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Abstract: It is known that discrete analogs of differential operators play an important role in con-
structing optimal quadrature, cubature, and difference formulas. Using discrete analogs of differential
operators, optimal interpolation, quadrature, and difference formulas exact for algebraic polynomials,
trigonometric and exponential functions can be constructed. In this paper, we construct a discrete
analogue Dm(hβ) of the differential operator d2m

dx2m + 2 dm

dxm + 1 in the Hilbert space W(m,0)
2 . We develop

an algorithm for constructing optimal quadrature formulas exact on exponential-trigonometric func-
tions using a discrete operator. Based on this algorithm, in m = 2, we give an optimal quadrature
formula exact for trigonometric functions. Finally, we present the rate of convergence of the optimal
quadrature formula in the Hilbert space W(2,0)

2 for the case m = 2.

Keywords: differential operator; discrete analogue; Hilbert space; discrete argument functions;
optimal quadrature formula

MSC: 65D32

1. Introduction Statement of the Problem

Quadrature formulas are extensively used in different areas of mathematics and its
practical applications. When obtaining a discrete approximation, it is crucial that the
quadrature formula approaches the given definite integrals as closely as possible. Such
formulas can be obtained using variational principles. Therefore, constructing optimal
quadrature formulas on classes of differentiable functions using the variational method is
an important problem in computational mathematics. The problem of optimizing numerical
integration formulas using the variational approach involves finding the minimum of the
error functional norm in the given space of functions. There are two problems related to
this: Nikol’skii’s problem [1,2], which involves minimizing the norm of the error functional
with coefficients and nodes, and Sard’s problem [3–5], which involves minimizing the norm
of the error functional with coefficients for fixed nodes. The solutions to Nikol’skii’s and
Sard’s problems are referred to as the optimal quadrature formula in the sense of Nikol’skii
and the sense of Sard, respectively.

In this paper, we investigate Sard’s problem of the construction of optimal quadrature
formulas in a Hilbert space.

We indicate W(m,0)
2 the class of functions ϕ defined on the interval [0,1], which pos-

sesses a continuous (m− 1)th derivative on [0,1] and whose mth derivative is in L2(0, 1).
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The class W(m,0)
2 under the pseudo-inner product

〈ϕ, ψ〉 =
1∫

0

(
ϕ(m)(x) + ϕ(x)

)(
ψ(m)(x) + ψ(x)

)
dx (1)

is a Hilbert space if we can find functions that are different from the equation’s solution
f (m)(x) + f (x) = 0. Thus, W(m,0)

2 is the Hilbert space equipped with the norm

‖ϕ‖
W(m,0)

2
=

(∫ 1

0

(
ϕ(m)(x) + ϕ(x)

)2
) 1

2

, (2)

corresponding to the inner product (1).
For a function ϕ from the space W(m,0)

2 , we consider a quadrature formula of the form

1∫
0

ϕ(x)dx ∼=
N

∑
β=0

C[β]ϕ(xβ), (3)

where C[β] and xβ are coefficients and nodes, respectively, and ϕ is an element of the

Hilbert space W(m,0)
2 (0, 1).

The following difference between integral and quadrature sum

(`, ϕ) =

1∫
0

ϕ(x)dx−
N

∑
β=0

C[β]ϕ(xβ) (4)

is called the error of the quadrature Formula (3) and (`, ϕ) =
+∞∫
−∞

`(x)ϕ(x)dx is the value of

the error functional ` for the given function ϕ. Here, the error functional ` has the form

`(x) = ε [0,1](x)−
N

∑
β=0

C[β]δ(x− xβ), (5)

where ε [0,1](x) is the characteristic function of the interval [0,1], and δ is Dirac’s delta-
function.

According to the Cauchy-Schwarz inequality, the absolute value of the error (4) is
estimated using the norm

‖`‖
W(m,0)∗

2
= sup
‖ϕ‖

W(m,0)
2

=1
|(`, ϕ)| (6)

of the error functional `, as follows:

|(`, ϕ)| ≤ ‖ϕ‖
W(m,0)

2
‖`‖

W(m,0)∗
2

,

where W(m,0)∗
2 is the conjugate space to the space W(m,0)

2 .

Sard’s problem on the construction of optimal quadrature formulas in the space W(m,0)
2

is to find such coefficients C[β] that satisfy the equality

‖ ˚̀‖
W(m,0)∗

2
= inf

C[β]
‖`‖

W(m,0)∗
2

, (7)

i.e., to find the minimum of the norm (6) of the error functional ` using coefficients C[β] for
fixed nodes xβ.
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This problem consists of two parts: first, calculating the norm (6) of the error functional
` in the space W(m,0)∗

2 , and then finding the minimum of the norm (6) using coefficients
C[β] for fixed nodes xβ.

There are a number of methods for constructing optimal quadrature formulas in the
sense of Sard, such as the spline method [6–8], the ϕ-function method [9–14], and Sobolev’s
method [15–18]. In diverse spaces, based on these methods, Sard’s problem has been
reviewed by many authors (see, for example, [11–14,19–23] and references therein).

The spline method. I.J. Schoenberg [24] showed the relationship between optimal
quadrature formulas in the sense of Sard and natural splines.

It is considered that for a linear differential operator L ≡ am
dm

dxm + am−1
dm−1

dxm−1 + . . . +
a1

d
dx + a0, am 6= 0; in [25], Chapter 6, the authors studied the Hilbert spaces in the analysis

of generalized splines.Specifically, with the pseudo-inner product

〈ϕ, ψ〉L =

b∫
a

Lϕ(x) · Lψ(x)dx.

Sobolev’s method. It is worth noting that Sobolev’s technique is based on the formation
of a discrete analogue to a linear differential operator. Using this strategy, we can obtain the
analytic expressions for coefficients of optimal quadrature formulas in the sense of Sard.

In [15,16], the minimization problem of the norm of the error functional using co-
efficients was decreased to the system of difference equations of the Wiener–Hopf type
in the space L(m)

2 , where L(m)
2 is the Sobolev space of functions with a square integrable

generalized mth derivative. The existence and uniqueness of a solution for this system was
shown by Sobolev [15–18], who described an analytic algorithm for finding the coefficients
of optimal cubature formulas. For this, Sobolev studied the discrete analogue D(m)

hH (hβ) of
the polyharmony operator ∆m. The problem of the construction of the discrete operator
D(m)

hH (hβ) in a n-dimensional case is complicated and remains an open problems.In the

one-dimensional case, the discrete analogue D(m)
h (hβ) of the differential operator d2m

dx2m was
obtained by Z.Zh. Zhamalov [26] and Kh.M. Shadimetov [27].

Furthermore, in [28–30], discrete analogues of differential operators d2m

dx2m − d2m−2

dx2m−2 ,
d2m

dx2m + 2ω2 d2m−2

dx2m−2 + ω4 d2m−4

dx2m−4 (for m ≥ 2), d2m

dx2m − 1 (for odd m) were constructed and their
properties were studied.

Notice that the discrete analogues of differential operators mentioned above were used
in the construction of optimal quadrature, interpolation formulas, and spline functions in
the L(m)

2 , W(m,m−1)
2 , W(m,0)

2 and K2(Pm) spaces (see, e.g., [28,31–39]).
In addition, in the works of M.D. Ramazanov [40–42], optimal cubature formulas were

constructed. The author considered the spaces of functions Wµ
2 , which are obtained by

completing the finite Fourier series

f (x) = ∑
k

fke2πikx (8)

in norm: ∥∥∥ f |Wµ
2

∥∥∥ =

∣∣∣∣∣∑k
| fkµ(2πik)|2

∣∣∣∣∣
1/2

(9)

In the works of M.D. Ramazanov and Kh.M. Shadimetov [40,41], optimal cubature

formulas were constructed in the space L̃(m)
2 (H). In addition, in [43], an optimal cubature

formula of the Euler–Maclaurin type was constructed in the space L(m)
2 (Rn).

This work aims to study Sard’s problem of constructing optimal quadrature formulas
of the form (3) in the space W(m,0)

2 using Sobolev’s method. As a consequence, we obtain the
optimal quadrature formula, which is exact to the basis functions of the kernel of the norm
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(2). Here, the basis functions are contained in exponential-trigonometric functions. We
acquire the optimal quadrature formula, which is not precise for any algebraic polynomial.

The rest of the paper is formulated as follows: in Section 2, the extremal function,
which corresponds to the error functional `, is found; in Section 3, with the help of this
extremal function the norm of the error functional is calculated, i.e., the first part of Sard’s
problem is solved; in Section 4, a system of linear equations for coefficients of the optimal
quadrature formulas in the space W(m,0)

2 is obtained, while the existence and uniqueness
of a solution for this system are discussed; in Section 5, the discrete analogue Dm(hβ) of
the differential operator d2m

dx2m + 2 dm

dxm + 1 is obtained; and in Section 6, Sobolev’s method

of the construction of optimal quadrature formulas of the form (3) in the space W(m,0)
2 is

examined. Next, the optimal quadrature formula that is exact to trigonometric functions is
obtained. Finally, at the end of the paper, the rate of convergence of the optimal quadrature
formula in the space W(2,0)

2 for the case m = 2 is studied.

2. Extremal Function of the Error Functional of Quadrature Formulas

For identifying the norm of the error functional (5) of the quadrature Formula (3), we
apply the extremal function of the error functional.

The function ψ` satisfying the equation

(`, ψ`) = ‖`‖W(m,0)∗
2

· ‖ψ`‖W(m,0)
2

(10)

is called the extremal function for the functional ` [15–18].
Since W(m,0)

2 is the Hilbert space, then using the Riesz theorem on the general form of

a linear continuous functional on Hilbert spaces, for the error functional ` ∈W(m,0)∗
2 , there

exists a unique function ψ` ∈W(m,0)
2 , such that for any ϕ ∈W(m,0)

2 , the following equality
is fulfilled

(`, ϕ) = 〈ψ`, ϕ〉. (11)

Additionally, ‖`‖
W(m,0)∗

2
= ‖ψ`‖W(m,0)

2
. Here, 〈ψ`, ϕ〉 is the inner product of two functions

defined by equality (1) in the space W(m,0)
2 .

In particular, from (11), when ϕ = ψ` we have

(`, ψ`) = 〈ψ`, ψ`〉 = ‖ψ`‖2
W(m,0)

2
= ‖ψ`‖W(m,0)

2
· ‖`‖

W(m,0)∗
2

= ‖`‖2
W(m,0)∗

2
.

The solution ψ` of Equation (11) is the extremal function. Therefore, to calculate
the norm of the error functional `, first, we should find the extremal function ψ` from
Equation (11) and then calculate the square of the norm of the error functional `, as follows:

‖`‖2
W(m,0)∗

2
= (`, ψ`). (12)

Integrating in parts the right-hand side of (11) we obtain

(`, ϕ) = (−1)m
1∫

0

(
ψ
(2m)
` (x) + ψ

(m)
` (x) + (−1)mψ

(m)
` (x) + (−1)mψ`(x)

)
ϕ(x)dx +

+
m−1

∑
s=0

(−1)s
(

ψ
(m+s)
` (x) + ψ

(s)
` (x)

)
ϕ(m−s−1)(x)

∣∣∣∣∣
1

0
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Here, we come to the following two cases for the odd and even values of m, respec-
tively

(`, ϕ) = (−1)m
1∫

0

(
ψ
(2m)
` (x)− ψ`(x)

)
ϕ(x)dx + (13)

+
m−1

∑
s=0

(−1)s
(

ψ
(m+s)
` (x) + ψ

(s)
` (x)

)
ϕ(m−s−1)(x)

∣∣∣∣∣
1

0

for odd m

and

(`, ϕ) =

1∫
0

(
ψ
(2m)
` (x) + 2ψ

(m)
` (x) + ψ`(x)

)
ϕ(x)dx + (14)

+
m−1

∑
s=0

(−1)s
(

ψ
(m+s)
` (x) + ψ

(s)
` (x)

)
ϕ(m−s−1)(x)

∣∣∣∣∣
1

0

for even m.

To find the extremal function, we solve Equations (14) and (15) depending on the corre-
sponding values of m.

We note that, in the present paper, we study Sard’s problem in space W(m,0)
2 for even

natural numbers m. For odd m, Sard’s problem in this space was solved in [30].
Furthermore, we assume that m is an even natural number. From (14), taking into

account the uniqueness of the function ψ`, we have the following equation:

ψ
(2m)

` (x) + 2ψ
(m)

` (x) + ψ`(x) = `(x) (15)

with the boundary conditions[(
ψ

(m+s)

` (x) + ψ
(s)

` (x)
)]∣∣∣x=1

x=0
= 0, s = 0, m− 1. (16)

It is worth-mentioning that, in the work [44] for the solution of the boundary value
problem (15)–(16), the following result was gained.

Theorem 1. A solution of Equation (15) with the boundary conditions (16) is the extremal function
ψ` of the error functional `, and this has the form

ψ`(x) = `(x) ∗ Gm(x) + Ym(x) ,

where Gm(x) is Green’s function, i.e., it is a fundamental solution of the equation

G
(2m)

m (x) + 2G
(m)

m (x) + Gm(x) = δ(x) (17)

and is expressed as follows:

Gm(x) =
sgnx
2m2 ·

m

∑
k=1

[
(1−m)ex cos (2k−1)π

m cos
(

x sin
(
(2k− 1)π

m

)
+

(2k− 1)π
m

)
(18)

+xex cos (2k−1)π
m cos

(
x sin

(
(2k− 1)π

m

)
+

2π · (2k− 1)
m

)]
,

Ym(x) =

m
2

∑
k=1

ex·cos (2k−1)π
m

[
r1,k cos

(
x sin

(2k− 1)π
m

)
+ r2,k sin

(
x sin

(2k− 1)π
m

)]
, (19)

r1k and r2k are constants.
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As the error functional (5) is defined in the space W(m,0)
2 , it is crucial to impose the

following conditions:(
`, ex cos (2k−1)π

m cos
(

x sin
(2k− 1)π

m

))
= 0, k = 1,

m
2

, (20)(
`, ex cos (2k−1)π

m sin
(

x sin
(2k− 1)π

m

))
= 0, k = 1,

m
2

, (21)

meaning that the quadrature Formula (3) is exact for linear combinations of functions

ex cos (2k−1)π
m cos

(
x sin

(2k− 1)π
m

)
, ex cos (2k−1)π

m sin
(

x sin
(2k− 1)π

m

)
k = 1,

m
2

.

3. The Norm of the Error Functional of the Quadrature Formulas

As it was stated above, to calculate the square of the norm of the error functional (5), it
is enough to calculate the value (`, ψ`) of the error functional ` at function ψ`. For this, first,
using equalities (20) and (21), we obtain

(`, Ym(x)) = 0,

where Ym(x) is the function defined by (19) for even m. Then, using (19), we have

‖`‖2
W(m,0)

2
= (`, ψ`) =

+∞∫
−∞

`(x)
[
`(x) ∗ Gm(x) + Ym(x)

]
dx

=

+∞∫
−∞

`(x)
[
`(x) ∗ Gm(x)

]
dx (22)

where Gm(x), as defined by (19).
Here, for the convolution in (22) taking (5) into account, we obtain

`(x) ∗ Gm(x) =
+∞∫
−∞

`(y)Gm(x− y)dy =

1∫
0

Gm(x− y)dy−
N

∑
β=0

C[β]Gm(x− xβ).

Then, the square of the norm (22) of the error functional ` takes the form

‖`‖2
W(m,0)

2
=

N

∑
β=0

C[β]

 1∫
0

Gm(x− xβ) + Gm(xβ − x)

dx

−
N

∑
β=0

N

∑
γ=0

C[β]C[γ]Gm(xβ − xγ)−
1∫

0

1∫
0

Gm(x− y)dxdy. (23)

Since Gm(x) is the even function, we have

Gm(xβ − x) = Gm(x− xβ),

then, taking into account the last equality, from (23) we obtain

‖`‖2
W(m,0)

2
=

N

∑
β=0

N

∑
γ=0

C[β]C[γ]Gm(xβ − xγ) +
∫ 1

0

∫ 1

0
Gm(x− y)dxdy

−2
N

∑
β=0

C[β]
∫ 1

0
Gm(x− xβ)dx. (24)
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Thus, the first part of Sard’s problem on the construction of optimal quadrature
formulas in the space W(m,0)

2 is solved. Next, we consider the second part of the problem.

4. System for Coefficients of Optimal Quadrature Formulas

Next, our focus shifts to minimizing the squared norm of the error functional (24),
which is subject to conditions (20) and (21). It is established that the error function `
satisfies these conditions. The squared norm (24) of the error function is dependent on the
multi-variable coefficients C[β](β = 0, N) of the quadrature Formula (3).

To determine the conditional minimum point of the squared norm of the error func-
tional (5) under the conditions (20) and (21), we employ the method of indefinite La-
grange multipliers.

Denoting C = (C0, C1, . . . , CN) and r =
(

r11, . . . , r1 m
2

, r21, . . . , r2 m
2

)
, we consider the

following function:

Ψ(C, r) = ‖`‖2 − 2

m
2

∑
k=1

[
r1k

(
`, ex cos (2k−1)π

m cos
(

x sin
(2k− 1)π

m

))

+r2k

(
`, ex cos (2k−1)π

m sin
(

x sin
(2k− 1)π

m

))]
,

where r1k and r2k

(
k = 1 m

2

)
are Lagrange multipliers.

Equating to zero the partial derivatives of the function Ψ(C, r) with coefficients
C[β](β = 0, N) and with r1k, r2k

(
k = 1, m

2

)
, we acquire the following system:

N

∑
γ=0

C[γ]Gm(xβ − xγ) + Ym(xβ) = fm(xβ), β = 0, 1, . . . , N, (25)

N

∑
γ=0

C[γ]exγ cos (2k−1)π
m cos

(
xγ sin

(2k− 1)π
m

)
= g1k, k = 1, 2, . . . ,

m
2

, (26)

N

∑
γ=0

C[γ]exγ cos (2k−1)π
m sin

(
xγ sin

(2k− 1)π
m

)
= g2k, k = 1, 2, . . . ,

m
2

, (27)

where

fm(xβ) =
∫ 1

0
Gm(x− xβ)dx, (28)

g1k = ecos (2k−1)π
m · cos

(
sin

(2k− 1)π
m

− (2k− 1)π
m

)
− cos

(2k− 1)π
m

, (29)

g2k = sin
(2k− 1)π

m
− ecos (2k−1)π

m · sin
(

sin
(2k− 1)π

m
− (2k− 1)π

m

)
, (30)

k = 1, m
2 , Gm(x) and Ym(x), as defined in Theorem 1.

We can notice that the system (25)–(27) is called the discrete system of Wiener–Hopf
type [15,17].

It should be emphasized that the existence and uniqueness of an optimal quadrature
formula of the form (3) in the sense of Sard in Hilbert spaces were studied in [13,17].
Specifically, we can obtain that the difference system (25)–(27) for any set of different nodes
xβ, β = 0, 1, . . . , N, when N + 1 ≥ m has a unique solution, and this solution gives a
minimum to ‖`‖2 found by (24) under the conditions (20) and (21). The existence and
uniqueness of the solution to such types of different systems were also studied in [13,17].

Furthermore, we consider the case of equally spaced nodes. Suppose xβ = hβ,
β = 0, 1, . . . N, h = 1

N , N = 1, 2, . . .
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We suppose that C[β] = 0 for β < 0 and β > N. Then, using the convolution of
two discrete argument functions (see [13,17])

ϕ(hβ) ∗ ψ(hβ) =
∞

∑
γ=−∞

ϕ(hγ) · ψ(hβ− hγ),

we rewrite the system (25)–(27) in the following convolution form:

C[β] ∗ Gm(hβ) + Ym(hβ) = fm(hβ), β = 0, 1, . . . , N, (31)

N

∑
γ=0

C[γ]ehγ cos (2k−1)π
m cos

(
hγ sin

(2k− 1)π
m

)
= g1k, k = 1, 2, . . . ,

m
2

, (32)

N

∑
γ=0

C[γ]ehγ cos (2k−1)π
m sin

(
hγ sin

(2k− 1)π
m

)
= g2k, k = 1, 2, . . . ,

m
2

, (33)

where Gm(hβ), Ym(hβ), fm(hβ), g1k, and g2k are defined by (18), (19), (28)–(30), respectively.
There are unknowns and linear equations in the system (31)–(33).

To solve the system (31)–(33) using Sobolev’s technique, we need a discrete analogue
of the differential operator d2m

dx2m + 2 dm

dxm + 1. The next section is devoted to the construction
of this discrete analogue.

5. A Discrete Analogue Dm(hβ) of the Differential Operator d2m

dx2m + 2 dm

dxm + 1

In the present section, for even m, we obtain the discrete argument function Dm(hβ)
that satisfies the equation

Dm(hβ) ∗ Gm(hβ) = δ(hβ), (34)

where

Gm(hβ) =
sgn(hβ)

2m2 ·
m

∑
k=1

[
(1−m)ehβ cos (2k−1)π

m cos
(

hβ sin
(
(2k− 1)π

m

)
+

(2k− 1)π
m

)

+ hβehβ cos (2k−1)π
m cos

(
hβ sin

(
(2k− 1)π

m

)
+

2π · (2k− 1)
m

)]
, (35)

δ(hβ) is the discrete delta-function, i.e.,

δ(hβ) =

{
1, β = 0,
0, β 6= 0,

h =
1
N

, N = 1, 2, . . . .

It is worth mentioning that the process of constructing the discrete argument function
is comparable to the process of constructing discrete analogues of differential operators d2m

dx2m ,
d2m

dx2m − d2m−2

dx2m−2 , d2m

dx2m + 2ω2 d2m−2

dx2m−2 + ω4 d2m−4

dx2m−4 , and d2m

dx2m − 1 (for odd m) in the works [27–30].
The discrete function Dm(hβ) plays a significant role in calculating the coefficients

of optimal quadrature formulas in the space W(m,0)
2 . We can notice that Equation (34) is a

discrete analog of the following equation:(
d2m

dx2m + 2
dm

dxm + 1
)

Gm(x) = δ(x), (36)

where Gm(x) is defined by (19), and δ(x) is Dirac’s delta-function.
We present the following notation:
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a1k = (1−m) cos
(2k− 1)π

m
,

a2k = 2eh cos (2k−1)π
m

(
(m− 1) cos

(
h sin

(2k− 1)π
m

− (2k− 1)π
m

)

+ h cos
(

h sin
(2k− 1)π

m
+

2π(2k− 1)
m

))
,

a3k = 2e2h cos (2k−1)π
m

(
(1−m) sin

(2k− 1)π
m

sin
(

2h sin
(2k− 1)π

m

)
− 2h cos

2π(2k− 1)
m

)
,

a4k = 2e3h cos (2k−1)π
m

(
(1−m) cos

(
h sin

(2k− 1)π
m

+
(2k− 1)π

m

)
+ h cos

(
h sin

(2k− 1)π
m

− 2π(2k− 1)
m

))
,

a5k = (m− 1)e4h cos (2k−1)π
m cos

(2k− 1)π
m

,

b1k = −4eh cos (2k−1)π
m cos

(
h sin

(2k− 1)π
m

)
,

b2k = 2 · e2h cos (2k−1)π
m

(
2 + cos

(
2h sin

(2k− 1)π
m

))
,

b3k = −4e3h cos (2k−1)π
m cos

(
h sin

(2k− 1)π
m

)
,

b4k = e4h cos (2k−1)π
m .

The results of this section are the following:

Theorem 2. The discrete analogue Dm(hβ) of the differential operator d2m

dx2m + 2 dm

dxm + 1 satisfying
Equation (34), when m is an even natural number, has the form

Dm(hβ) =
m2

K
·



m−1
∑

k=1
A∗k · λ

|β|−1
k , |β| ≥ 2,

1 +
m−1
∑

k=1
A∗k , |β| = 1,

M1 − K1
K +

m−1
∑

k=1

A∗k
λk

, β = 0.

(37)

where

K =

m
2

∑
k=1

a2k + a1k

m
2

∑
j=1, j 6=k

b1j

, M1 =

m
2

∑
k=1

b1k,

K1 =

m
2

∑
k=1

a3k + a2k

m
2

∑
j=1,j 6=k

b1j + a1k

m
2

∑
j=1,j 6=k

b2j

,

A∗k =
A2m(λk)

λk · (P2m−2(λk))′
, P2m−2(λ) =

1
λ

P2m(λ),

A2m(λ) =

m
2

∏
k=1

(
λ4 + b1kλ3 + b2kλ2 + b3kλ + b4k

)
,
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P2m(λ) =

m
2

∏
k=1

Ak(λ)

m
2

∑
j=1

Bj(λ)

Aj(λ)

Bj(λ) = a1jλ
4 + a2jλ

3 + a3jλ
2 + a4jλ + a5j,

λk are roots of the polynomial P2m−2(λ) with an absolute value less than one, i.e., |λk| < 1.

Theorem 3. The discrete analogue Dm(hβ) of the differential operator d2m

dx2m + 2 dm

dxm + 1 satisfies
the following equalities

1. Dm(hβ) ∗ ehβ cos (2k−1)π
m cos

(
hβ sin (2k−1)π

m

)
= 0,

2. Dm(hβ) ∗ ehβ cos (2k−1)π
m sin

(
hβ sin (2k−1)π

m

)
= 0,

3. Dm(hβ) ∗ hβehβ cos (2k−1)π
m cos

(
hβ sin (2k−1)π

m

)
= 0,

4. Dm(hβ) ∗ hβehβ cos (2k−1)π
m sin

(
hβ sin (2k−1)π

m

)
= 0, k = 1, 2, . . . , m

2 .

Here, Gm(hβ) is defined by (35) and δ(hβ) is a discrete delta-function.

In order to demonstrate the theorems mentioned above, we rely on the widely recog-
nized formulas for generalized functions and Fourier transforms [45,46]. Specifically, we
define the direct and inverse Fourier transforms of the function ϕ

F[ϕ(x)] =
+∞∫
−∞

ϕ(x)e2πipxdx, F−1[ϕ(p)] =
+∞∫
−∞

ϕ(x)e−2πipxdp . (38)

Fourier transform of product and convolution of functions ϕ and ψ:

F[ϕ ∗ ψ] = F[ϕ] · F[ψ], (39)

F[ϕ · ψ] = F[ϕ] ∗ F[ψ]. (40)

For the delta function and its derivatives, the following hold:

F[δ(x)] = 1, F
[
δ(α)(x)

]
= (−2πip)α . (41)

We also use the following well-known properties of the delta-function

δ(hx) = h−1δ(x), (42)

δ(x− a) · f (x) = δ(x− a) · f (a), (43)

δ(α)(x) ∗ f (x) = f (α)(x), (44)

Φ0(x) =
+∞

∑
β=−∞

δ(x− β),
+∞

∑
β=−∞

e2πixβ =
+∞

∑
β=−∞

δ(x− β). (45)

Proof of Theorem 2. It is more convenient to work with harrow-shaped functions rather
than functions of a discrete argument. By using harrow-shaped functions, we can perform
operations more easily. The harrow-shaped function that corresponds to the function of the
discrete argument Dm(hβ) takes the following form:

↽⇁
Dm (x) =

+∞

∑
β=−∞

Dm(hβ) · δ(x− hβ).
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Now, using the definition of harrow-shaped functions, instead of Equation (34), we
consider the following equivalent equation in terms of harrow-shaped functions:

↽⇁
Dm (x)∗

↽⇁
G m (x) = δ(x). (46)

In this case, it has to be taken into account that
↽⇁
δ (x) = δ(x) and

↽⇁
G m (x) =

+∞
∑

β=−∞
Gm(hβ) · δ(x − hβ) are harrow-shaped functions corresponding to a

discrete function Gm(hβ).
Applying the Fourier transform to both sides of Equation (46), and taking (39) and (40)

into account, we obtain

F
[↽⇁

Dm (x)
]
=

1

F
[↽⇁

G m (x)
] . (47)

First, we compute the Fourier transform F
[↽⇁

G m (x)
]
. Taking into account (43), (45),

and also using Formulas (40) and (42), we have

F
[↽⇁

G m (x)
]
= F[Gm(x)] ∗Φ0(hp). (48)

To calculate the Fourier transform F[Gm(x)] of the function Gm(x), we use the equali-
ties (36) and (44). Then, taking into account equalities (39) and (41), we obtain

F[Gm(x)] =
1

(2πip)2m + 2 · (2πip)m + 1
=

m

∑
k=1

[
ak

2πip− pk
+

bk

(2πip− pk)
2

]
. (49)

We denote the roots of the equation p2m + 2pm + 1 = 0 as pk = cos (2k−1)π
m +

i sin (2k−1)π
m , ak = 1−m

m2 pk and bk = 1
m2 p2

k , k = 1, 2, . . . , m, m = 2n, n = 1, 2, . . . . We
calculate the first part of the sum (49)

m

∑
k=1

ak
2πip− pk

=
1−m

m2

m

∑
k=1

pk
2πip− pk

=
1−m

m2

[
p1

2πip− p1
+ . . . +

pm

2πip− pm

]
.

Then, we use the following equality, i.e.,

− m
(2πip)m + 1

=
p1

2πip− p1
+

p2

2πip− p2
+ . . . +

pm

2πip− pm
,

hence, we obtain
m

∑
k=1

ak
2πip− pk

=
m− 1

m
· 1
(2πip)m + 1

, (50)

then, the calculation of convolution (48), taking into account (49), (50), and (47), gives

F
[↽⇁

Dm (x)
]

=

[
m− 1

m
· hm−1

(−2πi)m ∑
β

1[
β− h

(
p + p1i

2π

)]
· . . . . ·

[
β− h

(
p + pmi

2π

)]
− h

4π2m2

m

∑
k=1

p2
k ∑

β

1[
β− h

(
p + pk i

2π

)]2

]−1

= [S1 + S2]
−1. (51)
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From (51) we have

S1 =
m− 1

m
· hm−1

(−2πi)m ∑
β

1[
β− h

(
p + p1i

2π

)]
· . . . ·

[
β− h

(
p + pmi

2π

)] , (52)

S2 = − h
4π2m2

m

∑
k=1

p2
k ∑

β

1[
β− h

(
p + pk i

2π

)]2 . (53)

Let us suppose that the Fourier series of the function F
[↽⇁

Dm

]
(p) has the form

F
[↽⇁

Dm

]
(p) =

∞

∑
β=−∞

D̂m(hβ)e2πiphβ, (54)

where D̂m(hβ) are the Fourier coefficients of the function F
[↽⇁

Dm

]
(p), i.e.,

D̂m(hβ) =
∫ h−1

0
F
[↽⇁

Dm

]
(p)e−2πiphβdp. (55)

Applying the inverse Fourier transform to both sides of equality (54), we obtain the
harrow-shaped function

↽⇁
Dm (x) =

∞

∑
β=−∞

D̂m(hβ)δ(x− hβ).

Therefore, based on the definition of harrow-shaped functions, we can deduce that the
discrete function D̂m(hβ) is the desired discrete argument function Dm(hβ). This implies
that we can obtain Dm(hβ) by expanding the right-hand side of (54) as a Fourier series.
To evaluate the infinite series S1 and S2 in (51), we utilize a well-known formula from the
theory of residues (refer to [47]).

∞

∑
β=−∞

f (β) = − ∑
z1,z2, ... , zn

res(πcot(πz) f (z)), (56)

where z1, z2, . . . , zn are the poles of the function f (z).
We present the famous formula (see [48])

∞

∑
β=−∞

1

(β− p)2 =
π2

sin2(πp)
. (57)

To calculate S1, we use the well-known formula from (56)

f (z) =
1[

z− h
(

p + ip1
2π

)]
·
[
z− h

(
p + ip2

2π

)]
· . . . ·

[
z− h

(
p + ipm

2π

)] .

Here, z1 = h
(

p + ip1
2π

)
, z2 = h

(
p + ip2

2π

)
, . . . , zm = h

(
p + ipm

2π

)
are the poles of order 1 of

the function f (z). Then, using the Formula (56) from (52) we obtain

S1 =
m− 1

m
· hm−1

(−2πi)m

[
∑

z1,z2,...,zn

res(πcot(πz) f (z))

]
. (58)
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Using straight calculation, we have the following results:

res
z=z1

(πcot(πz) f (z)) = −
(
−2πi

h

)m−1
· πp1

m
cot
(

πhp +
p1hi

2

)
,

res
z=z2

(πcot(πz) f (z)) = −
(
−2πi

h

)m−1
· πp2

m
cot
(

πhp +
p2hi

2

)
,

. . ...,

res
z=zm−1

(πcot(πz) f (z)) = −
(
−2πi

h

)m−1
· πpm−1

m
cot
(

πhp +
pm−1hi

2

)
,

res
z=zm

(πcot(πz) f (z)) = −
(
−2πi

h

)m−1
· πpm

m
cot
(

πhp +
pmhi

2

)
.

Denoting λ = e2πiph, using the last m equalities and taking into account the following
formulas: cos(z) = ezi+e−zi

2 , sin(z) = ezi−e−zi

2i , cosh(z) = ez+e−z

2 and sinh(z) = ez−e−z

2 , after
some calculations from (58), we obtain

S1 =
1−m

m2

m
2

∑
k=1

[ (
λ2 − e2h cos (2k−1)π

m

)
· cos (2k−1)π

m

λ2 − 2λeh cos (2k−1)π
m cos

(
h sin (2k−1)π

m

)
+ e2h cos (2k−1)π

m

−
2λeh cos (2k−1)π

m sin
(

h sin (2k−1)π
m

)
sin (2k−1)π

m

λ2 − 2λeh cos (2k−1)π
m cos

(
h sin (2k−1)π

m

)
+ e2h cos (2k−1)π

m

]
. (59)

Now, we calculate series (53) using Formula (57), which gives us

S2 =
2hλ

m2

m
2

∑
k=1

[
λ2eh cos (2k−1)π

m cos
(

h sin (2k−1)π
m + 2π(2k−1)

m

)
[
λ2 − 2λeh cos (2k−1)π

m cos
(

h sin (2k−1)π
m

)
+ e2h cos (2k−1)π

m

]2

−
2λe2h cos (2k−1)π

m cos 2π(2k−1)
m − e3h cos (2k−1)π

m cos
(

h sin π(2k−1)
m − 2π(2k−1)

m

)
[
λ2 − 2λeh cos (2k−1)π

m cos
(

h sin (2k−1)π
m

)
+ e2h cos (2k−1)π

m

]2

]
. (60)

Substituting (59) and (60) into equality (51), we obtain

F
[↽⇁

Dm

]
(p) =

m2

K
· A2m(λ)

λP2m−2(λ)
. (61)

For finding the direct form of the discrete function Dm(hβ) on the right-hand side
of (61), we expand into the sum of partial fractions, as follows:

m2

K
· A2m(λ)

λ(λ− λ1)(λ− λ2) · . . . · (λ− λ2m−3)(λ− λ2m−2)
=

m2

K
·
[

λ− K1

K
+ M1

+
A∗0
λ

+
A∗1

λ− λ1
+

A∗2
λ− λ2

+ . . . +
A∗2m−3

λ− λ2m−3
+

A∗2m−2
λ− λ2m−2

]
, (62)

where K, K1, M1, and A2m(λ) are given in the statement of the theorem; A∗0 , A∗1 , A∗2 , . . . ,
A∗2m−3, A∗2m−2 are unknowns; and λ1, λ2, . . . , λ2m−2 are roots of the polynomial P2m−2(λ),
such that λj · λ2m−1−j = 1, j = 1, m− 1.
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For finding unknowns A∗0 , A∗1 , A∗2 , . . . , A∗2m−3, A∗2m−2, we multiply both sides of equal-
ity (62) using the expression λ(λ− λ1)(λ− λ2) · . . . · (λ− λ2m−3)(λ− λ2m−2) and we put
λ = 0, λ = λ1, . . . , λ = λ2m−2. Then, we can obtain the following results:

A∗0 = 1, (63)

A∗k =
A2m(λk)

λkP′2m−2(λk)
, k = 1, 2m− 2. (64)

From (64), taking into account λ1 · λ2 · . . . · λ2m−3 · λ2m−2 = 1, we have

A∗2m−2 = − 1
λ2

1
A∗1 and A∗2m−3 = − 1

λ2
2

A∗2 , . . . . (65)

Finally, using (63)–(65) from (61) we obtain

m2

K
·
[

λ− K1

K
+ M1 +

1
λ
+

∞

∑
γ=0

m−1

∑
j=1

[
A∗j
λ

(
λj

λ

)γ

+
A∗j
λj

(
λjλ
)γ

]]
=

∞

∑
γ=−∞

Dm(hγ)λγ.

Hence, bearing in mind that λ = e2πiph, we obtain the explicit form (37) of the discrete
function Dm(hβ). Theorem 2 is proven.

The proof of Theorem 3 is obtained using the definition of the convolution of discrete
functions and the direct calculation of the left sides of equalities (1)–(4). In (37), we note
that the function Dm(hβ) is even, i.e., Dm(−hβ) = Dm(hβ).

6. Solution of the Discrete Wiener–Hopf System

In this section, we give an algorithm for finding the exact solution of the system (31)–(33)
using the discrete analogue Dm(hβ) of the differential operator d2m

dx2m + 2 dm

dxm + 1, as obtained
in the previous section.

We introduce the following functions:

v(hβ) = C[β] ∗ Gm(hβ) (66)

and
u(hβ) = v(hβ) + Ym(hβ). (67)

Then, taking (34) into account, for optimal coefficients C[β]; we have

C[β] = Dm(hβ) ∗ u(hβ). (68)

Therefore, if we can find the function u(hβ), then optimal coefficients can be defined
using the Formula (68). For calculation of the convolution in (68), it is required to find the
function u(hβ) at all integer values of β. It is obvious from (31) that u(hβ) = fm(hβ) for
hβ ∈ [0, 1].

Now, we have to find the function u(hβ) for β < 0 and β > N. Using the Formula (19),
we calculate the convolution v(hβ) = C(hβ) ∗ Gm(hβ)for hβ /∈ [0, 1].

For β < 0, we have

v(hβ) = Gm(hβ) ∗ C[β] =
∞

∑
γ=−∞

C[γ]Gm(hβ− hγ) =
N

∑
γ=0

C[γ]Gm(hβ− hγ) = − 1
2m2

×
N

∑
γ=0

C[γ]

[
(1−m)

m

∑
k=1

e(hβ−hγ) cos (2k−1)π
m cos

(
(hβ− hγ) sin

(2k− 1)π
m

+
(2k− 1)π

m

)
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+
m

∑
k=1

(hβ− hγ)e(hβ−hγ) cos (2k−1)π
m cos

(
(hβ− hγ) sin

(2k− 1)π
m

+
2π(2k− 1)

m

)]
. (69)

Hence, splitting up the internal sum into two parts

N

∑
γ=0

C[γ]
m

∑
k=1

e(hβ−hγ) cos (2k−1)π
m cos

(
(hβ− hγ) sin

(2k− 1)π
m

+
(2k− 1)π

m

)
= S1,k − S2,k,

N

∑
γ=0

C[γ](hβ− hγ)
m

∑
k=1

e(hβ−hγ) cos (2k−1)π
m cos

(
(hβ− hγ) sin

(2k− 1)π
m

+
(2k− 1)π

m

)
= S3,k + S4,k,

where

S1,k − S2,k =
N

∑
γ=0

C[γ]

m
2

∑
k=1

e(hβ−hγ) cos (2k−1)π
m cos

(
(hβ− hγ) sin

(2k− 1)π
m

+
(2k− 1)π

m

)

−
N

∑
γ=0

C[γ]

m
2

∑
k=1

e(hγ−hβ) cos (2k−1)π
m cos

(
(hγ− hβ) sin

(2k− 1)π
m

+
(2k− 1)π

m

)
, (70)

N

∑
γ=0

C[γ](hβ− hγ)

m
2

∑
k=1

e(hβ−hγ) cos (2k−1)π
m cos

(
(hβ− hγ) sin

(2k− 1)π
m

+
2π(2k− 1)

m

)

+
N

∑
γ=0

C[γ](hβ− hγ)

m
2

∑
k=1

e(hγ−hβ) cos (2k−1)π
m cos

(
(hγ− hβ) sin

(2k− 1)π
m

+
2π(2k− 1)

m

)
= S3,k + S4,k. (71)

Substituting the obtained expressions (70) and (71) into (69) and using
Formulas (31)–(33), after some simplifications, we have the expression (69) in the form

v(hβ) = − 1
2m2 Qm(hβ)−Ym(hβ, b1k, b2k).

Here

Qm(hβ) = hβ
N

∑
γ=0

m
2

∑
k=1

C[γ]e(hβ−hγ) cos (2k−1)π
m cos

(
(hβ− hγ) sin

(2k− 1)π
m

+
2π(2k− 1)

m

)
+(m− 1)S2,k + S4,k,

Ym(hβ, d1k, d2k) =

m
2

∑
k=1

ehβ cos (2k−1)π
m ·

[
d1k cos

(
hβ sin

(2k− 1)π
m

)
+d2k sin

(
hβ sin

(2k− 1)π
m

)]
,

where d1k, d2k

(
k = 1, m

2

)
are unknowns.

Direct calculations show that v(hβ) for β > N has the form

v(hβ) =
1

2m2 Qm(hβ) + Ym(hβ, d1k, d2k).
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Then, we have that u(hβ) = v(hβ) + Ym(hβ), u(hβ) = fm(hβ) for hβ ∈ [0, 1] and

u(hβ) =

{
− 1

2m2 Qm(hβ) + Ym(hβ, r−1k, r−2k), β < 0,
1

2m2 Qm(hβ) + Ym(hβ, r+1k, r+2k) β > N.
(72)

Then
Ym(hβ)−Ym(hβ, d1k, d2k) = Ym

(
hβ, r−1k, r−2k

)
and

Ym(hβ) + Ym(hβ, d1k, d2k) = Ym
(
hβ, r+1k, r+2k

)
.

Hence, we have

Ym(hβ) =
1
2
(
Ym
(
hβ, r−1k, r−2k

)
+ Ym

(
hβ, r+1k, r+2k

))
.

Since for hβ /∈ [0, 1], C[β] = 0, then

C[β] = Dm(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1].

From here, we can obtain a system of linear equations for finding unknowns r−1k, r−2k, r+1k, r+2k(
k = 1, m

2

)
.

Then, we find the optimal coefficients of quadrature formulas of the form (3) using
the Formula (68)

C[β] = Dm(hβ) ∗ u(hβ), hβ ∈ [0, 1].

Thus, Sard’s problem of constructing optimal quadrature formulas of the form (3) in
the space W(m,0)

2 (0, 1) for even natural numbers m is solved.

Remark 1. It should be noted that m = 2, by realizing the above-given algorithm, we obtain the
optimal quadrature formula of the form (3) in the space W(2,0)

2 (0, 1), which was constructed in the
work [33].

Remark 2. We note that using the discrete analogue D2(hβ) of the operator d4

dx4 + 2 d2

dx2 + 1, which

corresponds to the case m = 2, we obtain an interpolation formula Pϕ(x) in the space W(2,0)
2 (0, 1)

obtained in Theorem 3 of [49]. It should be noted that the constructed interpolation formula is exact
for trigonometric functions.

Remark 3. It is vital to note that the discrete analogue Dm(hβ) of the differential operator d2m

dx2m +

2 dm

dxm + 1, as constructed in Section 5, can be used for the construction of interpolation splines
minimizing the semi-norm (2) and optimal quadrature formulas for numerical integration of Fourier
coefficients in the space W(m,0)

2 (0, 1).

In the next section, we give the results of the algorithm for the case m = 2.

7. Coefficients of the Optimal Quadrature Formula in the Space W(2,0)
2 (0, 1)

In this section, we give the results of the realization of the algorithm for the construc-
tion of the optimal quadrature Formula (3) in the space W(m,0)

2 (0, 1) for the case m = 2.
We recall that, in the case m = 2, we obtain the result of Theorem 4.4 of [33].
For m = 2, the system (31)–(33) has the form

C[β] ∗ G2(hβ) + r11 sin(hβ) + r21 cos(hβ) = f2(hβ), β = 0, 1, . . . , N, (73)

N

∑
γ=0

C[γ] sin(hγ) = 1− cos 1, (74)
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N

∑
γ=0

C[γ] cos(hγ) = sin 1, (75)

where

G2(hβ) =
sgn(hβ)

4
[sin(hβ)− hβ cos(hβ)],

f2(hβ) =
1
4

[
4− (2 + 2 cos 1 + sin 1) cos(hβ)− (2 sin 1− cos 1)

+ sin 1 · (hβ) cos(hβ)− (1 + cos 1) sin(hβ)

]
.

The system (73)–(75) was solved in the work [33], and the following theorem was proven:

Theorem 4. The coefficients of optimal quadrature formulas of the form (3) with equally spaced
nodes in the space W(2,0)

2 are expressed by the formulas

C[β] =


2 sin(h)−(h+sin(h)) cos(h)

(h+sin(h)) sin(h) +
(h−sin(h))(λ1+λN+1

1 )
(h+sin(h)) sin(h)(1+λN+1

1 )
, β = 0, N

4(1−cos(h))
h+sin(h) + 2h(h−sin(h)) sin(h)

(h+sin(h))(h cos(h)−sin(h))(1+λN+1
1 )

·
(

λ
β
1 + λ

N−β
1

)
, β = 1, N − 1,

(76)

where λ1 defined in Theorem 4.1 of [33] and |λ1| < 1.

Remark 4. Note that the optimal quadrature formula of the form (3) with the coefficients given in
Theorem 4 is exact for trigonometric functions sin(x) and cos(x).

8. The Rate of Convergence of the Optimal Quadrature Formula in the Space W(2,0)
2 (0, 1)

Here, we give some results that show the rate of convergence of the obtained optimal
quadrature formula for the case m = 2. To obtain this result, we use Theorem 4.

It has to be mentioned that the absolute value of the error (5) of the optimal quadrature
Formula (3) in W(m,0)

2 (0, 1) space is estimated by the Cauchy–Schwarz inequality, as follows:

|(`, ϕ)| ≤ ‖ϕ‖
W(m,0)

2
·
∥∥∥ ˚̀
∥∥∥

W(m,0)∗
2

.

Since the norm ‖ϕ‖
W(m,0)

2
of a function ϕ from the space W(m,0)

2 (0, 1) is bounded, it is

sufficient to calculate the norm
∥∥∥ ˚̀
∥∥∥

W(m,0)∗
2

of the optimal error function that presents the

rate of convergence for the obtained optimal quadrature formulas.

The case m = 2. For the norm of the error functional
◦
` in the space W(2,0)

2 (0, 1), the
following result was obtained in [33]:
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Theorem 5. The square of the norm of the error functional (5) of the optimal quadrature Formula (3),
on the space W(2,0)

2 has the form∥∥∥ ˚̀
∥∥∥2

W(2,0)∗
2

=
3− sin 1

2
+

(h− 1)(h sin(h)− 4 cos(h) + 4)− 4h
h(h + sin(h))

+ 2 cot(h)

− s
2

[
4
(
λ1 − λN

1
)

1− λ1
+

(λ1 + λN
1 )(1 + sin 1) sin(h) + 4(λ2

1 + λN
1 )

λ2
1 − 2λ1 cos(h) + 1

−
(1− λ2

1)(1− λN
1 )(h cos(h)− sin(h))

(λ2
1 − 2λ1 cos(h) + 1) sin(h)

]

or ∥∥∥ ˚̀
∥∥∥2

W(2,0)∗
2

=
1

720
h4 + O

(
h5
)

, N → ∞, (77)

where s = 2h sin(h)(h−sin(h))
(h+sin(h))(h cos(h)−sin(h))(1+λN

1 )
and λ1 defined in Theorem 4.1 of [33].

From here, we can infer that the order of convergence of the optimal quadrature
Formula (3) in the space W(2,0)

2 (0, 1) is O
(
h2).

The following theorem gives the asymptotic optimality for our optimal quadra-
ture formula:

Theorem 6. The optimal quadrature formula of the form (3) with the error functional (5) in the
space W(2,0)

2 (0, 1) is asymptotically optimal in the Sobolev space L(2)
2 (0, 1)

lim
N→∞

‖ ˚̀|W(2,0)∗
2 ‖

‖ ˚̀|L(2)∗
2 ‖

= 1. (78)

Theorem 6 was proven in [33].

9. Conclusions

Thus, in this paper, we used the Sobolev method to develop an algorithm for solving
a system of algebraic equations that determines the coefficients of quadrature formulas of
the form (3). To achieve this, we obtained a discrete analogue Dm(hβ) of the differential
operator d2m

dx2m + 2 dm

dxm + 1, (for m even) and used it to solve the system (31)–(33) for m = 2.
We then obtained explicit expressions for the optimal coefficients C̊β and used them to

construct an optimal quadrature formula of the form (3) in the space W(2,0)
2 . It is important

to note that the optimal quadrature formula of the form (3) in the space W(2,0)
2 is exact for

the trigonometric functions sin(x) and cos(x).
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