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Abstract: This article investigates the inverse problem of estimating the weight function using
boundary observations in a distributed-order time-fractional diffusion equation. We propose a
method based on L2 regularization to convert the inverse problem into a regularized minimization
problem, and we solve it using the conjugate gradient algorithm. The minimization functional
only needs the weight to have L2 regularity. We prove the weak closedness of the inverse operator,
which ensures the existence, stability, and convergence of the regularized solution for the weight in
L2(0, 1). We propose a weak source condition for the weight in C[0, 1] and, based on this, we prove
the convergence rate for the regularized solution. In the conjugate gradient algorithm, we derive the
gradient of the objective functional through the adjoint technique. The effectiveness of the proposed
method and the convergence rate are demonstrated by two numerical examples in two dimensions.

Keywords: weight function recovery; L2 regularization; distributed-order time-fractional diffusion
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1. Introduction

Recently, due to the ability to effectively model complex multiscale phenomena, the
distributed-order fractional derivative has received considerable attention in a variety of
disciplines, including viscoelastic material [1], transport phenomena [2–6], and control
theory [7,8]. We cite [9,10] for more detailed information on distributed-order fractional
(DOF) calculus applications. However, some transport phenomena cannot be effectively
modeled by fractional differential equations with single-term [11] or even multi-term [12]
fractional derivatives. In these cases, the fractional derivative must be modified by the
weighted integration of its derivative order over a certain range. Therefore, the distributed-
order time-fractional diffusion equation (DOTFDE) can accurately characterize the forms of
ultraslow anomalous diffusion that exhibit logarithmic-growth-type mean square displace-
ment [4–6,13–15]. In addition, DOTFDE has numerous applications in various fields, such
as the dynamics of quenching random force fields [4,13], polymer physics [5,14], motion in
iterative mapping families [6], and motion in non-periodic environments [15].

We denote an open bounded domain by Ω ∈ Rd. Let ∂Ω be its smooth boundary and
T ∈ (0, ∞]. With suitable initial and boundary conditions, DOTFDEs are formulated as

0D(µ)
t u = Au + f , (1)
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where (x, t) ∈ Ω× (0, T] and A is an elliptic differential operator with respect to x. The
definition of the left DOF differential operator in Caputo type is given by

0D(µ)
t u(t) =

∫ 1

0
µ(α)0Dα

t u(t)dα,

where

0Dα
t u(t) =

∫ t

0
u′(τ)

(t− τ)−α

Γ(1− α)
dτ, (0 ≤ α < 1).

DOTFDE has become an issue of theoretical interest in recent years [16–22]. In [17],
by virtue of the Fourier series solution of DOTFDE and some asymptotic results of Cauchy
problems, the authors analyzed the asymptotic properties of DOTFDE’s solution. The
authors of [19] studied the strong solutions of DOTFDEs on bounded domains. Using a
maximum principle and the Fourier formal solution of DOTFDE, the author of [18] obtained
the uniqueness and existence of strong solutions. The authors of [20–22] also proved the
existence, uniqueness, and regularity properties for the weak solutions of DOTFDEs. In
addition, research on numerical calculations of DOTFDE can be found in [23–30].

Several publications have addressed the inverse problems of DOTFDEs, where the
weight function µ is unknown and must be recovered. The authors of [31] recovered µ
through the Dirichlet (or Neumann) observational data from a point within a region. By
virtue of the representation of the solution to the forward problem, they established the
uniqueness of the solution. The authors of [22,32] obtained the uniqueness of inverting µ
by measurement at an interior point, relying on the analyticity of the solutions of DOTFDEs.
The authors of [33] considered the numerical recovery of the weight from observation at one
interior point by solving a regularized functional using the conjugate gradient (CG) method.
Jin and Kian [34] determined the support of a weight function from the measurement at
one boundary point in an unknown medium. They also reconstructed a weight from
boundary data in a known medium by solving a minimization functional without a penalty
term. They adopted an algorithm based on the CG method and an early stopping rule
under the discrepancy principle. For other types of inverse problems of DOTFDEs (such
as teh estimation of diffusion or potential coefficients, source terms, initial and boundary
conditions, and domain geometry), we refer to [35–38].

Despite some contributions, few papers have thoroughly studied the convergence
properties of regularization methods to solve the inverse problems of DOTFDEs. Our main
theoretical results are the weak closedness of the inverse operator and the convergence
rate of the regularized solution. The weak closedness ensures the existence, stability, and
convergence of the regularized solution. The convergence rate is given under a weak source
condition that we propose. In this paper, we also focus on the numerical determination
of the weight function µ over a finite interval in the inverse problem of DOTFDEs with
Neumann boundary conditions. Building upon the methodology introduced in [34], we
utilize the L2 regularization method to transform the inverse problem into a minimization
problem. We solve this minimization problem using the CG method. Note that we utilize
an L2 norm regularization term instead of an H1 norm regularization term as in [33]. This
implies a lower requirement for smoothness on the weight function, while there must be
µ ∈ C[0, 1] in [34] and µ ∈ H1[0, 1] in [33], and the L2 norm regularization term also makes
it easier to compute the gradient in the CG algorithm.

The structure of this paper is as follows. Section 2 offers a concise overview of the
forward problem. Section 3 explores the inverse problem, starting with the transformation
of the problem into a functional minimization using L2 regularization. Stability analysis
for the regularized solution is then performed, and a convergence rate is given under a
weak source condition. In Section 4, we introduce a CG algorithm to solve the inverse
problem. The convergence rate and the algorithm’s effectiveness are demonstrated through
two two-dimensional numerical examples. Finally, in Section 5, we conclude the paper.
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2. The Forward Problem

Consider a two-dimensional DOTFDE:

0D(µ)
t u− Au = f in Ω× (0, T],

u|t=0 = u0 in Ω,
∂u

∂νA
= 0 on ∂Ω× [0, T].

(2)

The operator−A, which is symmetric and uniformly elliptic, is defined on H1
0(Ω)

⋂
H2(Ω)

and

−Au(x, t) = c(x)u(x, t)−
d

∑
i=1

d

∑
j=1

∂

∂xj
(aij(x)

∂u(x, t)
∂xi

),

where the coefficients satisfy
aij(x) = aji(x), and aij(x) ∈ C1(Ω),
∃γ1 > 0 and γ2 > 0, γ1|ξ|2 ≤ ∑d

i=1 ∑d
j=1 aij(x)ξiξ j ≤ γ2|ξ|2,

ξ = (ξ1, · · · , ξd)
T ∈ Rd, x ∈ Ω,

c(x) ≥ 0, and c(x) ∈ C(Ω).

Let ν(x) be the outward unit normal vector of ∂Ω and νi is the i-th component. The
corresponding boundary condition in (2) takes the form

∂u
∂νA

=
d

∑
i=1

d

∑
j=1

aij
∂u
∂xj

νi.

For the sake of notational convenience, we abbreviate the left fractional integration
operator 0 I1−α

t as I1−α, i.e.,

I1−αv(t) := 0 I1−α
t v(t) =

∫ t
0 (t− s)−αv(s)ds

Γ(1− α)
. (3)

Furthermore, we denote by V := 0H1(0, T; H−1(Ω)) the space with all functions from
H1(0, T; H−1(Ω)) and their trace vanishing at t = 0. Referring to [20], we have the standard
derivation of the following results.

Let K = {µ(α) ∈ L2(0, 1) | µ(α) ≥ 0 for α ∈ (0, 1) and C1 ≤ ‖µ(α)‖L2(0,1) ≤ C2}.
Assuming that µ ∈ K, u0(x) ∈ L2(Ω) and f (x, t) ∈ L2(0, T; L2(Ω)), then the problem (2)
has a unique weak solution u ∈ L2(0, T; H1(Ω)) and∫ 1

0
µ(α)I1−α(u− u0)dα ∈ V.

Furthermore, ∀ϕ ∈ H1(Ω), a.e. t ∈ (0, T],

d
dt

∫ 1

0

∫
Ω

ϕ(x)µ(α)I1−α[u(x, t)− u0(x)]dxdα

+
d

∑
i=1

d

∑
j=1

∫
Ω

Di ϕ(x)aij(x, t)Dju(x, t)dx

=
∫

Ω
ϕ(x)c(x, t)u(x, t)dx +

∫
Ω

ϕ(x) f (x, t)dx,

and ∥∥∥∥∫ 1

0
µ(α)I1−α(u− u0)dα

∥∥∥∥
H1(0,T;H−1(Ω))

+ ‖u‖L2(0,T;H1(Ω)) ≤ M, (4)

with the positive constant M only depending on C1, C2, f , u0, γ1, γ2, c(x), Ω, and T.
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3. The Inverse Problem
3.1. The Identification Problem

Typically, we only obtain measurements on the (parts of) boundary ∂Ω instead of
inside the total Ω. Thus, our goal is to identify the exact weight µ† in (2) from the extra
boundary measurement

u†(x, t) = φ(x, t), on Γ0 ⊂ ∂Ω,

where u† is the solution of (2) with µ = µ†. In practical applications, it is often difficult to
obtain the exact data φ(x, t) due to measurement errors. Instead, φδ(x, t), the measurement
with noise, is obtained, where the noise level is known:

‖φδ − φ‖L2(0,T;L2(Γ0))
≤ δ. (5)

It is widely recognized that parameter identification problems frequently exhibit ill-
posedness and usually require some regularization. In this paper, L2 regularization is
adopted and the inverse problem is formulated as

µε,δ = argmin
µ∈K

Jε(µ), (6)

where

Jε(µ) =
1
2

∫ T

0

∫
Γ0

|F(µ)− φδ|2dxdt +
ε

2
‖µ− µ∗‖2

L2(0,1), (7)

and F(µ†) = φ, ε > 0, µ∗ ∈ K (see Chapter 10 in [39]). The choice of µ∗ is an open issue
and crucial for the efficacy of regularization approaches. The convergence rate results in
Section 3.3 heavily depend on µ∗. Generally, µ∗ should have a priori information of the
exact parameter µ† and is regarded as a prior guess.

3.2. Existence, Stability, and Convergence of the Regularized Solutions

We first give three properties of the regularized solutions in (6).

(i) The existence: There exists a minimizer µε,δ for any data φδ ∈ L2(0, T; L2(Γ0)).
(ii) The stability: For a given regularization parameter ε, the minimizers of (7) depend

continuously on φδ.
(iii) The convergence: As the noise level δ and the regularization parameter ε (chosen by

a priori rule) both tend to zero, the regularized solutions µε,δ converge to the exact
parameter µ†.

These properties establish the well-posedness of the minimization problem and the
reliability of the regularized solutions. If the weak closedness of the mapping F : µ →
uµ(x, t)|Γ0 is provided, the proof of the (i)–(iii) is standard (see [39]).

Proposition 1. (weak closedness). For µn ⇀ µ ∈ K in L2(0, 1) and F(µn) ⇀ y ∈ L2(0, T; L2(Γ0)),
then we have

F(µ) = y.

Proof. From (4), we have the conditions that {uµn} and
∫ 1

0 I1−α(uµn − u0)µn(α)dα are
bounded in L2(0, T; H1(Ω)) and H1(0, T; H−1(Ω)), respectively. Hence, there exists a
subsequence {uµnk

}, u∗ in L2(0, T; H1(Ω)) and v∗ in L2(0, T; H−1(Ω)) such that

uµnk
⇀ u∗ (8)

and
d
dt

∫ 1

0
µnk (α)I1−α(uµnk

− u0)dα ⇀ v∗.
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Applying the compact embedding of L2(0, T; H1(Ω)) into L2(0, T; Ω), we can show that

uµnk
→ u∗ in L2(0, T; Ω). (9)

Now, let us verify that v∗ = d
dt

∫ 1
0 I1−α(u∗ − u0)µ(α)dα. For any given ψ(x, t) ∈ C1

c (0, T;
H1(Ω)), we use the triangle inequality to obtain∣∣∣∣∫ T

0

∫
Ω

d
dt

∫ 1

0
µnk (α)I1−α(uµnk

− u0)dαψdxdt−
∫ T

0

∫
Ω

d
dt

∫ 1

0
µ(α)I1−α(u∗ − u0)dαψdxdt

∣∣∣∣
≤

∣∣∣∣∫ T

0

∫
Ω

d
dt

∫ 1

0
µnk (α)I1−α(uµnk

− u∗)dαψdxdt
∣∣∣∣

+

∣∣∣∣∫ T

0

∫
Ω

d
dt

∫ 1

0
[µnk (α)− µ(α)]I1−α(u∗ − u0)dαψdxdt

∣∣∣∣
, M1 + M2.

For M1, we have

M1 =

∣∣∣∣∫ T

0

∫
Ω

d
dt

∫ 1

0
I1−α(uµnk

− u∗)µnk (α)dαψdxdt
∣∣∣∣

=

∣∣∣∣∫Ω

∫ T

0
ψ(x, t)

d
dt

∫ t

0

(∫ 1

0

µnk (α)

Γ(1− α)
(t− τ)−αdα

)(
uµnk

(x, τ)− u∗(x)
)

dτdtdx
∣∣∣∣

=

∣∣∣∣∫Ω

∫ T

0

∂ψ(x, t)
∂t

(∫ 1

0

µnk (α)

Γ(1− α)
t−αdα

)
∗
(

uµnk
(x, t)− u∗(x)

)
dtdx

∣∣∣∣
≤

∥∥∥∥ ∂ψ(x, t)
∂t

∥∥∥∥
L2(0,T;Ω)

∥∥∥∥(∫ 1

0

µnk (α)

Γ(1− α)
t−αdα

)
∗
(

uµnk
(x, t)− u∗(x)

)∥∥∥∥
L2(0,T;Ω)

,

where the symbol ∗ denotes the convolution with respect to t. Then, utilizing Young’s
convolution inequality, it follows that

M1 ≤
∥∥∥∥∂ψ(x, t)

∂t

∥∥∥∥
L2(0,T;Ω)

∥∥∥∥∫ 1

0

µnk (α)

Γ(1− α)
t−αdα

∥∥∥∥
L1(0,T;Ω)

‖uµnk
(x, t)− u∗(x)‖L2(0,T;Ω).

Since µnk (α) ∈ K are nonnegative and∥∥∥∥∫ 1
0

µnk (α)

Γ(1−α)
t−αdα

∥∥∥∥
L1(0,T;Ω)

=
∫ 1

0

µnk (α)

Γ(1− α)

∫ T

0
t−αdtdα

=
∫ 1

0

µnk (α)

Γ(1− α)
T1−αdα ≤ 2C2 max{T, 1},

M1 ≤ 2C2 max{T, 1}
∥∥∥∥∂ψ(x, t)

∂t

∥∥∥∥
L2(0,T;Ω)

‖uµnk
(x, t)− u∗(x)‖L2(0,T;Ω).

From (9), M1 tends to zero as k→ ∞.
For M2, we can deduce

M2 =

∣∣∣∣∫ T

0

∫
Ω

d
dt

∫ 1

0
I1−α(u∗ − u0)(µnk − µ(α))dαψdxdt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫
Ω

∂ψ(x, t)
∂t

∫ 1

0
I1−α(u∗ − u0)(µnk − µ(α))dαdxdt

∣∣∣∣
=

∣∣∣∣∫ 1

0
(µnk − µ(α))

∫ T

0

∫
Ω

∂ψ(x, t)
∂t

(
t−α

Γ(1− α)
∗ (u∗ − u0)

)
dxdtdα

∣∣∣∣.
Again, by Young’s convolution inequality, it is straightforward to verify that

∫ T

0

∫
Ω

∂ψ(x, t)
∂t

(
t−α

Γ(1− α)
∗ (u∗ − u0)

)
dxdt ∈ L2(0, 1).
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In fact, ∥∥∥∥∫ T

0

∫
Ω

∂ψ(x, t)
∂t

(
t−α

Γ(1− α)
∗ (u∗ − u0)

)
dxdt

∥∥∥∥
L2(0,1)

≤
∥∥∥∥ ∂ψ(x, t)

∂t

∥∥∥∥
L2(0,T;Ω)

∥∥∥∥ t−α

Γ(1− α)
∗ (u∗ − u0)

∥∥∥∥
L2(0,1)

≤
∥∥∥∥ ∂ψ(x, t)

∂t

∥∥∥∥
L2(0,T;Ω)

‖u∗ − u0‖L2(0,T;Ω)

(∫ 1

0
‖ t−α

Γ(1− α)
‖2

L2(0,T)dα

) 1
2

=

∥∥∥∥ ∂ψ(x, t)
∂t

∥∥∥∥
L2(0,T;Ω)

‖u∗ − u0‖L2(0,T;Ω)

(∫ 1

0

T2−2α

(Γ(2− α))2 dα

) 1
2

≤2 max{T, 1}
∥∥∥∥ ∂ψ(x, t)

∂t

∥∥∥∥
L2(0,T;Ω)

‖u∗ − u0‖L2(0,T;Ω).

Since µn ⇀ µ ∈ K in L2(0, 1), we obtain

M2 → 0 as k→ ∞.

Then, for any ψ(x, t) ∈ L2(0, T; H1(Ω)),∫ T

0

∫
Ω

d
dt

∫ 1

0

[
I1−α(uµnk

− u0)µnk (α)− I1−α(u∗ − u0)µ(α)
]
dαψdxdt→ 0

as k→ ∞.
(10)

By the weak convergence of (8), we yield(∫ T

0

d

∑
i=1

d

∑
j=1

∫
Ω

aijDjuµnk
Diψdxdt−

∫ T

0

d

∑
i=1

d

∑
j=1

∫
Ω

aijDju∗Diψdxdt

)
−(∫ T

0

∫
Ω

cuµnk
ψdxdt−

∫ T

0

∫
Ω

cu∗ψdxdt
)
→ 0 as k→∞, ∀ψ(x, t)∈ L2(0, T; H1(Ω)).

(11)

Adding (10) and (11), we obtain that for any given ∀ψ(x, t) ∈ L2(0, T; H1(Ω)), as k→ ∞,

∫ T

0

d
dt

∫ 1

0

∫
Ω

I1−α(u∗ − u0)ψdxµ(α)dαdt +
∫ T

0

d

∑
i=1

d

∑
j=1

∫
Ω

aijDju∗Diψdxdt

=
∫ T

0

∫
Ω

cu∗ψdxdt +
∫ T

0

∫
Ω

f (x, t)ψ(x, t)dxdt.

(12)

Then,

d
dt

∫ 1

0

∫
Ω

I1−α(u∗ − u0)ψdxµ(α)dαdt +
d

∑
i=1

d

∑
j=1

∫
Ω

aijDju∗Diψ dx

=
∫

Ω
cu∗ψdx +

∫
Ω

f (x, t)ψ(x)dx, ∀ψ(x) ∈ H1(Ω).

Clearly, u∗ is the weak solution of (2) for µ, and u∗ = uµ due to the uniqueness of weak
solutions. Additionally, as uµnk

⇀ uµ holds for any subsequence uµnk
,

uµn ⇀ uµ in L2(0, T; H1(Ω)).

Considering the continuity of the trace operator, we obtain F(µn) = uµn(x, t)|Γ0 ⇀ F(µ) =
uµ(x, t)|Γ0 in L2(0, T; L2(Γ0)). Moreover, given the assumption that F(µn) ⇀ y in L2(0, T;
L2(Γ0)), we deduce, by exploiting the uniqueness of the weak limit, that F(µ) = y.
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3.3. Convergence Rates

Throughout this subsection, we make the assumption that weight functions are con-
tinuous on [0, 1], thereby selecting K = {µ(α) ∈ C[0, 1] | µ(α) ≥ 0 for α ∈ (0, 1) and C1 ≤
‖µ(α)‖L2(0,1) ≤ C2}. Furthermore, we derive the convergence rates of regularized solutions
under a weak source condition. To establish the existence of the weak source condition as
described in Theorem 1, we introduce three lemmas.

Lemma 1. Let ω(α) be continuous on [0, 1] such that, for all t ∈ (0, T] (T > 0),∫ 1

0
ω(α) tαdα = 0.

We then conclude that, for α ∈ [0, 1], ω(α) = 0.

Proof. Define g(t) =
∫ 1

0 ω(α) tαdα. Then, differentiate g(t) = 0 with respect to t repeatedly
to find, for n = 0, 1, 2, · · · , ∫ 1

0
ω(α) αn tαdα = 0.

Hence, ∫ 1

0
p(α)ω(α) tαdα = 0

for any polynomial p(α). By virtue of the Weierstrass theorem, we conclude the existence
of a sequence of polynomials {pn(α)}n≥0 that converges to the continuous function ω(α)

uniformly on [0, 1]. Taking the limit n → ∞ in
∫ 1

0 ω(α) pn(α) tαdα = 0 yields, for any
t ∈ (0, T], ∫ 1

0
ω(α)2tαdα = 0.

This completes the proof.

Lemma 2. Let ω(α) be continuous on [0, 1] and
∫ T

0 |u(t)− u(0)|dt 6= 0. Then, ∀t ∈ (0, T),∫ 1
0 ω(α)0Dα

t u(t)dα = 0 if and only if ω(α) = 0.

Proof. Utilizing the definition of a fractional derivative, we observe that, for t ∈ (0, T),

0 =
∫ 1

0
ω(α)0Dα

t u(t)dα

=
∫ 1

0

d
dt

∫ t

0
(t− τ)−α(u(τ)− u(0))dτ

ω(α)

Γ(1− α)
dα

=
∫ 1

0

[
d
dt
(
t−α ∗ (u(t)− u(0))

)] ω(α)

Γ(1− α)
dα.

(13)

Subsequently, using the Laplace transform, we can express (13) as

0 =
∫ 1

0
s
(

Γ(1− α)sα−1
(

L{u}(s)− u(0)
s

))
ω(α)

Γ(1− α)
dα

=
∫ 1

0
ω(α)sαdα

(
L{u}(s)− u(0)

s

)
.

As
∫ T

0 |u(t)−u(0)|dt 6= 0, it follows that L{u}(s)− u(0)
s 6= 0. This implies that

∫ 1
0 ω(α)sαdα

= 0. By Lemma 1, we can deduce that ω(α) = 0.
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Let us consider a perturbation of µ, denoted by µ̃ := µ + τω, where τ → 0 is a
real parameter. Given the above perturbation µ̃, we denote by ũ the solution to the
corresponding forward problem (2). Further, let us define

Wω(x, t; µ) = lim
τ→0

ũ(x, t)− u(x, t)
τ

to be the solution to (14)

0D(µ)
t Wω(x, t; µ) = AWω(x, t; µ) + fω(x, t; µ) in Ω× (0, T],

Wω(x, 0; µ) = 0 in Ω,
∂Wω(x,t;µ)

∂νA
|∂Ω = 0 on ∂Ω× [0, T],

(14)

where fω(x, t; µ) = −
∫ 1

0 ω(α)0Dα
t uµdα.

Lemma 3. Assume that ω(α) is continuous on [0, 1] and
∫ T

0 |uµ(x, t)− u0(x)|dt 6= 0. Then,
Wω(x, t; µ) = 0 if and only if ω(α) = 0, where (x, t) ∈ Γ0 × (0, T] and α ∈ [0, 1].

Proof. We introduce an ordinary DOF differential equation:

0D(µ)
t Wn(t) = −λnWn(t), Wn(0) = 1, t ∈ (0, T). (15)

Here, λn and ψn(x) correspond to the eigenvalues and eigenfunctions of the operator −A
imposed with the homogeneous Neumann boundary condition. Moreover, the solution
Wn(t), n = 1, 2, · · · are linearly independent functions. From Corollary 3.1 in [31], we obtain

Wω(x, t; µ) =
∞

∑
n=1

∫ t

0

(∫
Ω

∂

∂τ
fω(x, τ; µ)ψn(x)dx

)
I(µ)Wn(t− τ)dτψn(x). (16)

Here, the distributed fractional integral operator is

I(µ)v(t) =
∫ t

0
K(t− τ)v(τ)dτ,

where L{K}(s) = 1∫ 1
0 µ(α)sαdα

. Additionally, utilizing the Laplace transform on (16) with

respect to the variable t, we have

L{Wω}(x, s; µ) =
∞

∑
n=1

s
∫

Ω
L{ fω}(x, s; µ)ψn(x)dx

L{Wn}(s)∫ 1
0 µ(α)sαdα

ψn(x).

If Wω(x, t; µ) = 0, (x, t) ∈ Γ0 × (0, T), we have(∫
Ω

L{ fω}(x, s; µ)ψn(x)dx
)

ψn(x) = 0, x ∈ Γ0, n = 1, 2, · · · .

Since (A + λn)ψn(x) = 0 in Ω and ψn(x) = ∂ψn
∂νn

= 0 on Γ0, the uniqueness of the Cauchy
problem for elliptic equations (refer to Theorem 3.3.1 in [40]) implies ψn(x) = 0 in Ω,
which contradicts {ψn(x)}, being eigenfunctions of −A with the homogeneous Neumann
boundary condition on ∂Ω. Thus, for any n ∈ N+, there exists xn ∈ Γ0 such that ψn(xn) 6= 0.
Consequently, it follows that∫

Ω
L{ fω}(x, s; µ)ψn(x)dx = 0, n = 1, 2, · · ·
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and, combining the linear independence of ψn(x) in Ω, we can deduce that

fω(x, t; µ) = 0, t ∈ (0, T).

By virtue of Lemma 2, we can determine that ω(α) = 0 on [0, 1].

Theorem 1. (Source condition) If
∫ T

0

∫
Ω |u

†(x, t) − u0(x)|dxdt 6= 0, there exists ξ(x, t) ∈
L2(0, T; L2(Γ0)) such that, for any ω ∈ C[0, 1]

(µ† − µ∗, ω)L2(0,1) =
∫ T

0

∫
Γ0

Wω(x, t; µ†)ξ(x, t)dxdt. (17)

Proof. We define a functional H(ω, ξ) by

H(ω, ξ) = (µ† − µ∗, ω)L2(0,1) −
∫ T

0

∫
Γ0

Wω(x, t; µ†)ξ(x, t)dxdt.

In order to prove (17), it suffices to show that there exists ξ(x, t) ∈ L2(0, T; L2(Γ0)) such that

H(ω, ξ) = 0, ∀ω ∈ C[0, 1]. (18)

To begin, we demonstrate the existence of ξ(x, t) ∈ L2(0, T; L2(Γ0)) satisfying

∂

∂ω
H(ω, ξ) = 0.

By the definition of H(ω, ξ), we obtain

∂

∂ω
H(ω, ξ) = (µ† − µ∗, 1)L2(0,1) −

∫ T

0

∫
Γ0

d
dω

Wω(x, t; µ†)ξ(x, t)dxdt. (19)

Using (14) and the fact that ∂
∂ω fω(x, t; µ) = −

∫ 1
0 0Dα

t uµdα = f1(x, t; µ), we derive that

∂

∂ω
Wω(x, t; µ†) = W1(x, t; µ†),

where W1(x, t; µ†) is the solution of (14) with ω(α) = 1. Thus, (19) can be expressed as

∂

∂ω
H(ω, ξ) = (µ† − µ∗, 1)L2(0,1) −

∫ T

0

∫
Γ0

W1(x, t; µ†)ξ(x, t)dxdt.

Lemma 3 implies that, for (x, t) ∈ Γ0 × (0, T), W1(x, t; µ†) 6= 0. Accordingly, there exists
ξ(x, t) ∈ L2(0, T; L2(Γ0)) satisfying (18). Specifically, if (µ† − µ∗, 1)L2(0,1) > 0, we choose

ξ(x, t) = W1(x, t; µ†)
(µ†−µ∗ ,1)L2(0,1)

‖W1(x,t;µ†)‖L2(0,T;L2(Γ0))
; if (µ† − µ∗, 1)L2(0,1) < 0, we choose ξ(x, t) =

−W1(x, t; µ†)
(µ†−µ∗ ,1)L2(0,1)

‖W1(x,t;µ†)‖L2(0,T;L2(Γ0))
; if (µ† − µ∗, 1)L2(0,1) = 0, we choose ξ(x, t) = 0. Thus,

ξ(x, t) ∈ L2(0, T; L2(Γ0)) and there exists a constant c such that H(ω, ξ) = c, for all
ω ∈ C[0, 1]. Moreover, as ω(α) = 0 implies H(ω, ξ) = 0, it follows that c = 0.

Theorem 2. Let ‖φε,δ − φ‖L2(0,T;L2(Γ0))
< δ and µε,δ be the minimizer of (7). Suppose that∫ T

0

∫
Ω |u

†(x, t)− u0(x)|dxdt 6= 0. Furthermore, we assume that the following conditions hold:

1. the solution Wω(x, t; µ) of (14) with µ ∈ K exists for any ω(α) ∈ C[0, 1],
2. there exists r > 0 such that

‖Wω(x, t; µ†)−Wω(x, t; µ)‖L2(0,T;Γ0)
≤ r‖ω‖L2(0,1)‖µ† − µ‖L2(0,1)



Mathematics 2023, 11, 3101 10 of 20

in a sufficiently large ball around µ†,
3. the function ξ, which is found in Theorem 1, satisfies r‖ξ‖L2(0,T;Γ0)

< 1.

Then, for ε ∼ δ, we have
‖F(µε,δ)− φδ‖L2(0,T;Γ0)

= O(δ)

and
‖µε,δ − µ†‖L2(0,1) = O(

√
δ).

Proof. To simplify the notation, we introduce U = L2(0, T; Γ0), and we omit the subscript
in the norm ‖ · ‖L2(0,1) and the inner product (·, ·)L2(0,1).

As µε,δ minimizes (7), we have Jε(µε,δ) ≤ Jε(µ†), which implies

‖F(µε,δ)− φδ‖2
U + ε‖µε,δ − µ∗‖2 ≤ δ2 + ε‖µ† − µ∗‖2.

Thus,
‖F(µε,δ)− φδ‖2

U + ε‖µε,δ − µ†‖2

≤ δ2 + ε‖µ† − µ∗‖2 − ε‖µε,δ − µ∗‖2 + ε‖µε,δ − µ†‖2

= δ2 + 2ε(µ† − µε,δ, µ† − µ∗).
(20)

Denote I1 = 2ε(µ†− µε,δ, µ†− µ∗). By choosing ω(α) = µε,δ(α)− µ†(α) in source condition
(17) and using Theorem 1, we obtain

I1 = 2ε(µ∗ − µ†, ω) = 2ε
∫ T

0

∫
Γ0

Wω(x, t; µ†)ξ(x, t)dxdt.

Using condition (2), we deduce that

uε,δ = u† + Wω(x, t; µ†) + rε,δ, ‖rε,δ‖U ≤ r
2‖ω‖‖µε,δ − µ†‖ = r

2‖µε,δ − µ†‖2.

By utilizing the Cauchy–Schwarz inequality and Young’s inequality, we derive

|I1| =
∣∣∣2ε
∫ T

0

∫
Γ0

(
(uε,δ − u†)− rε,δ)ξ(x, t)dxdt

∣∣∣
≤ 2ε‖ξ‖U ‖uε,δ − u†‖U + rε‖ξ‖U‖µε,δ − µ†‖2

≤ 2ε‖ξ‖U ‖uε,δ − φδ + φδ − u†‖U+
rε‖ξ‖U ‖µε,δ − µ†‖2

≤ 2ε‖ξ‖U ‖F(µε,δ)− φδ‖U + 2εδ‖ξ‖U
+rε‖ξ‖U ‖µε,δ − µ†‖2

≤ ε2‖ξ‖2
U

θ + θ‖F(µε,δ)− φδ‖2
U + 2εδ‖ξ‖U

+rε‖ξ‖U ‖µε,δ − µ†‖2.

By estimating I1, we see from (20) that

(1− θ)‖F(µε,δ)− φδ‖2
U + (1− r‖ξ‖U )ε‖µε,δ − µ†‖2

≤ δ2 +
ε2‖ξ‖2

U
θ + 2εδ‖ξ‖U .

Given 0 < θ < 1 and condition (3), we conclude that

‖F(µε,δ)− φδ‖U = O(δ)

(thus, by (5), ‖F(µε,δ)− φ‖U = O(δ)) and

‖µε,δ − µ†‖ = O(
√

δ).
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4. Numerical Computation
4.1. Computation of the Gradient for the Regularization Functional

In this subsection, we aim to find the minimizer of Jε(µ) in (7) by employing the CG
method, where the gradients are determined through an adjoint technique and the sensitiv-
ity problem (14). Specifically, we derive the adjoint equation of the forward Equation (2),
which takes the form

tD
(µ)
T v = Av, in Ω× [0, T),

∂v
∂νA

= u− φδ, on Γ0 × [0, T],
∂v

∂νA
= 0, on (∂Ω\Γ0)× [0, T],

v(x, T) = 0, in Ω,

(21)

where φδ is the observation data on Γ0 × [0, T],

tD
(µ)
T v(t) =

∫ 1

0
µ(α)tDα

Tv(t)dα

and

tDα
Tv(t) =

−
∫ T

t v
′
(τ)(τ−t)−αdτ

Γ(1−α)
, 0 ≤ α < 1,

−v
′
(t), α = 1.

Lemma 4. Let u(t) and v(t) belong to AC[0, T]. Then,∫ T

0
v(t)
(

0D(µ)
t u

)
(t) dt = −u(0)

(
tL

(µ)
T v

)
(0)+v(T)

(
0L(µ)

t u
)
(T)

+
∫ T

0
u(t)

(
tD

(µ)
T v

)
(t)dt, (22)

where

(0L(µ)
t v)(t) =

∫ 1

0
µ(α)0 I1−α

t v(t)dα, (tL
(µ)
T v)(t) =

∫ 1

0
µ(α)t I1−α

T v(t)dα,

and

t I1−α
T v(t) =

1
Γ(1− α)

∫ T

t
(τ − t)−αv(τ)dτ.

The proof of Lemma 4 is based on Lemma 2.1 in [41].

Theorem 3. The gradient of Jε(µ) at µ(α) along the direction ω(α) can be obtained through

J ′ε (µ)[ω] = −
∫ T

0

∫
Ω
(
∫ 1

0
ω(α)0Dα

t udα)vdxdt + ε(µ− µ∗, ω)L2(0,1), (23)

where v(x, t) is the solution of the adjoint Equation (21).

Proof. Consider a perturbation µ̃ of µ, and u and ũ, respectively, represent the solutions of
(2) under weights µ and µ̃. For convenience, we denote the solution Wω(x, t; µ) of (14) as
W. By using (7) and (14), we can write
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J ′ε (µ)[ω] = lim
τ→0

J (µ̃)−J (µ)

τ

= lim
τ→0

1
2τ

∫ T

0

∫
Γ0

(ũ− φδ)2−(u− φδ)2dxdt

+
ε

2τ

[
(µ + τω− µ∗, µ + τω− µ∗)L2(0,1)−(µ− µ∗, µ− µ∗)L2(0,1)

]
= lim

τ→0

1
2τ

∫ T

0

∫
Γ0

(ũ− u)(ũ + u− 2φδ)dxdt +
ε

2τ
(τω, τω)L2(0,1) +

ε

τ
(µ− µ∗, τω)L2(0,1)

=
∫ T

0

∫
Γ0

W(u− φδ)dxdt + ε(µ− µ∗, ω)L2(0,1)

=
∫ T

0

∫
Γ0

∂v
∂νA

Wdxdt + ε(µ− µ∗, ω)L2(0,1).

(24)

In order to prove (23), we multiply the first equation of (14) with v(x, t) and integrate both
sides over both the x and t dimensions. This yields∫ T

0

∫
Ω

0D(µ)
t Wvdxdt =

∫ T

0

∫
Ω
(AW + fω)vdxdt.

By applying Lemma 4, we obtain

0 =−
∫

Ω
W(x, 0)(tL

(µ)
T v)(x, 0)dx +

∫
Ω
(0L(µ)

t W)(x, T)v(x, T)dx

+
∫ T

0

∫
Ω

W
(

tD
(µ)
T v− Av

)
dxdt +

∫ T

0

∫
∂Ω

∂v
∂νA

Wdxdt−
∫ T

0

∫
Ω

fωv dxdt

−
∫ T

0

∫
∂Ω

∂W
∂νA

vdxdt.

Next, we derive the following result by using the initial and boundary conditions
in (14) and (21):∫ T

0

∫
Γ0

∂v
∂νA

Wdxdt =
∫ T

0

∫
Ω

fωvdxdt = −
∫ T

0

∫
Ω
(
∫ 1

0
ω(α)0Dα

t udα)vdxdt.

Finally, we substitute this result into (24) to complete the proof.

4.2. Transformation of the Adjoint Problem

Let ṽ(x, t) be defined as v(x, T− t). Then, we can express tD
(µ)
T v(x, t) = 0D(µ)

τ ṽ(x, τ),
which follows from

tDα
Tv(x, t) =−

∫ T
t

vs(x,s)
(s−t)α ds

Γ(1− α)
= −

∫ 0
T−t

vs(x,T−s)
(T−s−t)α ds

Γ(1− α)

=

∫ T−t
0

vs(x,T−s)
(T−t−s)α ds

Γ(1− α)
=

∫ T−t
0

ṽs(x,s)
(T−t−s)α ds

Γ(1− α)

let τ=T−t
=

∫ τ
0

ṽs(x,s)
(τ−s)α ds

Γ(1− α)
= 0Dα

τ ṽ(x, τ).
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By applying this equivalence, we transform the adjoint problem (21) into the problem

0D(µ)
τ ṽ(x, τ) = Aṽ(x, τ), x ∈ Ω, τ ∈ (0, T],

∂ṽ(x,τ)
∂νA

= u(x, T − τ)− φδ(x, T − τ), x ∈ Γ0, τ ∈ [0, T],
∂ṽ(x,τ)

∂νA
= 0, x ∈ ∂Ω\Γ0, τ ∈ [0, T],

ṽ(x, 0) = 0, x ∈ Ω.

(25)

4.3. Solving the Minimization Problem via the CG Algorithm

For the determination of the unknown weight function µ, we propose the iterative
scheme

µk+1 := µk + τkωk, k = 0, 1, 2, · · · , (26)

where the descent direction ωk is updated according to

ωk := −J ′ε (µk) + λkωk−1, (27)

and

λk :=
‖J ′ε (µk)‖2

2
‖J ′ε (µk−1)‖2

2
with λ0 := 0. (28)

For the step size τk in (26), we give the following calculation. From (7), we obtain

J (µk + τkωk) ≈
1
2
‖uµk + τkWωk (x, t, µk)− φδ‖2

L2(0,T;Γ0)
+

ε

2
‖µk + τkωk − µ∗‖2

L2(0,1).

Using

dJ (µk + τkωk)

dτk
≈
(

Wωk (x, t, µk), uµk − φδ + τkWωk (x, t, µk)
)

L2(0,T;Γ0)

+ ε(ωk, µk + τkωk − µ∗)L2(0,1) = 0,

we deduce that

τk = −

(
Wωk (x, t, µk), uµk − φδ

)
L2(0,T;Γ0)

+ ε(ωk, µk − µ∗)L2(0,1)

(Wωk (x, t, µk), Wωk (x, t, µk))L2(0,T;Γ0) + ε(ωk, ωk)L2(0,1)
. (29)

To guarantee µ ∈ K, we adopt the pointwise projection

P(C1,C2)
µ = max{C1, min{C2, µ}}.

To minimize the functional (7), we describe the whole procedure of the CG method
as follows.
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Algorithm 1 The CG method for the minimization problem (6)

1. Select an initial guess µ0 and set k := 0;
2. Solve the forward problem (2) with µ = µk; compute the residual Ek = ‖uµk − φδ‖L2(0,T;Γ0)

and the minimization functional Jk = Jε(µk) in (7);
3. Solve the adjoint problem (25) with µ = µk and determine J ′ε (µk) in (23);
4. Calculate the conjugate coefficient λk using (28) and the descent direction ωk using (27);
5. Solve the sensitivity problem (14) with ω = ωk and µ = µk;
6. Calculate the step size τk with (29);
7. Update the weight µk with (26);
8. Project µk into K with µk = P(C1,C2)

µk;
9. Increment k by one and return to step (2). Continue iterating the process until the specified termination

condition is met.

4.4. Numerical Results

Two examples are chosen to demonstrate the effectiveness of the CG algorithm
(Algorithm 1 in Section 4.3). For both examples, we set Ω = (0, 1) × (0, 1), aij(x) = 1,
c(x) = 0, and T = 8 (1 ≤ i, j ≤ 2,). Let hx = hy = 1

16 be the spatial step sizes, ht =
1

32 be
the temporal step size, and hα = 1

64 be the order step size. We add a random perturbation
δ0(2× rand(size(data))− 1) into the data and define the noise level δ as

δ = δ0‖φ‖,

where δ0 > 0. We adopt the finite element method to be discrete in space, and we use the
L1 method in time to solve the forward problem (2) [30].

In the real world, we often lack complete knowledge of the forward problem’s solu-
tion, as listed in Example 1. However, to ensure the correctness of the forward problem
calculations, we provide Example 2, with an analytic expression for the forward solution.
For both examples, in Algorithm 1, we set C1 = 0.1, C2 = 10. The stopping criteria are
|Jk+1 − Jk| < 1× 10−10 for Example 1 and |Jk+1 − Jk| < 1× 10−7 for Example 2. Moreover,
we illustrate the efficiency of the proposed algorithm by computing the L2 error,

er(δ0) = ‖µε,δ − µ†‖,

the relative error,
Rer(δ0) = ‖µε,δ − µ†‖/‖µ†‖,

and the convergence order,

Corder = log2
er(δ0)

er( δ0
2 )

.

Example 1. Take u0(x, y) = x(x− 1)ex + y(y− 1)ey, µ†(α) = −2α2 + 2α + 1, f (x, y, t) = 0,
Γ0 = {0 ≤ x ≤ 1} × {y = 1}. We initialize µ0 = 1 and µ∗ = µ0, which are both far from µ†(α).
Our goal is to recover µ†(α) using a sequence of noisy data

φδ on Γ0 × [0, T]

with δ0 = 0.004, 0.008, 0.016, 0.032, 0.064, respectively.

For comparison with the exact solution, Figure 1 displays numerical solutions for dif-
ferent δ0 = 0.004, 0.016, 0.064. It should be noted that the numerical solution approximates
the exact solution more accurately the lower the noise level is.
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The L2 error ‖µk − µ†‖ of the regularized solution and the residual Ek are shown
in Figure 2. The error consistently decreases over approximately 100 iterations and then
stabilizes between the 100th and 150th iterations, indicating that Algorithm 1 can terminate
at this stage. The numerical errors and the convergence orders under various δ0 are
shown in Table 1. The results show that as the noise level decreases, the numerical error
also decreases, and the convergence order slightly exceeds the value of 0.5 specified in
Theorem 2. It is hypothesized that with additional assumptions, (such as the assumption of
the weight function distribution), a higher convergence rate can be achieved.

To illustrate the influence of the initial guess selection, we choose two different initial
guesses µ0 = 1.3 and µ0 = −1.2(α− 0.5)2 + 1.4 for δ0 = 0.008 in Example 1. In Figure 3,
we show the reconstructions of µ(α) for these two different initial guesses. The L2 errors
‖µk − µ†‖ are 0.0093 and 0.0074, respectively. All results of Example 1 illustrate that the
algorithm is not very sensitive to the selection of the initial guess.

Table 1. For Example 1, comparison results of different δ0.

δ0 0.004 0.008 0.016 0.032 0.064

er(δ0) 0.0069 0.0087 0.0149 0.0266 0.0487

Rer(δ0) 0.0052 0.0065 0.0110 0.0197 0.0362

Corder 0.3256 0.7712 0.8387 0.8756

Example 2. Consider the following example where u†(x, y, t) = t2 cos(πx) cos(πy) is its exact
solution of the forward problem. The exact weight function is µ†(α) = Γ(3− α). We can deduce the
source term f (x, y, t) = 2( t(t−1)

ln t + π2t2) cos(πx) cos(πy) from the forward Equation (2). Initial
guess µ0 = 1.5 and µ∗ = µ0, which are both far from µ†(α). Let Γ0 = {0 ≤ x ≤ 1} × {y = 1}
and T = 8. Now, our goal is to recover µ†(α) from a sequence of noisy data

φδ on Γ0 × [0, T]

with δ0 = 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, respectively.

In Figure 4, the exact and corresponding numerical solutions for δ0 = 0.004, 0.032, 0.128
are presented. Additionally, Figure 5 illustrates the L2 error ‖µk − µ†‖ and the residual
Ek = ‖uµk − φδ‖L2(0,T;Γ0)

. The convergence orders and numerical errors for various δ0 are
listed in Table 2. The estimation of the convergence order in Theorem 2 is compatible with
the observed acquired convergence order of almost 0.5. Furthermore, in Figure 6, we show
the recovered weight function in the case of δ0 = 0.008 for two different initial guesses
µ0 = 1 and µ0 = 0.5α2 − α + 1.5, respectively. The corresponding L2 errors ‖µk − µ†‖
are 0.0210 and 0.0215, respectively. The numerical results for Example 2 show that the
proposed algorithm is not very sensitive to the selection of the initial guess.

Table 2. For Example 2, comparison results of different δ0.

δ0 0.004 0.008 0.016 0.032 0.064 0.128

er(δ0) 0.0173 0.0232 0.0320 0.0466 0.0571 0.0706

Rer(δ0) 0.0121 0.0163 0.0224 0.0326 0.0400 0.0495

Corder 0.4226 0.4634 0.5416 0.2938 0.3059
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Figure 1. Reconstruction of µ(α) with δ0 = 0.004, 0.016, 0.064 for Example 1.
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Figure 2. Iteration error for Example 1. (a) The L2 error ‖µk − µ†‖. (b) The residual Ek.
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Figure 3. Reconstruction of µ(α) for Example 1. (a) Reconstruction of µ(α) with initial guess µ0 = 1.3.
(b) Reconstruction of µ(α) with initial guess µ0 = −1.2(α− 0.5)2 + 1.4.
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Figure 5. Iteration error for Example 2. (a) The L2 error ‖µk − µ†‖. (b) The residual Ek.
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Figure 6. Reconstruction of µ(α) for Example 2. (a) Reconstruction of µ(α) with initial guess µ0 = 1.
(b) Reconstruction of µ(α) with initial guess µ0 = 0.5α2 − α + 1.5.
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5. Conclusions

This paper focuses on the estimation of the weight function in the DO Caputo deriva-
tive for TFDEs. To address this nonlinear inverse problem, we formulate it as a minimiza-
tion problem with L2 regularization and derive the convergence rate of the regularized
weight function. Additionally, a CG method is utilized to solve the related minimization
problem. Furthermore, we present numerical examples to demonstrate the robustness of
the proposed algorithm against noise and its effectiveness in accurately recovering smooth
solutions for two-dimensional DOTFDEs.

One of the main theoretical results is proof of the weak closedness of the mapping
F : µ → uµ(x, t)|Γ0 , which ensures the existence, stability, and convergence of the reg-
ularized solution. We propose a weak source condition and, based on this, obtain the
convergence rate of the regularized solution, which is another important theoretical result
in this paper. As we know, there has been no previous study focused on the convergence
of the regularized solution for the inverse weight problem. However, we choose a reg-
ularization parameter ε ∼ δ without providing a specific strategy for the selection of ε.
Furthermore, the common posterior convergence analysis requires the monotonicity of
‖F(µε,δ)− φδ‖ with respect to ε, but, in this inverse problem, we are currently unable to
establish the truth of this condition, so we have not provided a posterior convergence
analysis. Therefore, in the future, we will consider a posterior convergence analysis of the
regularized solution under a posterior regularization parameter selection strategy. Note
that the convergence rate in Theorem 2 requires µ ∈ C[0, 1]. However, for more general
µ ∈ L2(0, 1) or even those that are discontinuous, the convergence rate and numerical
experiments could be another problem to consider in the future.
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