a
noncentral Lie ideal of A, then A satisfies s4. In 2006, Wang and You [11] mentioned that the
restriction of the characteristic need not be necessary in Theorem 1.1 of [27]. More precisely,
they proved the following result.

Theorem 19. Let A be a noncommutative prime ring and L be a noncentral Lie ideal of A. If
A admits a derivation e satisfying ([e(`m), `m])n ∈ Z(A) for all ` ∈ L, then A satisfies s4, the
standard identity in four variables.

Motivated by these two results, Wang [10] studied the similar condition for A of a
characteristic that is not two and obtained the same conclusion. In fact, he proved the
following results.

Theorem 20. Let A be a noncommutative prime ring of a characteristic that is not two. If A admits
a nonzero derivation e satisfying ([e(`m), `m]n)k ∈ Z(A) for all ` ∈ A, then A satisfies s4, the
standard identity in four variables.

In our main results (Theorems 6, 8, 10, 14 and 15), we investigated the structure of the
quotient rings A/L, where A is an arbitrary ring and L is a prime ideal of A. Nevertheless,
there are various interesting open problems related to our work. In this final section, we
will propose a direction for future further research. In view of the above mentioned results
and our main theorems, the following problems remain unanswered.

Problem 1. Let A be a ring of a suitable characteristic with involution ∗ of the second kind and L

be a prime ideal of A such that S(A) ∩ Z(A) 6⊆ L. Next, let f : A → A be a mapping satisfying
[ f (`), ((`)∗)m]n ∈ Z(A) or ∈ L for all ` ∈ A. Then, what can we say about the structure of A
and f ?

Problem 2. Let A be a ring of a suitable characteristic with involution ∗ of the second kind and L

be a prime ideal of A such that S(A) ∩ Z(A) 6⊆ L. Next, let e : A→ A be a derivation satisfying
[e(`), (`)∗]n ∈ Z(A) or ∈ L for all ` ∈ A. Then, what can we say about the structure of A and e?

Problem 3. Let A be a ring of a suitable characteristic with involution ∗ of the second kind and L

be a prime ideal of A such that S(A) ∩ Z(A) 6⊆ L. Next, let e : A→ A be a derivation satisfying
([e(xk1), ((`)∗)k2 ]n)m ∈ Z(A) or ∈ L for all ` ∈ A. Then, what can we say about the structure of
A and e?

Problem 4. Let A be a ring of a suitable characteristic with involution ∗ of the second kind and L

be a prime ideal of A such that S(A) ∩ Z(A) 6⊆ L. Next, let e : A→ A be a derivation satisfying
(e(`k1) ◦n ((`)∗))k2)m ∈ Z(A) or ∈ L for all ` ∈ A. Then, what can we say about the structure of
A and e?
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6. Conclusions

In the present paper, we extended very famous and classical results due to Vukman
[2] and Posner [1]. Moreover, we described the structure of quotient rings A/L, where A

is an arbitrary ring and L is a prime ideal of A. Further, we studied a conventional result
due to Bell and Martindale [18]. Finally, we concluded our manuscript with a direction for
future further research.
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