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Abstract: Dysphagia is a common geriatric syndrome that might induce serious complications and 

death. Standard diagnostics using the Videofluoroscopic Swallowing Study (VFSS) or Fiberoptic 

Evaluation of Swallowing (FEES) are expensive and expose patients to risks, while bedside screen-

ing is subjective and might lack reliability. An affordable and accessible instrumented screening is 

necessary. This study aimed to evaluate the classification performance of Transformer models and 

convolutional networks in identifying swallowing and non-swallowing tasks through depth video 

data. Different activation functions (ReLU, LeakyReLU, GELU, ELU, SiLU, and GLU) were then 

evaluated on the best-performing model. Sixty-five healthy participants (n = 65) were invited to 

perform swallowing (eating a cracker and drinking water) and non-swallowing tasks (a deep breath 

and pronouncing vowels: “/eɪ/”, “/iː/”, “/aɪ/”, “/oʊ/”, “/u:/”). Swallowing and non-swallowing were 

classified by Transformer models (TimeSFormer, Video Vision Transformer (ViViT)), and convolu-

tional neural networks (SlowFast, X3D, and R(2+1)D), respectively. In general, convolutional neural 

networks outperformed the Transformer models. X3D was the best model with good-to-excellent 

performance (F1-score: 0.920; adjusted F1-score: 0.885) in classifying swallowing and non-swallow-

ing conditions. Moreover, X3D with its default activation function (ReLU) produced the best results, 

although LeakyReLU performed better in deep breathing and pronouncing “/aɪ/” tasks. Future 

studies shall consider collecting more data for pretraining and developing a hyperparameter tuning 

strategy for activation functions and the high dimensionality video data for Transformer models. 

Keywords: dysphagia; aspiration pneumonia; computer-aided screening; gerontechnology;  

deep learning 
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1. Introduction 

Eating is an essential part of everyone’s life. However, older adults may have diffi-

culty eating or swallowing because of sarcopenia, declining cognitive functions, tissue 

elasticity, and neuromuscular control of the neck [1,2], or other health conditions such as 

strokes, age-related neurological conditions, and gastroesophageal reflux [3,4]. 
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Dysphagia, classified as a sign or symptom, is defined as the difficulty in swallowing [5], 

in which foods/liquids may obstruct the passage towards the stomach [6]. Individuals 

with dysphagia may have problems with drinking, eating, controlling saliva, and taking 

medications. A quarter of the adult population manifested swallowing problems, while 

the prevalence of dysphagia in stroke, institutionalized dementia, and Parkinson’s pa-

tients was 41%, 45%, and 60%, respectively [2,7,8]. 

Complications of dysphagia are major causes of mortality and morbidity in the el-

derly and include aspiration pneumonia, malnutrition, and dehydration [9]. Dysphagic 

individuals reported a mortality rate that was 1.7 times higher and spent approximately 

USD 6000 more in hospitalization expenses compared to the non-dysphagic group [1]. 

Moreover, the fear and anxiety of choking also severely impacted their quality of life and 

psychological wellbeing [10]. Over one-third of dysphagic older adults avoid eating be-

cause of their conditions [11]. In fact, up to 68% of dysphagic elderly people lived in nurs-

ing homes, and about one-third of them lived independently [12], which inherited a sig-

nificant burden and risk to the healthcare system and society.  

Screening or assessment is crucial to prompting immediate management and rehabili-

tative interventions to reduce complication risks. Clinically, fiber-optic endoscopic evalua-

tion of swallowing (FEES) and the video-fluoroscopy swallowing study (VFSS) are standard 

methods for dysphagia screening [13]. The procedure of FEES involves passing the endo-

scopic instrument through the nose to observe the pharynx and larynx when the individual 

is swallowing saliva with and without food consistencies [13]. Similarly, VFSS evaluates the 

swallowing function with different food consistencies, but through fluoroscopy over the 

oral cavity, pharynx, and cervical esophagus [13]. There are some drawbacks to these two 

methods. FEES induces pain and discomfort, while topical anesthesia may be applied some-

times. The VFSS exposes patients to radiation hazards and contrast agents [13]. Moreover, 

FEES and the VFSS are expensive and require professionals to operate. 

It is demanding to develop alternative bedside methods that are valid and reliable [14]. 

Non-instrumental bedside assessments relied heavily on experts or therapists to conduct 

anamnesis, morphodynamical, and gustative function evaluations [15], whereas other re-

lated tests, such as the 3-ounce water swallowing test [16] and cough reflex test [17], lacked 

sensitivity and predictive strength [18] despite being routinely carried out in nursing homes 

or care homes. The use of acoustic and accelerometric sensors has been one of the common 

approaches to analyze swallowing [19,20]. The accelerometer is positioned on the surface of 

the skin above the larynx, where muscle movements take place when an individual swal-

lows [21]. On the other hand, through a microphone near the throat, the chewing and swal-

lowing sounds could be collected and analyzed to determine the food consistencies and vis-

cosities and thus the swallowing conditions. Hidden Markov or other deep learning models 

were used for signal processing and analysis [22–24]. However, the approach was subject to 

background noise and may require additional pre-processing and segmentation of the 

acoustic data [25]. For the piezoelectric sensors, they were in the form of necklaces or patches 

that were versatile and light. The sensors detected physical strain and movement, which 

were subsequently processed with deep learning models to recognize chewing and swal-

lowing motions [26–28]. It might also be challenging to implement contact-based sensors for 

older adults, especially those with dementia [29]. 

Recently, noncontact optical-based approaches using infrared depth cameras have 

emerged and been adopted for different mobile health applications [30–33]. Specific to 

dysphagia, An et al. [34] developed a liquid viscosity estimation model using the built-in 

camera of the smartphone with a convolutional neural network (CNN). Some other re-

searchers also attempted to estimate the swallowing time using a depth camera [35]. An-

other study focused on measuring laryngeal movement via depth images, modeled by a 

decision tree [36]. We believed that the infrared depth camera could analyze the swallow-

ing movement of the throat and compromise privacy. With the advancement of deep 

learning models in computer vision, we anticipated that they could help identify swal-

lowing and thus abnormalities of swallowing. While CNN was a class of models 
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commonly used for image classification, recent studies demonstrated that another cutting-

edge class of models, Transformers, which lay upon the core of natural language pro-

cessing (NLP) [37], could effectively model the spatiotemporal relationship of image data 

(i.e., video data) and thus improve the classification performance.  

On the other hand, regardless of the kind of model, an activation function is often re-

quired after the linear transformation of each layer. It is essential to provide nonlinearity in 

order to facilitate the learning of complicated input–output interactions [38]. In more tech-

nical terms, activation functions turn the weighed sum of inputs into an output value and 

transmit it to the nodes of the next layer. During model training, the choice of activation 

function is often determined by compromising convergence, complexity, smooth gradient 

flow, and data preservation during model training [38]. A Rectified Linear Unit (ReLU) is 

one of the common activation functions utilized by renowned networks, including AlexNet, 

GoogleNet, ResNet, and MobileNets. Other more recent activation functions, such as Swish, 

Exponential Linear Unit (ELU), Gaussian Error Linear Unit (GELU), and Gated Linear Units 

(GLU) have garnered attention for being superior to ReLU in certain tasks, despite the fact 

that the majority of model developments still adhere to the well-established ReLU [39]. Con-

temporary CNN networks often incorporate residual blocks with a Rectified Linear Unit 

(ReLU) as the default activation function. Nevertheless, the developers of ResNet and their 

successors did not justify or evaluate the choice of activation functions.  

To this end, the objective of this study was to evaluate the performance of deep learning 

models (CNNs and Transformers) in classifying swallowing events from infrared depth 

camera video data. For the model with the best performance, we would then analyze the 

activation function that may further enhance the performance. The goal was to select the 

appropriate model and activation functions for this application at the outset and to facilitate 

a full-scale study for deployment in the future. This work represented the initial step to pave 

the road towards affordable and accessible instrumented dysphagia screening.  

2. Materials and Methods 

2.1. Participant Recruitment 

We recruited 65 healthy adults (28 males and 37 females) from the university campus. 

Inclusion criteria were adults with no prior swallowing deprivation or disorder and no 

operation history for the head or neck within three months. Exclusion criteria were adults 

with difficulties in communication due to consciousness disturbance and patients with a 

tracheotomy hole. The participants had a mean age of 43.2 years (SD: 17.7, range: 18 to 77), 

an average height of 164.6 cm (SD: 8.19 cm, range: 148 cm to 183 cm), and a weight of 62.9 

kg (SD: 13.5 kg, range: 40 kg to 100 kg). The experiment was approved by the Institutional 

Review Board of the university (reference No.: HSEARS20210416005). Prior to the start of 

the experiment, all participants were provided with oral and written descriptions of the 

experimental procedures, and they signed an informed consent form indicating their un-

derstanding and agreement to participate. 

2.2. System Setup 

An infrared Red-Blue-Green (RGB) stereo-based depth camera (Realsense D435i, Intel 

Corp., Santa Clara, CA, USA) was positioned to capture the entire swallowing process using 

the RealSense viewer program. Some preliminary tests were previously carried out and it 

was determined that the camera should be oriented at a 45° angle from the horizontal plane 

and placed 30 cm away from the neck of the participant (Figure 1a) to acquire the lower face 

and neck regions. The depth image data were captured at a resolution of 640 × 480 pixels, a 

frame rate of 30 frames per second, and a pixel depth of 2 bytes per pixel (or 1 mm per depth 

unit). The data were transmitted and processed on a personal computer. 
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Figure 1. (a) System setup of the depth camera, (b) overall data processing framework, and (c) the 

temporal segment network [40]. 

2.3. Experimental Procedure 

During the experiment, we recorded the lower face and neck (lip, mandible, and 

throat) motions for both non-swallowing and swallowing tasks. For the non-swallowing 

tasks, participants were asked to pronounce vowels, “/eɪ/”, “/iː/”, “/aɪ/”, “/oʊ/”, “/u:/” (i.e., 

/a/, /e/, /i/, /o/, /u/), in addition to performing a deep breath. After completing the non-

swallowing motion tests, participants were asked to perform swallowing tasks. The first 

swallowing task was to eat (swallow) a cracker, approximately 45 mm × 45 mm in size. The 

second task was to drink (swallow) a cup of 10 mL of water. Participants were asked to 

consume as much as possible while taking bites/boluses at their comfortable size/volume. 

The recording time depended on the actual duration of the tasks for each participant 

and trial. The swallowing time was approximately 1.0 to 1.5 s. Similarly, all tasks were 

repeated four times. Therefore, there was a total of 520 and 1560 sample data for all par-

ticipants on the swallowing and non-swallowing tasks, respectively. The full dataset, with 

both swallowing and non-swallowing tasks, constituted 2080 sample data. The actual 

swallowing or non-swallowing tasks performed by the participants (i.e., ground truth) 

were manually labeled on each clip. 

2.4. Data Processing 

The overall data processing framework was shown in Figure 1b, which consisted of 

frame-by-frame filtering and video sampling. After data collection, we processed the data 

to improve the image (frame) quality and reduce noise. We followed the processing pipe-

line using RealSense SDK, as recommended by the official documents. For each frame, we 

first transformed the depth domain of the images to the disparity domain. Next, we ap-

plied spatial and temporal filters to denoise. The spatial filter was a one-dimensional edge-

preserving spatial filter using a high-order domain transformation [41]. It aimed to 



Mathematics 2023, 11, 3081 5 of 22 
 

 

smooth the depth noise while preserving the edges. The temporal filter was similar to the 

spatial filter but suppressed artifacts across consecutive frames of the depth video se-

quence. The strength of smoothing was controlled by the parameters α and δ, for calcu-

lating the one-dimensional exponential moving average (EMA). It is defined by the recur-

sive Equation (1): 

𝑆𝑡 = {

𝑌1, 𝑡 = 1

𝛼𝑌𝑡 + (1 − 𝛼)𝑆𝑡−1, 𝑡 > 1 𝑎𝑛𝑑 ∆= |𝑆𝑡 − 𝑆𝑡−1| < 𝛿𝑡ℎ𝑟𝑒𝑠ℎ

𝑌𝑡 , 𝑡 > 1 𝑎𝑛𝑑 ∆= |𝑆𝑡 − 𝑆𝑡−1| > 𝛿𝑡ℎ𝑟𝑒𝑠ℎ

 (1) 

where coefficient 𝛼 refers to the degree of weighting decrease, 𝑌𝑡 represents the latest 

recorded value for disparity or depth, and 𝑆𝑡−1 is the value of the EMA at a previous time 

period, denoted as t.  

When α is set to 1, no filtering is applied, while an α of zero results in an infinite 

history for the filtering. Additionally, the delta threshold (𝛿𝑡ℎ𝑟𝑒𝑠ℎ) was introduced. If the 

difference in depth values between neighboring pixels exceeds 𝛿𝑡ℎ𝑟𝑒𝑠ℎ, α would be tem-

porarily reset to one, which disables the filtering. In other words, if an edge is detected, 

the smoothing function is temporarily turned off. However, this may result in artifacts, 

depending on the direction of the edge traversed (i.e., right-to-left or left-to-right). To mit-

igate this, two bi-directional passes would be employed in both the vertical and horizontal 

directions of the images.  

In temporal filtering, the same EMA smoothing was employed in the time domain. 

Similar to the spatial filter, 𝛼 was used to represent the extent of the temporal history that 

should be averaged. The advantage of this approach is that it allows fractional frames to be 

effectively averaged. By setting 𝛼 = 1, there would be no filtering, while 𝛼 = 0 would in-

crease the averaging effect and result in a smoother output, allowing fine-grained smooth-

ing beyond simple discrete frame averaging. Moreover, it is also important to incorporate 

the delta threshold, 𝛿𝑡ℎ𝑟𝑒𝑠ℎ, to reduce the temporal smoothing effects near edges and ensure 

that missing depth information is not included in the averaging. We applied RealSense SDK 

default values for 𝛼 and 𝛿𝑡ℎ𝑟𝑒𝑠ℎ, where 𝛼 = 0.5 and 𝛿𝑡ℎ𝑟𝑒𝑠ℎ = 20 for the spatial filter, and 

𝛼 = 0.4 and 𝛿𝑡ℎ𝑟𝑒𝑠ℎ = 20 for the temporal filter. Since image reconstruction of the stereo 

depth camera is based on a triangulation technique, the noise would appear at a level cor-

related with the squared rate of the camera–subject distance. In this context, 𝛼  and 𝛿 

would need to be adjusted based on the camera–subject distance, such that over-smoothing 

of near-range data and under-smoothing of far-range data could be avoided. We adopted a 

simpler approach by transforming the data into disparity domains before applying the filter. 

After the filtering process, the images (frames) were back-transformed to the depth do-

main. We applied the hole-filling filter (boundary fill from Realsense SDK) to gaps or miss-

ing regions in depth maps that might result from occlusions and reflections. Subsequently, 

we removed the image background by zeroing the data with depth values larger than 60 cm 

and segmenting the silhouette of the subject. The region of interest (ROI) was located by first 

identifying the centroid of the silhouette (𝑥̅, 𝑦̅) based on the image moment, the weighted 

averages of the image pixels’ values, which are defined in Equations (2) and (3). 

𝐼𝑚𝑎𝑔𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 =  𝑀𝑖𝑗 = ∑ ∑ 𝑥𝑖𝑦𝑗𝐼(𝑥, 𝑦)

𝑦𝑥

 (2) 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = (𝑥̅, 𝑦̅) = (
𝑀10

𝑀00

,
𝑀01

𝑀00

) (3) 

where i and j constitute the order of the moment, and I(x,y) represents the pixel value of 

row x and column y. The first-order moments 𝑀10 and 𝑀01 normalized by the zero-order 

moment 𝑀01 would yield the centroid of the silhouette (𝑥̅, 𝑦̅) and crop out a 224 × 224 

pixel region from (𝑥̅ − 112, 𝑦̅ − 168) to (𝑥̅ + 112, 𝑦̅ + 56).  

This setting was assigned based on our pilot analysis to ensure that the throat, man-

dibular (jaw), and lip regions were covered. To avoid excessive memory and 
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computational requirements associated with utilizing the entire sequence of video frames 

in training, frames were sampled from the video using the temporal segment network 

[40]. As shown in Figure 1c, depth video frames were sampled by dividing the entire foot-

age into several snippets, followed by a random selection of frames from each snippet. In 

our case, we decided to divide the depth videos into four snippets and randomly sample 

two frames from each snippet, as determined by our pilot analysis. The approach could 

ensure that every part of the video was representative of the loaded frames, and the 

method would be flexible enough to accommodate arbitrary and varying video lengths 

[40]. The pseudocode of the process is illustrated in Algorithm A1.  

2.5. Activation Functions 

While ReLU was the default activation function for X3D, Slowfast, and R(2+1)D, GELU 

was utilized by ViViT and TimeSFormer. In this study, we tested five activation functions, 

including ReLU [42], LeakyReLU [43], GELU [44], ELU [45], a Sigmoid-weighted Linear 

Unit (SiLU) [46], and a Gated Linear Unit (GLU) [47], on the model with the best perfor-

mance. For the best-performing activation function, we would further conduct hyperparam-

eter tuning of the activation function. The formulations with an input to a neuron (x) for all 

activation functions are illustrated in Equations (4)–(9) and compared in Figure 2.  

   
(a) (b) (c) 

  
(d) (e) 

Figure 2. Activation function responses of (a) ReLU; (b) LeakyReLU; (c) GELU; (d) ELU; and (e) 

SiLU. 

ReLU is a piecewise linear function that outputs the input directly if it is positive, and 

zero if it is negative, which is the default for most of networks due to its simplicity and 

high performance. 

𝑅𝑒𝐿𝑈(𝑥) = 𝑥+ = max(0, 𝑥) = {
𝑥       if 𝑥 ≥ 0

     0       if 𝑥 < 0
 (4) 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥          if 𝑥 ≥ 0

  𝛼 ⋅ 𝑥          if 𝑥 < 0
 (5) 
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LeakyReLU (a particular kind of Parametric ReLU) is based on ReLU but returns a 

small negative value or slope (default α = 0.01) if the input is negative to account for the 

situation in which a large number of neuron inputs are negatives. Therefore, some infor-

mation is “leaked” to prevent information loss (dead neurons) [48]. The ELU adopted a 

similar strategy but introduced exponential nonlinearity on negative inputs to mitigate 

the vanishing gradient problem (α default is one), whilst the SiLU utilized a Sigmoid func-

tion (σ). Vanishing gradient problems appear when lower layers of a network have gradi-

ents that are close to zero because higher layers are virtually saturated at −1 or 1 due to 

the tanh function [49].  

𝐸𝐿𝑈(𝑥) = { 
  𝑥                               if 𝑥 > 0
  𝛼 (𝑒𝑥𝑝(𝑥) − 1)    if 𝑥 ≤ 0

        𝛼 > 0 (6) 

𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ⋅ 𝜎(𝑥) =
𝑥

1 + 𝑒−𝑥
 (7) 

GELU multiplies the input neuron by a random value from 0 to 1, calculated by the 

cumulative distribution function of the Gaussian distribution Φ(𝑥). When the value of the 

input neuron is small, there is a large likelihood that the function’s output would be zero 

(i.e., 𝑃𝑟(𝑋 ≤ 𝑥)). GeLU is based on the assumption that the input neuron follows a normal 

distribution, especially after batch normalization. 

𝐺𝐸𝐿𝑈(𝑥) = 𝑥𝑃𝑟(𝑋 ≤ 𝑥) = 𝑥 ⋅ Φ(𝑥) ≅ 0.5𝑥(1 + 𝑡𝑎𝑛ℎ [√
2

𝜋
(𝑥 + 0.044715𝑥3)] 

𝑋 ~ 𝑁(0,1) 

(8) 

𝐺𝐿𝑈(𝑋) = (𝑋 ⋅ 𝑊 + 𝑏) ⊗ 𝜎(𝑋 ⋅ 𝑉 + 𝑐) 

𝑋 ∈ ℝ𝑘×𝑚, 𝑊 ∈ ℝ𝑘×𝑚×𝑛, 𝑉 ∈ ℝ𝑘×𝑚×𝑛, 𝑏 ∈ ℝ𝑛 , 𝑐 ∈ ℝ𝑛 
(9) 

where k is the patch size, and m and n are the number of input and output feature maps, 

respectively.  

The GLU is constructed by the linear project of the neuron input (𝑥 ⋅ 𝑊 + 𝑏), multi-

plied by the Sigmoid gates 𝜎(𝑥 ⋅ 𝑉 + 𝑐). The element-wise multiplication of the gates on 

the input projection matrices could control the information passed on the hierarchy.  

2.6. Model Training 

Five cutting-edge deep learning models were trained for swallowing/non-swallow-

ing classification, including two models of the Transformer class (TimeSFormer [50], 

Video Vision Transformer (ViViT) [51],) and three models of the CNN class (SlowFast [52], 

X3D [53] and R(2+1)D [54]). Model architectures are illustrated in Figure 3. Explanations 

of the models were provided in the discussion section. The models were trained using a 

computational unit with Intel Core i7 12700 and Nvidia RTX 4090. The total parameters 

and training time referenced to our computer are provided in Table 1. 
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(e) 

 
 

Figure 3. Model architectures for the five models: (a) X3D; (b) SlowFast; (c) R(2+1)D; (d) 

TimeSFormer; (e) ViViT [50–54]. 

Table 1. Total parameters and training time of models. 

 X3D SlowFast R(2+1)D TimeSFormer ViViT 

Total parameters  2.99 M 6.19 M 31.51 M 121.26 M 3.05 M 

Training speed 35 s/epoch 51 s/epoch 70 s/epoch 94 s/epoch 37 s/epoch 

We split the data into training, validation, and testing datasets at a ratio of 7:2:1. The 

models were trained using the training datasets. The performance of the model on the vali-

dation set during training was monitored to prevent overfitting. We performed 200 training 

epochs, with early stopping if the best performance did not improve in the next 20 iterations. 

The Adam optimizer was used for all models at a 0.0001 learning rate using cross entropy 

as the loss function. The pseudocode for the Adam optimizer is included in Algorithm A2.  

The training batch size was set to four. We performed 100 training epochs, with early 

stopping if the best validation loss value did not improve in the next 20 iterations. For hy-

perparameters, TimeSFormer’s attention mechanism was divided into space-time attention, 

where temporal attention and spatial attention were separately applied one after the other 

[50]. The patch size of ViViT was set to eight. The ResNet101 backbone was employed in the 

SlowFast model. All other unspecified hyperparameters were set to default, corresponding 

to each of the models. All processes were implemented using the PyTorch library [55].  

2.7. Outcome Measures and Data Analysis (Model Evaluation) 

Model evaluation was conducted by making predictions by inputting testing datasets 

onto the models. The primary analysis involved the overall performance in classifying the 

swallowing and non-swallowing tasks (i.e., coarse classification). Thereupon, two fine-grained 

classifications (subgroup analyses) on four classes and eight classes were performed. The for-

mer involved vowel pronunciation, deep breathing, eating, and drinking, while the latter in-

volved the eight swallowing and non-swallowing tasks. On the best model, the same analysis 

would be conducted to compare the performance of various activation functions.  

The F1-score was used as the primary outcome, which was believed to be less prone 

to an imbalanced class bias [56]. It is the harmonic mean of precision and recall, which is 

calculated by reciprocating the arithmetic mean of the reciprocals of precision and recall, 

as shown in Equations (10)–(12). Precision was defined as the proportion of positive pre-

dictions that were correct, while recall was the proportion of true positives that were cor-

rectly identified [57]. These outcome measures were derived from the confusion matrix 

(i.e., contingency table) that visualized the relationship between the predicted and actual 

(ground truth) class labels for the testing dataset. The cells of the table consisted of counts 

of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

The confusion matrix of the best-performing model was presented, in addition to the pre-

cision and recall for the other models and subgroup analyses. The counts were also used 

to analyze the source of the misclassification. Moreover, the Area under the receiver-op-

erating characteristics curve (AUC) was used to evaluate the discrimination power of a 
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binary classifier model. As a rule-of-thumb, we considered an F1-score over 0.70 as ac-

ceptable, 0.85 as good, and 0.9 as excellent.  

The F1-score was calculated in Equations (10)–(12).  

𝐹1 =
2

1
𝑃𝑐

+
1

𝑅𝑐

=
2 × 𝑃𝑐 × 𝑅𝑐

𝑃𝑐 + 𝑅𝑐
 (10) 

𝑃𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11) 

𝑅𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

where Pc is precision and Rc is recall. TP, FP, and FN are true positive, false positive, and 

false negative, respectively.  

For model evaluation, an adjustment of the F1-score, precision, and recall were sup-

plemented by bootstrapping (n = 26) on the major class to accommodate the imbalance in 

class size because of multiclass subgroup analyses (Algorithm A3). Confidence intervals 

of precision and recall for bootstrapping were estimated by their standard errors assum-

ing a binomial distribution. 

3. Results 

3.1. Model Performance 

For the coarse classification of swallowing and non-swallowing, X3D was the best-

performing model with an average F1-score (adjusted F1-score) of 0.920 (0.885) (Figure 

4a). The F1-scores (adjusted F1-scores) for detecting swallowing and non-swallowing 

were 0.878 (0.880) and 0.962 (0.889), respectively. CNNs were apparently better than 

Transformers. The other two CNNs, SlowFast and R(2+1)D, achieved average F1-scores 

(adjusted F1-scores) of 0.902 (0.884) and 0.866 (0.863), respectively, whereas the F1-scores 

(adjusted F1-scores) of TimeSFormer and ViViT were 0.648 (0.707) and 0.683 (0.766), as 

shown in Figure 4a). The adjusted F1-scores are shown in Table 2, calculated by the boot-

strapped precision and recall. 

Table 2. Adjusted F1-score of the five models, calculated by bootstrapping. 

 X3D SlowFast R(2+1)D TimeSFormer ViViT 

Coarse Classification 

Swallowing 0.880 0.875 0.844 0.667 0.739 

Non-swallowing 0.889 0.893 0.881 0.746 0.793 

Coarse Average: 0.885 0.884 0.863 0.707 0.766 

Fine-grained Classification 

Eating 0.711 0.769 0.783 0.650 0.294 

Drinking 0.732 0.556 0.364 0.476 0.412 

Deep Breathing 0.894 0.939 0.939 0.894 0.488 

Vowel Pronunciation 0.926 0.923 0.889 0.755 0.720 

Pronouncing “/eɪ/” 0.809 0.809 0.727 0.564 0.462 

Pronouncing “/iː/” 0.756 0.683 0.389 0.756 0.188 

Pronouncing “/aɪ/” 0.800 0.564 0.353 0.333 0.242 

Pronouncing “/oʊ/” 0.783 0.207 0.444 0.526 0.343 

Pronouncing “/u:/” 0.894 0.863 0.585 0.714 0.194 

4-class Average: 0.816 0.797 0.744 0.694 0.479 

8-class Average: 0.797 0.674 0.573 0.614 0.328 
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Figure 4. F1 scores for all models in (a) coarse classification; (b) 4-class fine-grained classification; 

(c) 8-class fine-grained classification; and confusion matrices of X3D, SlowFast, R(2+1)D, 

TimeSFormer, and ViViT. 

As shown in Figure 5, fine-grained classification imposed additional challenges to 

the model prediction accuracy. X3D remained the best-performing model and produced 

average F1-scores (adjusted F1-scores) of 0.762 (0.816) and 0.649 (0.797), respectively, for 

the four-class and eight-class analyses (Figure 4b,c). Although the Transformers per-

formed worse, their average F1-scores managed to get over the probability of random 

guess in four classes (0.250) and eight classes (0.125). 

   
(a) (b) (c) 
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(d) (e) 

Figure 5. 8-class fine-grained classification; and confusion matrices of (a) X3D; (b) SlowFast; (c) 

R(2+1)D; (d) TimeSFormer; and (e) ViViT. 

3.2. Task Prediction Performance 

The prediction performance for non-swallowing was better than swallowing in 

coarse classification. The average F1-score across models for non-swallowing was 0.903, 

with a range from 0.834 to 0.962 (adjusted F1-score: 0.840, range from 0.746 to 0.893), com-

pared to that of swallowing, which was 0.704, with a range from 0.458 to 0.878 (adjusted 

F1-score: 0.801, range from 0.667 to 0.880). Among the eight swallowing and non-swal-

lowing tasks, deep breath was the most distinctive, and the best model for this event, 

R(2+1)D attained an F1-score of 0.902. However, the highest adjusted F1-score for deep 

breath was 0.939, achieved by both SlowFast and R(2+1)D models. It was simpler to rec-

ognize vowel pronunciation from other tasks, but it was more difficult to pinpoint each 

individual vowel pronunciation. X3D attained an F1-score of 0.959 in classifying vowel 

pronunciation, but that of recognizing each vowel ranged from 0.542 to 0.824. The 

SlowFast model tended to misclassify “/oʊ/” as “/u:/” with a low F1-score of 0.061 for this 

event. On the other hand, it was also difficult to classify eating and drinking. For X3D, the 

F1-score (adjusted F1-score) to identify eating was 0.667 (0.711), while that of drinking was 

0.600 (0.732). Figure 6 details the precision and recall for each model and task.  
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Figure 6. Estimated precision and recall of coarse and fine-grained classification by bootstrapping 

for all models and tasks. 

3.3. Evaluation of Activation Functions on the Best Model 

Evaluation of activation functions was performed on the X3D model. The default ac-

tivation function, ReLU, produced the best overall performance (F1-score: 0.920), followed 

by LeakyReLU. Nevertheless, LeakyReLU, GELU, and ELU had higher F1-scores in rec-

ognizing non-swallowing events, which were 0.927, 0.911, and 0.899, respectively.  
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For fine-grained classification (Table 3), ReLU and LeakyReLU fared similarly, alt-

hough LeakyReLU performed slightly better. Their F1-scores for four-class classification 

were 0.711 and 0.718, respectively, while those for eight-class classification were 0.649 and 

0.656. The ReLU appeared to outperform the other functions in articulating the pronunci-

ation of “/iː/” (F1-score: 0.731) and “/u:/” (F1-score: 0.824). However, the ReLU had the 

lowest performance (F1-score: 0.619) among the functions for identifying breathing, which 

was largely improved by using LeakyReLU (F1-score: 0.816).  

Table 3. F1-score of X3D on different activation functions. 

 
ReLU 

(Default) 
LeakyReLU GELU ELU GLU SiLU 

Coarse Classification  

Swallowing 0.962 0.807 0.681 0.673 0.906 0.925 

Non-swallowing 0.878 0.927 0.911 0.899 0.763 0.750 

Coarse Average: 0.920 0.867 0.796 0.786 0.835 0.838 

Fine-grained Classification  

Eating 0.667 0.551 0.418 0.407 0.488 0.593 

Drinking 0.600 0.578 0.458 0.462 0.250 0.429 

Deep Breathing 0.619 0.816 0.760 0.627 0.800 0.857 

Vowel Pronunciation 0.959 0.925 0.895 0.839 0.895 0.924 

Pronouncing “/eɪ/” 0.644 0.644 0.543 0.462 0.654 0.538 

Pronouncing “/iː/” 0.731 0.596 0.519 0.545 0.596 0.378 

Pronouncing “/aɪ/” 0.567 0.723 0.578 0.585 0.510 0.500 

Pronouncing “/oʊ/” 0.542 0.591 0.474 0.500 0.511 0.341 

Pronouncing “/u:/” 0.824 0.750 0.506 0.516 0.588 0.429 

4-class Average: 0.711 0.718 0.633 0.584 0.608 0.701 

8-class Average: 0.649 0.656 0.532 0.513 0.550 0.508 

Subsequently, we further evaluated LeakyReLU with different α values (Table 4). α 

of Tan12° and Tan6° produced better performances. Their average F1-scores for eight-class 

classification were 0.697 and 0.691, respectively. In addition, the α of Tan6° showed higher 

performance in recognizing eating and drinking events (F1-scores of 0.692 and 0.652, re-

spectively), whereas the α of Tan12° was superior in identifying non-swallowing events. 

Table 4. Evaluation of hyperparameter, α, on the performance of LeakyReLU. 

  Tan18° Tan15° Tan12° Tan9° Tan6° Tan3° Tan0° 

F1 

Pronouncing “/eɪ/” 0.585 0.585 0.667 0.548 0.543 0.677 0.644 

Pronouncing “/iː/” 0.577 0.510 0.750 0.578 0.605 0.681 0.731 

Pronouncing “/aɪ/” 0.711 0.627 0.846 0.621 0.698 0.650 0.567 

Pronouncing “/oʊ/” 0.667 0.625 0.708 0.486 0.625 0.679 0.542 

Pronouncing “/u:/” 0.742 0.632 0.691 0.698 0.808 0.727 0.824 

Deep breathing 0.939 0.826 0.830 0.894 0.902 0.816 0.619 

Eating 0.691 0.607 0.571 0.679 0.692 0.571 0.667 

Drinking 0.600 0.476 0.510 0.549 0.652 0.553 0.600 

8-class Average 0.689 0.611 0.697 0.632 0.691 0.669 0.649 

Precision 

Pronouncing “/eɪ/” 0.487 0.487 0.588 0.472 0.400 0.583 0.576 

Pronouncing “/iː/” 0.577 0.520 0.818 0.684 0.765 0.762 0.731 

Pronouncing “/aɪ/” 0.842 0.640 0.846 0.562 0.882 0.929 0.500 

Pronouncing “/oʊ/” 0.727 0.682 0.773 0.818 0.682 0.667 0.591 

Pronouncing “/u:/” 0.639 0.581 0.655 0.595 0.808 0.690 0.840 

Deep breathing 1.000 0.950 0.815 1.000 0.920 0.870 0.813 
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Eating 0.655 0.567 0.609 0.667 0.692 0.486 0.643 

Drinking 0.857 0.625 0.520 0.560 0.750 0.619 0.625 

8-class Average 0.723 0.632 0.703 0.670 0.737 0.701 0.665 

Recall 

Pronouncing “/eɪ/” 0.731 0.731 0.769 0.654 0.846 0.808 0.731 

Pronouncing “/iː/” 0.577 0.500 0.692 0.500 0.500 0.615 0.731 

Pronouncing “/aɪ/” 0.615 0.615 0.846 0.692 0.577 0.500 0.654 

Pronouncing “/oʊ/” 0.615 0.577 0.654 0.346 0.577 0.692 0.500 

Pronouncing “/u:/” 0.885 0.692 0.731 0.846 0.808 0.769 0.808 

Deep breathing 0.885 0.731 0.846 0.808 0.885 0.769 0.500 

Eating 0.731 0.654 0.538 0.692 0.692 0.692 0.692 

Drinking 0.462 0.385 0.500 0.538 0.577 0.500 0.577 

8-class Average 0.688 0.611 0.697 0.635 0.683 0.668 0.649 

4. Discussion 

The novelty of this research lies in the application of depth cameras, in addition to state-

of-the-art deep learning techniques including CNNs and Transformer models, to analyze and 

classify swallowing and non-swallowing tasks, which paves the road towards accessible in-

strumental dysphagia screening. We believed that this may be one of the first works of its kind. 

Moreover, the swallow monitoring system could be expanded to evaluate patients with eating 

behavioral and malnutritional problems and to facilitate biofeedback training [58,59].  

Five cutting-edge deep learning models were used and compared, including 

TimeSFormer, ViViT, SlowFast, X3D, and R(2+1)D. These models were specialized in lever-

aging both spatial and temporal information from video sequences to perform tasks such as 

action recognition, object detection, and video segmentation, while addressing various chal-

lenges unique to video analysis, such as the temporal variability and the need for efficient 

and scalable architectures. [60]. The two Transformer models differed from one another in 

the design of the attention scheme. TimeSformer embedded frame-level patches and learned 

spatiotemporal features by dividing temporal and spatial attention schemes within each 

block [50]. On the other hand, ViViT proposed multiple-head self-attention architectures 

that accounted for the factorization of spatial and temporal dimensions of the input [51].  

For the CNNs, SlowFast consisted of a slow and a fast pathway processing the same in-

put with different temporal resolutions. The slow pathway was a standard 3D CNN, while 

the fast pathway integrated a 2D CNN with a temporal down-sampling unit. The two path-

ways were joined with a Time-strided convolution (T-conv) [52]. X3D was built using a ResNet 

structure and the Fast pathway of the SlowFast model, along with degenerated (single frame) 

temporal input [53]. Moreover, the characteristics of R(2+1)D were the utilization of a 2D con-

volutional filter with a 1D temporal convolutional filter, governed by the hyperparameter re-

lated to the intermediate subspace between the spatial and temporal convolutions [54]. 

X3D was the best model in our study with good-to-excellent performance (F1-score: 

0.920; adjusted F1-score: 0.885) in classifying swallowing and non-swallowing conditions 

despite the fact that the performance was just acceptable. The model focused on one data 

dimension at a time in building up the model blocks to accommodate the level of com-

plexity, which might be appropriate and efficient for our occasion. For the other two 

CNNs, R(2+1)D manifested spatiotemporal representation through temporal convolu-

tions, while the SlowFast model captured high-level semantics and spatiotemporal infor-

mation through the slow and fast pathways. These approaches could be vulnerable to the 

predefined layer size and number of layers, which might require strategies for extensive 

hyperparameter optimization to arrest critical spatiotemporal features. The hyperparam-

eter tuning process could be very time-consuming and demanding of computational 

power because of the higher dimensionality of video data, compared to those working on 

numeric and image data. On the other hand, our initial hypothesis was that the Trans-

formers could outperform the CNNs because of their long-range capturing capacity and 

attention mechanism. Nevertheless, Transformers exhibited poor performance in our 
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study because of the small dataset size. In fact, Transformers placed a very high demand 

on the size of the dataset [61]. We did not pre-train the Transformers because a large-depth 

video dataset was not available in the public domain.  

The classification of the depth camera relied on manifested morphological motions of 

the lip (mouth), mandibular (jaw), and neck (throat) regions. Swallowing and non-swallow-

ing could be easier to classify because of the discernible depth of the throat, with and with-

out bolus. Although eating behaviors can be represented by “periodic” mandibular (jaw) 

activities (i.e., chewing) [62], our study found it difficult to discriminate between eating and 

drinking, probably due to their comparable lip and throat motions. Capturing hand move-

ments might help distinguish the type of foods/liquids. On the other hand, while pronunci-

ation could be recognized by lip movements, some vowels had subtle lip apertures and 

might vary depending on individuals’ speaking habits or speaking countries [63]. This could 

be the reason for the low accuracy in the fine-grained classification of vowel pronunciation. 

Nevertheless, the success in recognizing talking (pronunciation), breathing, and eat-

ing/drinking might facilitate monitoring systems for sleep apnea and somniloquy.  

Real-time and continuous extraction and identification of high-level spatial and tem-

poral features were the challenges in this study. The experimental protocol itself might con-

found the data features. In particular, swallowing tasks generally had a shorter duration 

than non-swallowing tasks. We endeavored to apply the temporal segment network [40] to 

equalize the amount of information in the temporal domain to ensure that the model was 

analyzing the spatiotemporal features of the data instead of the length of the recording. 

Nevertheless, the approach might not account for the dynamic time wrapping issue [64]. 

For example, the variations on the start/stop instants of the recording and features might fail 

to “synchronize and align” the temporal features corresponding to each task. These would 

lead to bias during random sampling within the temporal segment network.  

The optimal training/validation/testing ratio for machine learning was mostly empiri-

cal and lacked precise recommendations [65,66]. While Joseph [65] and Dubbs [66] sug-

gested that the number of parameters and the size of the dataset could be used to estimate 

the splitting ratio for linear models and Ridge and Lasso regression, a general law for the 

splitting ratio, determined analytically or asymptotically for all models, has not yet been 

established [66]. A rule of thumb was to divide the data in an 80/20 ratio based on the Pareto 

principle, while some advised allocating 70% of data for model training and distributing the 

remaining data evenly for model validation and testing. Reducing the size of the training 

dataset, especially for small datasets, would increase the variance of the parameter estimates 

of the model, while the trade-off between the validation and testing datasets was decided 

by the need to prevent over-fitting [67]. Guyon [68] proposed that the training size deter-

mines the model inference, while the validation set (or cross-validation) would serve to in-

dicate which family of feature patterns (recognizer) works best. In this study, we adopted a 

70/20/10 approach because our dataset was small, and a larger training set ratio was pre-

ferred. In fact, an optimal splitting ratio may also depend on the type of models, data di-

mensionality, and validation methods, such as cross-validation and bootstrapping [69,70], 

posing difficulties for deep learning models with complex model architecture and high data 

dimensionality, and warranting further investigations on the theories behind hunches. 

Activation functions contribute to the advance in deep learning [71] and have a sub-

stantial effect on the behavior and performance of deep learning models [72–74]. How-

ever, numerous studies overlooked the activation function and associated hyperparame-

ters (e.g., slope coefficient, α) [48,75] and relied on model defaults. In fact, selecting the 

activation function is exceedingly difficult and typically requires extensive trial-and-error 

attempts. It depends on the dataset and the problem at hand [75,76]. From a different point 

of view, it is dependent on the input–output relationship of each node and each layer, but 

it is hard to trace since the neural network may be a direct rich space of ill-posed functions 

[77]. The challenge is exacerbated by the notion of the “edge of chaos”, which states the 

model should neither run in an overly ordered nor overly random state [78]. Several stud-

ies attempted to offer solutions to this issue. Dushkoff and Ptucha [79] employed more 
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than one activation function depending on the classification error. Jagtap, et al. [76] inte-

grated a basic activation function, using a gated or hierarchical structure to adapt to the 

inputs, while Li et al. [80] utilized a differential evolution algorithm to determine the ac-

tivation function based on the input data. Through a “smart search” method, Marchisio et 

al. [74] realized an automatic selection of the best possible activation functions for each 

layer. Nevertheless, the optimization of activation functions and associated hyperparam-

eters requires considerable computing power and time.  

Imbalanced classes were one of the challenges in different fields using machine learn-

ing/deep learning, including medical imaging [81,82], digital health [83–85], and machine 

learning-driven instruments [19,86]. In fact, imbalanced class scenarios often skew to-

wards the negative cases, since disease cases (positives) are generally rarer than non-dis-

ease cases (negatives). Models tend to predict “negative” in a highly imbalanced class 

problem in order to maximize their probability of making a correct “guess” [87]. In such 

cases, the loss function of the models could be penalized using a class-weighted inverse 

proportion of the class size [88]. Nevertheless, we avoid the imbalanced class problem on 

the training dataset by collecting the same amount of data for each task. For the multiclass 

issue in the subgroup analysis [89], we mitigate the imbalanced class problem in testing 

with a bootstrapping approach. 

There were some limitations in this research. Firstly, the relatively small size of the test-

ing set may restrict the robustness of the model. In our study, a single incorrect prediction 

of the testing data would deflate the model accuracy by about 0.5%. A k-fold cross-valida-

tion could improve the model robustness upon deployment [90]. Secondly, our protocol de-

sign did not purport to cover every swallowing task. While we took reference from the com-

prehensive assessment protocol for swallowing (CAPS) [91], identifying the fewest swal-

lowing tasks necessary to accurately depict swallowing functions would be helpful to de-

velop the instrument for dysphagia screening and lessen the time and inconvenience during 

the assessment, which warrant further investigations. The inclination of the camera was de-

termined based on our pilot experiment that better captured the frontal view of the neck 

area. We believed that our model would be insensitive to the variations of the camera orien-

tation since the model could accommodate the variations by the affine transformation na-

ture of the convolutional layer. Moreover, with respect to subject recruitment, gender could 

be a significant confounder and critical feature in the study because of the larger Adam’s 

apple in males that might need to be input into the model. Secondly, the duration of the data 

samples (i.e., sample/sequence length) was about 1.0 to 1.5 s. To learn the temporal features 

effectively and produce accurate predictions, some models, especially Transformers, need 

sufficient temporal duration for each data sample [37,92]. Although the sample length re-

quirement could be task-specific, longer data sequences provide more context for the model 

to learn complex relationships between inputs and outputs [37,92]. Data augmentation tech-

niques might be used to prolong the data sequences [93]. For example, repeating the short 

video frames to lengthen the video clip. Moreover, data augmentation could help resolve 

the demand for large datasets in Transformers. Data augmentation for depth frames could 

be achieved by adding rotations about the three-dimensional axes to simulate different ori-

entations or viewpoints of the depth camera [94]. Alternatively, the Synthetic Minority 

Over-sampling Technique (SMOTE) could be one way to create synthetic samples by inter-

polating neighboring instances of that class, which could also be used to resolve the imbal-

anced class problem [95]. Lastly, we have not constructed explainability maps to understand 

the attention of the network on salient features and locations since there are no available 

libraries that could be applied directly to four-dimensional data in our cases, which warrants 

further investigations.  

5. Conclusions 

In this study, we developed a stereo-depth camera system to recognize swallowing 

and non-swallowing through deep learning models. The innovation paves the way to-

wards accessible instrumental dysphagia assessment by expanding our data collection on 
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dysphagic and non-dysphagic populations. Our study determined that X3D was the best 

model with good-to-excellent performance (F1-score: 0.920; adjusted F1-score: 0.885) in 

classifying swallowing and non-swallowing conditions using its default activation func-

tion. However, the model was only marginally acceptable if individual tasks (fine-grained 

classification) needed to be recognized (F1-score: 0.649, adjusted F1-score: 0.797). Chang-

ing the activation function to LeakyReLU might enhance the classification performance 

on deep breathing and pronouncing “/aɪ/” tasks. A large dataset, hyperparameter tuning 

on the activation function, and extensive hyperparameter optimization across high dimen-

sionality are necessary to further improve the system performance.  
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Appendix A 

The pseudocodes used in the study are included in Algorithms A1–A3.  

Algorithm A1: The pseudocode of the video frame sampling 

1: Input: V, the input video with 𝑁𝑉 number of frames 

2:             s, the number of segments 

3:             n, the number of frames per segments 

4: Output: Array of sampled video frames 

5:   𝑑 ←  𝑓𝑙𝑜𝑜𝑟((𝑁𝑣  −  𝑛 +  1) / 𝑠) (Compute distance between segments that are approx-

imately evenly spread across the video frames) 

6:   Initialized array A [0 … s*n] 

7:   for each segment in video segment 𝑉[𝑘 × 𝑑] to 𝑉[𝑖 + 1) × 𝑑] where k from 0. s do 

8:     𝑖 ←  𝑘 ×  𝑑 +  𝑟𝑎𝑛𝑑(𝑑) (Get the start index of the segment) 

9:     for j in 0 … n do 

10:       𝐴[𝑛 × 𝑠 +  𝑗]  ←  𝑉[𝑖 +  𝑗] (Append sampled frames to the array) 

11:     end for 

12:   end for 

13:   return A 

 

Algorithm A2: The pseudocode of Adam optimization method 

1: Input: 𝛼, learning rate 

2:             𝛽1, 𝛽2 ∈ [0,1), exponential decay rates for the moment estimates 

3:             𝑓(𝜃), stochastic objective function with parameters 𝜃 

4:             𝜃0, initial parameter vector 



Mathematics 2023, 11, 3081 19 of 22 
 

 

5:             𝜖, small value to prevent division by zero 

6: Output: 𝜃𝑡, resulting parameter vector after t timesteps 

7:   𝑚0 ← 0 

8:   𝑣0 ← 0 

9:   𝑡 ← 0 

10:   while 𝜃𝑡 not converged do 

11:     𝑡 ← 𝑡 + 1 

12:     𝑔𝑡 ← 𝛻𝜃𝑓𝑡(𝜃𝑡−1) (Compute gradient for the parameters) 

13:     𝑚𝑡 ← 𝛽1  ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 (Update biased first moment estimate) 

14:     𝑣𝑡 ← 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 (Update biased second raw moment estimate) 

15:     𝑚̂𝑡 ← 𝑚𝑡/(1 − 𝛽1
𝑡) (Compute bias-corrected first moment estimate) 

16:     𝑣̂𝑡 ← 𝑣𝑡/(1 − 𝛽2
𝑡) (Compute bias-corrected second raw moment estimate) 

17:     𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ⋅ 𝑚̂𝑡/(√𝑣̂𝑡 + 𝜖) (Update parameters) 

18:   end while 

19:   return 𝜃𝑡 

 

Algorithm A3: The pseudocode of Bootstrapping 

1: Input: 𝐷(𝑉𝑎), dataset of depth videos with label a 

2:             𝐷(𝑉~𝑎), dataset of depth videos without label a 

3:             𝑛, size of each bootstrap sample 

4: Output: B, array containing the bootstrap samples 

5:   Initialize empty array B 

6:   For t from 0 to n − 1 do 

7:     Randomly select an index from 𝐷(𝑉𝑎) 

8:     Add the depth video with index i in 𝐷(𝑉𝑎) to B 

9:     Randomly select an index from 𝐷(𝑉~𝑎) 

10:     Add the depth video with index i in 𝐷(𝑉~𝑎) to B 

11:   end for 

12:   return B 
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