
Citation: Salgotra, R.; Mittal, N.;

Mittal, V. A New Parallel Cuckoo

Flower Search Algorithm for Training

Multi-Layer Perceptron. Mathematics

2023, 11, 3080. https://doi.org/

10.3390/math11143080

Academic Editors: Thomas Hanne,

Zhihua Cui, Gai-Ge Wang,

Linqiang Pan and Harish Garg

Received: 21 June 2023

Revised: 7 July 2023

Accepted: 10 July 2023

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A New Parallel Cuckoo Flower Search Algorithm for Training
Multi-Layer Perceptron
Rohit Salgotra 1,2,*, Nitin Mittal 3 and Vikas Mittal 3

1 Faculty of Physics and Applied Computer Science, AGH University of Science & Technology,
30-059 Krakow, Poland

2 MEU Research Unit, Middle East University, Amman 11813, Jordan
3 University Centre for Research and Development, Chandigarh University, Mohali 140413, India;

mittal.nitin84@gmail.com (N.M.); vikas.e14122@cumail.in (V.M.)
* Correspondence: rohits@agh.edu.pl or r.03dec@gmail.com

Abstract: This paper introduces a parallel meta-heuristic algorithm called Cuckoo Flower Search
(CFS). This algorithm combines the Flower Pollination Algorithm (FPA) and Cuckoo Search (CS) to
train Multi-Layer Perceptron (MLP) models. The algorithm is evaluated on standard benchmark
problems and its competitiveness is demonstrated against other state-of-the-art algorithms. Multiple
datasets are utilized to assess the performance of CFS for MLP training. The experimental results are
compared with various algorithms such as Genetic Algorithm (GA), Grey Wolf Optimization (GWO),
Particle Swarm Optimization (PSO), Evolutionary Search (ES), Ant Colony Optimization (ACO),
and Population-based Incremental Learning (PBIL). Statistical tests are conducted to validate the
superiority of the CFS algorithm in finding global optimum solutions. The results indicate that CFS
achieves significantly better outcomes with a higher convergence rate when compared to the other
algorithms tested. This highlights the effectiveness of CFS in solving MLP optimization problems
and its potential as a competitive algorithm in the field.

Keywords: evolutionary algorithm; neural networks; FNN; multi-layer perceptron; cuckoo flower
search

MSC: 90C26; 68U05

1. Introduction

Over the past decades, artificial intelligence (AI), and particularly machine learning
(ML), has paved the way for researchers to study nature and build problem solving models.
In particular, studying the phenomena of natural selection, social behavior, and other
patterns has led to the rise of evolutionary computing, swarm intelligence, and neural
networks (NN). NN are the most significant invention in the arena of soft computing,
inspired by neurons present in human brain. The basic NN model was conceptualized by
McCulloch and Pitts [1]. There are various types of NNs, including Kohonen self-organizing
networks [2], recurrent NN [3], spiking NN [4], feed-forward networks (FNN) [5], and
others. Among these NNs, FNN are the simplest, with low computational cost and high
performance. FNN receive input from one side and provides output at the other. The FNN
is generally unidirectional, with multiple layers in between. If there is only a single layer,
the network is called a Single-layer perceptron (SLP) [6]. SLPs are used for solving linear
problems. If there are multiple layers, called a multi-layer perceptron (MLP) [1,7], these
networks are used to solve non-linear problems.

All NNs have a common feature of learning from experience. Such NNs are called
Artificial NN (ANN), and they adapt themselves according to given set of inputs. ANNs
can be supervised using an external source for providing feedback [8,9], or they can be
unsupervised [10,11], taking the form of a NN that adapts to its own inputs without any

Mathematics 2023, 11, 3080. https://doi.org/10.3390/math11143080 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143080
https://doi.org/10.3390/math11143080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0758-2755
https://doi.org/10.3390/math11143080
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143080?type=check_update&version=2

Mathematics 2023, 11, 3080 2 of 25

external feedback. Training NNs to achieve the highest possible performance is performed
by a trainer. The trainer provides the NN with a set of input samples, modifies it with
the structural parameters of the NN, and finally, when the training process is complete,
the trainer is omitted and the NN is set as active and is available for use. There are
two types of trainers: deterministic and stochastic. Supervised learning to solve problems,
brought about with the advent of the Back propagation (BP) algorithm [12] and the gradient
search algorithm, are deterministic methods that aim at training through mathematical
optimization to achieve maximum performance. These trainers are simple and have
higher convergence speed, leading to a global optimum from a single solution. These
optimization methods have a problem of becoming in a local optima that is sometimes
mistaken as global optima. On the other hand, stochastic training methods use stochastic
optimization methods to achieve desired performance. These methods initiate training with
a random solution and enhance it to achieve a global optimum. Randomness in stochastic
methods provides local optima avoidance but these methods are slower than deterministic
methods [13,14]. Stochastic trainers are generally used in literature due to high avoidance
of local optimum.

Stochastic trainers can be single-solution or multi-solution. For a single-solution, the
NN is constructed by training it with a single random solution and evolving it iteratively
until stopping criteria is satisfied. Simulated annealing (SA) [15,16], hill climbing [17], and
others [18,19] are examples of single-solution NNs. Multi-solution NNs, on the other hand,
are initiated with multiple random solutions and evolve each solution unless the stopping
criteria is met. These criteria include Genetic algorithm (GA) [20], Ant colony optimization
(ACO) [21], Artificial Bee colony (ABC) [22,23], Particle swarm optimization (PSO) [24,25],
Differential evolution (DE) [26], Teacher-learning based optimization (TLBO) [27], Invasive
weed algorithm (IWO) [28], ensemble techniques [29], Grey Wolf optimization (GWO) [30],
and others. These algorithms have high performance in terms of finding approximate
global optimum solutions. This inspires us to develop a new meta-heuristic and apply it
efficiently for training NNs.

In this work, a new parallel algorithm based on Cuckoo Search (CS) [31] and Flower
Pollination Algorithm (FPA) [32], which we have named Cuckoo Flower Search (CFS),
is introduced. The main motivation for this work is the problem of local optima stagna-
tion and premature convergence problems of already existing algorithms. CFS has been
tested on standard benchmark functions and compared with state-of-the-art algorithms
for establishing its competitiveness. In addition, it has been further tested on FNN-MLP
as an application to real world problems. Nineteen benchmark functions have been used
to analyze the performance of the proposed algorithm. These benchmark functions con-
sist of unimodal functions, multi-modal functions, and fixed-dimension functions. These
problems are highly challenging and any algorithm performing well on these functions is
considered to be a good algorithm. A comparison with GWO, CS, FPA, BFP, and others was
also conducted. Statistical tests have also been performed to prove the superiority of CFS
over other comparable algorithms. The major contributions of the paper are highlighted as:

• To avoid premature convergence and local optima stagnation, best known properties
of FPA and CS are added to the proposed algorithm.

• The global and local search phase equations of FPA and CS are optimized for addition
in the proposed algorithm.

• Solutions generated by FPA and CS are compared and best among the two is selected
as the current best solution. These solutions are further generated over the course of
iterations to find the global best solution.

• A greedy selection operation is followed for retaining the best solution over subsequent
iterations.

• The proposed algorithm is tested on 19 classical benchmark functions, and Wilcoxon
rank-sum test is done to prove the significance of the algorithm statistically.

• Finally, five real-world datasets, including Heart, Breast cancer, Iris, Ballon, and XOR,
are optimized using the proposed algorithm.

Mathematics 2023, 11, 3080 3 of 25

• The source code of CFS algorithm is available at: https://github.com/rohitsalgotra/
CFS (accessed on 20 June 2023).

The rest of the paper is organized as follows: Section 2 describes the preliminary
definitions of FNN and MLP. The basics of CS and FPA are detailed in Section 3. Section 4
describes the proposed CFS algorithm. Section 5 presents with the results and discussion.
Finally, Section 6 concludes the paper.

2. Feed-Forward Neural Networks and Multi-Layer Perceptron

FNNs are that are unidirectional networks and have a one-way connection between
neurons. They contain several parallel layers in which neurons are arranged [33]. The
first layer is the input layer and the last last is the output layer. In between these are
several other layers that correspond to hidden layers. A three-layer MLP with n input
nodes, h hidden nodes, and m number of outputs is shown in Figure 1, showing a simple
unidirectional connection between the nodes. The outputs are calculated as in [34]:

• Weighted sum of inputs is given by:

sj = ∑n
i=1

(
Wij·Wi

)
− θj, j = 1, 2, . . . h (1)

• Outputs of hidden layers are calculated as:

sj = sigmoid
(
sj
)
=

1(
1 + exp

(
−sj
)) , j = 1, 2, . . . h (2)

• Final output based on the hidden node outputs is given as:

ok =
h

∑
j=1

(
Wjk·Sj

)
− θk, k = 1, 2, . . . m (3)

ok = sigmoid(ok) =
1

(1 + exp(−ok))
, k = 1, 2, . . . m (4)

where Wij and Wjk are weight connection of ith node in input layer to jth node in the hidden
layer and from jth hidden layer to kth output layer, respectively, θj and θk are the threshold
of jth hidden layer and kth output layer, respectively, and Xi is the ith input layer.

From the above equations, it can be seen that weights and thresholds define the final
value of the MLPs. The major concern is finding optimum weights and thresholds (biases)
for achieving a balanced relation between input and outputs.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 26

• The source code of CFS algorithm is available at: https://github.com/ro-

hitsalgotra/CFS (accessed on 20 June 2023).

The rest of the paper is organized as follows: Section 2 describes the preliminary def-

initions of FNN and MLP. The basics of CS and FPA are detailed in Section 3. Section 4

describes the proposed CFS algorithm. Section 5 presents with the results and discussion.

Finally, Section 6 concludes the paper.

2. Feed-Forward Neural Networks and Multi-Layer Perceptron

FNNs are that are unidirectional networks and have a one-way connection between

neurons. They contain several parallel layers in which neurons are arranged [33]. The first

layer is the input layer and the last last is the output layer. In between these are several

other layers that correspond to hidden layers. A three-layer MLP with n input nodes, h

hidden nodes, and m number of outputs is shown in Figure 1, showing a simple unidirec-

tional connection between the nodes. The outputs are calculated as in [34]:

• Weighted sum of inputs is given by:

𝑠𝑗 = ∑ (𝑊𝑖𝑗 . 𝑊𝑖) − 𝜃𝑗

𝑛

𝑖 = 1
, 𝑗 = 1,2, … ℎ

(1)

• Outputs of hidden layers are calculated as:

𝑠𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑗) =
1

(1 + exp (−𝑠𝑗))
, 𝑗 = 1,2, … ℎ

(2)

• Final output based on the hidden node outputs is given as:

𝑜𝑘 = ∑ (𝑊𝑗𝑘 . 𝑆𝑗) − 𝜃𝑘

ℎ

𝑗 = 1

, 𝑘 = 1,2, … 𝑚
(3)

𝑜𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑜𝑘) =
1

(1 + exp (−𝑜𝑘))
, 𝑘 = 1,2, … 𝑚

(4)

where Wij and Wjk are weight connection of ith node in input layer to jth node in the hidden

layer and from jth hidden layer to kth output layer, respectively, 𝜃𝑗 and 𝜃𝑘 are the thresh-

old of jth hidden layer and kth output layer, respectively, and Xi is the ith input layer.

From the above equations, it can be seen that weights and thresholds define the final

value of the MLPs. The major concern is finding optimum weights and thresholds (biases)

for achieving a balanced relation between input and outputs.

Figure 1. An MLP with one hidden node. Figure 1. An MLP with one hidden node.

https://github.com/rohitsalgotra/CFS
https://github.com/rohitsalgotra/CFS

Mathematics 2023, 11, 3080 4 of 25

3. Basic Cuckoo Search and Flower Pollination Algorithm
3.1. Cuckoo Search Algorithm

The CS algorithm is inspired by the obligatory brood parasitism behavior of cuck-
oos [35]. The cuckoos of some species lay their eggs in the nests of host birds, following an
obligate brood parasitism. CS is a competitive algorithm among existing algorithms. CS
contains components including the selection of best solution and ensuring that this best
solution is passed on to the next generation. It employs local random walk to perform the
exploitation locally and randomization via Lévy flights to perform the exploration globally.
Three rules are established that describe the Cuckoo Search in a simple way. These are
explained as follows:

• Each cuckoo lays one egg and dumps it in a random nest;
• The nest with highest fitness will carry over to next generation;
• The host bird discovered the cuckoo’s egg with a probability pa ∈ [0, 1]. A fixed

number of host nests are available. Depending on pa, a new nest is built by the host
bird at a new location either by throwing the egg away from the nest or abandoning
the nest.

In CS, a solution is an egg that is already present in a nest and a new solution is that
egg which is laid by a cuckoo. The not-so-good solutions of nests are replaced by the new
and better solutions [35]. More complicated cases arise when multiple eggs are present in
each nest. In these cases, the extended form of this algorithm can be used. Based on the
above three rules, Equation (5) derives the Levy flight that is performed to produce a new
solution xt+1

i for ith cuckoo:

xt+1
i = xt

i + α
⊕

Lévy (λ) (5)

where the previous solution is denoted by xt
i ,
⊕

is entry wise multiplication, and α > 0 is
the step size. In most cases, α = 1 is used. The above equation is the stochastic equation
for random walk. In the case of random walk, the current location draws a path to next
status/location and the transition probability of next position. PSO also used this type of
entry-wise product.

Cuckoos usually search for food using a basic random walk. This is a Markov chain
whose updated position is determined by the present location and the transition probability
of the following position. The performance of CS is enhanced using Lévy flights [36]. Lévy
flight is a random walk measured in step-lengths following a heavy-tailed probability
distribution. Ultimately, Levy flight is not a continuous space; it is used to refer to a
discrete grid [37–39]. The Levy flight is employed in this study as a result of Levy flight’s
greater efficiency in exploring the search space. Our algorithm is generated from a Levy
distribution with infinite mean and variance.

As the random walk occurs via Lévy flight, the Lévy distribution draws the random
step length as:

Lévy ∼ u = t−λ, (1 < λ ≤ 3) (6)

This random walk process is a heavy tail step-length distribution. The Lévy walk
achieves new solutions nearer to the best solutions to speed up the local search [36]. Far
field randomization should be used to create some of the solutions in order to prevent the
system getting stuck in a local optimum. Here, some points are discussed that show that
CS is analogous to and competitive with other optimization algorithms. First, as with other
GA and PSO algorithms, CS is a population-based algorithm. Second, because of the heavy
tailed step length, the large step is possible in CS and the randomization is more efficient.
Third, a wide class of optimization problems have adapted to the CS because it tunes fewer
parameters when compared to PSO and GA.

Mathematics 2023, 11, 3080 5 of 25

3.2. Flower Pollination Algorithm

Flowers are fascinating species. Dating from the Cretaceous period, flowers are esti-
mated to comprise about 80 percent of the total species of plants [40]. About 250,000 species
of flowers have been found on earth. The ultimate aim of flowers is to reproduce and this
reproduction occurs mainly by pollination. In pollination, pollen is transferred from one
flower to other by pollinators. Cross-pollination means that pollination occurs due to pollen
from different plants. On the other hand, self-pollination means fertilization of pollen from
the same or different flowers of the same plant. Pollinators can be insects, birds, or any other
animal. Some flowers do attract only specific kinds of insects for pollination, showing a sort
of flower-insect partnership; this is referred to as called flower constancy. Pollinators such
as honeybees have been found to develop flower constancy. This property helps pollinators
to visit only particular plant species, hence increasing the chances of reproduction for the
flower and, in turn, maximizing nectar supply for the pollinator [41].When the pollen is
shifted by pollinators such as insects and animals, the process is called biotic pollination
(about 90 percent occurs via biotic). Meanwhile, when it occurs via diffusion or wind, the
process is called abiotic [42] (this constitutes about 10 percent of pollination). In total, there
are about 200,000 varieties of pollinators found on earth. Biotic cross-pollination occurs
over long distance and is facilitated by birds, bats, bees, and fireflies, among other animals.
This is often referred to as global pollination. Meanwhile, self-pollination is termed as
local pollination.

The above characteristics are idealized into four set of rules [43]:

• Global pollination arises via biotic and cross-pollination.
• Local pollination occurs via abiotic and self-pollination.
• Flower constancy, termed as reproduction probability, is proportional to the similarity

of two flowers.
• Switch probability p ε [0, 1] balances global and local pollination.

When designing the algorithm, it is expected that each plant has only one flower
producing only a single pollen gamete. Following this, we can use yi as a solution equivalent
to a flower or a pollen gamete, defining a single objective problem.

The above characteristics have been combined to design an FPA that mainly consists
of local and global pollination. In the earlier version, pollination and reproduction of the
fittest flower is ensured and the rules are represented mathematically as:

yt+1
i = yt

i + αL(λ)
(

R∗ − yt
i
)

(7)

where R∗ is the current best solution, yt
i is the potential solution at t iteration, and α is the

scaling factor to control the Lévy flight-based step size L(λ). Lévy flight is expressed as:

L ∼
{

λΓ (λ)sin(πλ/2)
π

1
s1+λ

, (s� s0 > 0) (8)

where Γ(λ) is the standard gamma function.
The local pollination rule can be mathematically represented as:

yt+1
i = yt

i + ε
(

yt
j − yt

k

)
(9)

where yt
j and yt

k are pollens from diverse flowers of the same plants. In the confined space,
flower constancy corresponds to a local random walk, and is selected from a uniform
distribution ε in [0, 1].

4. Cuckoo Flower Search Algorithm
4.1. Algorithm Definition

The CFS algorithm is proposed as a hybrid version of the CS and FPA algorithms.
Both these algorithms work in coordination to attain a global optimum solution. The

Mathematics 2023, 11, 3080 6 of 25

main idea is to generate the current best solution for both cuckoos and flower pollinators.
After finding this solution, both are compared, the best solution is considered, and the
process is repeated. The solution after first evaluation is fed back to the cuckoos and flower
pollinators. This procedure is continued until the termination criteria are met. The final
solution is the most appropriate solution to the problem under discussion. There are three
phases to the proposed CFS algorithm:

Initialization

This is the first phase of the CFS algorithm, in which the population is randomly
initialized. The solution is initialized according to Equation (10) and operates as a potential
solution to the problem under examination, starting with an initial population of N cuckoos
and flower pollinators (termed as CF).

CFi,j = CFmin,j + ab ∗
(
CFmin,j − CFmax,j

)
(10)

where i ε {1,CF}, j ε {1,D}, CFi,j is the ith solution in the jth dimension, D is the
dimension or number of variables in the problem being studied, CFmin,j, CFmax,j are the
lower and upper bounds, respectively, and ab is randomly generated number between
[0, 1]. Here, the population initialized in Equation (10) is same for both cuckoos and flower
pollinators. The fitness of the solution is estimated for objective function after initialization,
and the best solution attained is treated as the initial best for all cuckoos (CF) and flower
pollinators (FC).

• Solution generation

After the initial step, two new solutions are generated: one solution is inspired by
cuckoo brood parasitism and the other from flower pollinators. The main concern here is
to follow exploration and exploitation in a well-defined fashion. In cuckoos, exploration
is achieved by randomization via Lévy flights. Local random walk is used to achieve
exploitation. The new solution xt+1

i is generated as per Equation (6) and its fitness is
evaluated for the optimization problem being tested. The solution xt+1

i obtained in this
manner is compared with the CF, and the best (Cbest

F) among them is retained.
In the case of flower pollinators, exploration and exploitation is balanced by local

pollination and global pollination, respectively. Equations (7) and (9), based on random
probability in the search domain [0, 1], often called the switch probability, are used exten-
sively to find the second new solution (y t+1

i). This solution yt+1
i and the initial best (FC)

solution are also compared, resulting in another best solution Fbest
C among them.

• Final evaluation

After comparing the best fit solutions obtained by cuckoos (Cbest
F) and flower polli-

nators (Fbest
C), the best solution attained is the final optimum solution. For both cuckoos

and flower pollinators, the solution generated at the last stage is set as the initial best (CF
and FC, respectively) Unless and until the termination requirements are met, the same
procedure is followed. The final solution obtained in this manner is the most appropriate
solution. It is also worth noting that cuckoos and flower pollinators are both seeking the
most appropriate solutions in parallel. If a cuckoo-produced solution becomes trapped in
the local optimum and is unable to deliver the global optimal, flower pollinators assist it in
exiting the local trap and achieving the global optimum, and vice versa. This characteristic
increases the likelihood of the CFS algorithm reaching the global optimum solution.

Both CS and FPA are good algorithms in terms of finding global optimum solution,
but the real problem is their inconsistency in finding the best fit individual every time
the algorithm is run. This inconsistency is due to the problem of getting stuck in local
optima while moving toward global optima. As a result, a better solution is required to
move the algorithm closer to the global optimum. If the CS algorithm becomes stuck,
FPA moves it towards the global optimum, and vice versa. As a result, both Cuckoos and
Flower Pollinators collaborate analytically to obtain a global optimum. Figure 2 shows the

Mathematics 2023, 11, 3080 7 of 25

flow code for the CFS algorithm. The pseudocode of the proposed algorithm is given in
Algorithm 1.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 26

Algorithm 1: Pseudocode of CFS algorithm

begin:

1. Initialize: 𝜶, 𝜷𝟎, 𝜸, maximum iterations

2. Define Population, objective function f(x)

3. While (t < maximum iterations)

For i = 1 to n

For j = 1 to n

Evaluate new solution using CS inspired equation;

Evaluate new solution using FPA inspired equation;

Find the best among the two using greedy selection;

End for j

End for i

4. Update current best.

5. End while

6. Find final best

end.

Figure 2. Flow-code for CFS algorithm. Figure 2. Flow-code for CFS algorithm.

Algorithm 1: Pseudocode of CFS algorithm

begin:
1. Initialize: α, β0, γ, maximum iterations
2. Define Population, objective function f (x)
3. While (t < maximum iterations)

For i = 1 to n
For j = 1 to n

Evaluate new solution using CS inspired equation;
Evaluate new solution using FPA inspired equation;

Find the best among the two using greedy selection;
End for j

End for i
4. Update current best.
5. End while
6. Find final best

end.

Mathematics 2023, 11, 3080 8 of 25

4.2. CFS-MLP Trainer

When training a MLP, the first step is to formulate a problem [44] and find values
of weights and biases with the highest accuracy/classification/statistical results. These
should be found by a trainer. This important step is achieved by training an MLP using
meta-heuristic algorithms. There are three methods for training MLPs using meta-heuristic
algorithms [45]:

1. To find combination of weights and biases of MLP for achieving the minimum error
using meta-heuristic algorithms. In this approach, proper values of weights are found
without changing the basic architecture of the heuristic algorithm. It has simple a
encoding phase and a difficult decoding phase, and so is often used for simple NNs.

2. To find proper architecture for an MLP using heuristic algorithms. In this method, the
architecture varies and it can be achieved by varying the connections between hidden
nodes, layers, and neurons, as proposed in [46]. This method has a simple decoding
phase but, due to complexity in the encoding phase, it is used for complex structures.

3. To tune the gradient-based learning algorithm parameters using a heuristic approach.
This method has been used to train FNNs using EAs [47] and others, such as GA [48],
using a combination of methods to tune FNN. In this method, the decoding and en-
coding processes are very complicated and hence the structure becomes very complex.

In the present work, the CFS algorithm is proposed and applied to train an MLP using
the first method. The weights and biases for the CFS algorithm are given in the form of a
vector as follows:

C = (W, θ) = (W1,1, W1,2, . . . , Wn,n|θ1, θ2, . . . , θh) (11)

where n is the number of nodes, Wij is the weight connection between ith and jth node,
and θj is the bias of jth hidden node. After setting the initial variables, the fitness function
is to be designed using CFS algorithm. This is achieved by defining a common metric
for evaluation of the MLP and is called Mean Square Error (MSE). The MSE is used to
calculate the difference between the desired output and the value obtained from MLP. The
performance of MLP is based upon the average MSE values of all training samples and is
given by:

MSE =
s

∑
k=1

∑m
i=1(o

k
i − dk

i)
2

s
(12)

where s is training samples count, m is the number of outputs, and ok
i and dk

i are the actual
output and desired output of the ith input for the kth training sample, respectively. Based
on MSE, the final objective function can be formulated as:

Minimize : F(C) = MSE (13)

The overall process of using the CFS algorithm delivers MLP with weights as well
as biases and, in turn, receives average MSE for all training samples. The CFS algorithm
updates the weights and biases iteratively in order to achieve minimized average MSE. The
best MSE is obtained from the last iteration of the algorithm. Since weights and biases find
the best MSE in the MLP, there is a greater chance of improvement in the MLP structure
at each iteration. Thus, the CFS algorithm converges toward a better solution than initial
random solution.

5. Result and Discussion

This section presents the details on the applicability of the proposed CFS algorithm
for classical benchmark problems and real-world optimization of FNN-MLP. We have
used 19 benchmark functions, consisting of unimodal, multi-modal, and fixed dimension
problems. For the optimization of real-world FNN-MLP, five highly challenging datasets
have been used. More details on applicability are presented in the consecutive subsections.

Mathematics 2023, 11, 3080 9 of 25

For performance analysis, the simulations are performed on MATLAB, using a Windows
10 × 64, Intel Core i3 processor, with 8 GB RAM.

5.1. Benchmark Problems

To check the effectiveness of the CFS algorithm, it was tested on nineteen well known
benchmark problems. The Wilcoxon rank-sum tests were performed to test the validity of
results statistically. This non-parametric test is used to detect the static significance of any
algorithm. Differences between two pairs of populations were analyzed and compared.
The test returns a p-value determining the significance level of two algorithms. This value
should be less than 0.05 for an algorithm to be statistically efficient [49]. The proposed
algorithm is compared with ABC [50], Firefly Algorithm [51], FPA, CS, and Bat Flower
Pollinator [52] algorithms. The parameter setting to test each algorithm for benchmark
problems is shown in Table 1.

Table 1. Parameter settings for various algorithms.

Algorithm Parameters Values

FA

Number of fireflies 20
Alpha (α) 0.5
Beta (β) 0.2

Gamma (γ) 1
Stopping Criteria 200 Iterations

ABC
Swarm Size 20

Limit 100
Stopping Criteria 200 Iterations

FPA
Population Size 20

Probability Switch 0.8
Stopping Criteria 200 Iterations

CS

Population Size 20
Discovery Rate of alien egg 0.25

Maximum number of iterations 200
Stopping Criteria Max Iteration.

BFP

Population size 20
Probability Switch 0.8

Alpha (α) 0.5
Stopping Criteria 200 Iterations

CFS

Population size 20
Probability switch 0.8

Discovery rate of alien egg (pa) 0.25
Stopping Criteria 200 Iterations

5.1.1. Unimodal Functions

There is no local solution for unimodal functions; they have a single global solution.
These benchmark functions are useful for evaluating the convergence characteristics of
heuristic optimization techniques. The CFS algorithm was applied to four unimodal
benchmark problems with three dimension sets (30, 50, and 100), as given in Table 2. The
CFS algorithm was compared to the ABC, FA, FPA, CS, and BFP algorithms (see Tables 3–8).
For the 30 (Table 3) and 50 (Table 5) dimension (D) problems, with the function f 1, the FPA
algorithm has a better mean and best value but CS and CFS are found to give the best
values of standard deviation. For function f 2, the FA is found to be better, with a highly
competitive result for the CFS algorithm. for f 3, the CFS algorithm provides better results,
and for f 4, the ABC and CFS algorithms are both competitive when compared to rest of the
algorithms. For 100 D (Table 7), the CFS algorithm performs better for f 2 and f 3. for f 1, FPA
is better, and for f 4, ABC is better. The BFP algorithm is better for none of the functions.

Mathematics 2023, 11, 3080 10 of 25

The rank-sum tests from Tables 4, 6 and 8 acknowledge the superior performance of the
CFS algorithm. The convergence characteristics are shown in Figure 3.

Table 2. Description of Unimodal Test functions.

Unimodal Test
Problems Objective Function Search Range Optimum Value D

Schwefel function f1(x) =
D
∑

i=1
[xisin(

√
|xi|)] [−500, 500] −418.9829 × D 30, 50, 100

Sphere function f2(x) = ∑D
i=1 x2

i [−100, 100] 0 30, 50, 100

Elliptic function f3(x) =
D
∑

i=1

(
106) i−1

D−1 x2
i

[−100, 100] 0 30, 50, 100

Scaffer function
f4(x) = [1

n−1
√

si.(sin(50.0s
1
5
i) + 1)]2si

=
√

x2
i + x2

i+1

[−100, 100] 0 30, 50, 100

Table 3. Results comparison for unimodal functions (30 Dimension).

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f1(x)

CFS −1.16 × 104 −1.03 × 104 −1.08 × 104 3.47 × 102

FA −4.85 × 103 −2.53 × 103 −3.78 × 103 6.61 × 102

ABC −9.65 × 103 −7.67 × 103 −8.68 × 103 4.93 × 102

FPA −6.36 × 1019 −4.73 × 1015 −3.72 × 1018 1.41 × 1019

CS −7.34 × 103 −6.49 × 103 −6.94 × 103 2.30 × 102

BFP −5.19 × 1010 −2.08 × 103 −2.76 × 109 1.15 × 1010

f2(x)

CFS 1.0666 2.9397 2.0917 0.4731
FA 0.0282 0.0818 0.0567 0.0137

ABC 1.09 × 104 2.31 × 104 1.56 × 104 3.27 × 103

FPA 9.52 × 103 2.28 × 104 1.53 × 104 3.20 × 103

CS 2.93 × 102 1.23 × 103 8.07 × 102 2.45 × 102

BFP 3.49 × 104 7.41 × 104 6.00 × 104 1.27 × 104

f3(x)

CFS 9.73 × 103 3.56 × 104 2.08 × 104 6.88 × 103

FA 1.95 × 106 1.66 × 107 6.96 × 106 4.06 × 106

ABC 6.75 × 106 5.16 × 108 1.04 × 108 1.17 × 108

FPA 1.60 × 108 5.09 × 108 2.81 × 108 8.27 × 107

CS 9.32 × 105 5.87 × 106 2.31 × 106 1.13 × 106

BFP 9.86 × 108 4.43 × 109 2.73 × 109 7.60 × 108

f4(x)

CFS 0 6.43 × 10−14 1.40 × 10−14 1.74 × 10−14

FA 3.61 × 10−10 0.0298 0.0066 0.0091
ABC 0 0 0 0
FPA 1.28 × 10−5 0.0029 5.12 × 10−4 7.13 × 10−4

CS 1.82 × 10−8 5.84 × 10−5 1.05 × 10−5 1.73 × 10−5

BFP 4.67 × 10−2 4.75 × 10−1 3.25 × 10−1 1.51 × 10−1

Bold values in the table correspond to the best algorithmic values.

Table 4. P-test values of simulated algorithms for unimodal functions (30 Dimension).

Objective
Function FA FPA CS ABC CFS

f1(x) 6.79 × 10−8 NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

f2(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

f3(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f4(x) 8.00 × 10−9 8.00 × 10−9 8.00 × 10−9 NA NA

Mathematics 2023, 11, 3080 11 of 25

Table 5. Results comparison for unimodal functions (50 Dimension).

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f1(x)

CFS −1.66 × 104 −1.53 × 104 −1.60 × 104 4.10 × 102

FA −9.18 × 103 −3.88 × 103 −6.19 × 103 1.59 × 103

ABC −1.36 × 104 −1.11 × 104 −1.23 × 104 7.09 × 102

FPA −1.18 × 1020 −9.35 × 1015 −7.75 × 1018 2.69 × 1019

CS −1.08 × 104 −9.62 × 103 −1.00 × 104 3.52 × 102

BFP −6.32 × 1011 −1.22 × 103 −3.31 × 1010 1.41 × 1011

f2(x)

CFS 4.5385 11.9049 9.2753 4.5385
FA 0.1062 0.2069 0.1578 0.0303

ABC 5.83 × 103 1.81 × 104 1.37 × 104 3.21 × 103

FPA 1.46 × 104 4.84 × 104 3.03 × 104 8.91 × 103

CS 2.09 × 103 5.50 × 103 3.83 × 103 8.82 × 102

BFP 9.06 × 104 1.43 × 105 1.18 × 105 1.63 × 104

f3(x)

CFS 1.14 × 104 3.03 × 104 1.95 × 104 5.71 × 103

FA 2.80 × 106 1.34 × 107 6.66 × 106 2.99 × 106

ABC 2.91 × 107 1.14 × 109 5.12 × 108 3.16 × 109

FPA 1.16 × 108 4.53 × 108 2.76 × 108 1.04 × 108

CS 1.17 × 106 4.58 × 106 2.42 × 106 8.49 × 105

BFP 1.71 × 109 4.60 × 109 2.70 × 109 8.34 × 108

f4(x)

CFS 0 7.88 × 10−14 1.63 × 10−14 2.32 × 10−14

FA 9.36 × 10−10 0.0336 0.0082 0.0106
ABC 0 0 0 0
FPA 2.38 × 10−5 0.0069 0.0012 0.0019
CS 2.37 × 10−8 2.39 × 10−4 3.22 × 10−5 7.18 × 10−5

BFP 2.19 × 10−2 4.86 × 10−1 3.33 × 10−1 1.36 × 10−1

Bold values in the table correspond to the best algorithmic values.

Table 6. P-test values of simulated algorithms for unimodal functions (50 Dimension).

Objective
Function FA FPA CS ABC CFS

f1(x) 6.79 × 10−8 NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

f2(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

f3(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10v8 NA
f4(x) 8.00 × 10−9 8.00 × 10−9 8.00 × 10−9 NA NA

Table 7. Results comparison for unimodal functions (100 Dimension).

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f1(x)

CFS −2.78 × 104 −2.36 × 104 −2.60 × 104 1.07 × 103

FA −1.54 × 104 −5.88 × 103 −9.40 × 103 3.05 × 103

ABC −2.28 × 104 −1.73 × 104 −1.98 × 104 1.45 × 103

FPA −1.63 × 1019 −1.24 × 1016 −1.50 × 1018 3.85 × 1018

CS −1.05 × 104 −9.41 × 103 −1.00 × 104 2.79 × 102

BFP −5.75 × 108 −4.56 × 103 −5.87 × 107 1.73 × 108

f2(x)

CFS 32.0745 1.01 × 102 69.1336 19.4049
FA 14.1504 1.69 × 102 55.1173 40.4882

ABC 5.70 × 103 1.88 × 104 1.23 × 104 3.88 × 103

FPA 3.03 × 104 9.66 × 104 5.99 × 104 1.93 × 104

CS 1.38 × 104 2.45 × 104 1.69 × 104 2.59 × 103

BFP 1.61 × 105 3.16 × 105 2.53 × 105 4.57 × 104

Mathematics 2023, 11, 3080 12 of 25

Table 7. Cont.

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f3(x)

CFS 6.22 × 103 3.48 × 104 2.11 × 104 6.55 × 103

FA 1.89 × 106 1.10 × 107 5.29 × 106 2.83 × 106

ABC 2.57 × 108 1.69 × 109 1.03 × 109 3.57 × 108

FPA 1.71 × 108 4.66 × 108 3.22 × 108 8.91 × 107

CS 1.26 × 106 6.12 × 106 2.69 × 106 1.06 × 106

BFP 1.92 × 109 4.22 × 109 2.87 × 108 2.87 × 109

f4(x)

CFS 2.22 × 10−16 2.83 × 10−13 2.49 × 10−14 6.35 × 10−14

FA 1.36 × 10−11 0.0667 0.0121 0.0164
ABC 0 0 0 0
FPA 1.34 × 10−6 0.0028 4.55 × 10−4 7.03 × 10−4

CS 1.80 × 10−8 6.88 × 10−5 1.43 × 10−5 2.11 × 10−5

BFP 3.10 × 10−2 4.92 × 10−1 3.30 × 10−1 1.42 × 10−1

Bold values in the table correspond to the best algorithmic values.

Table 8. P-test values of simulated algorithms for unimodal functions (100 Dimension).

Objective
Function FA FPA CS ABC CFS

f1(x) 6.79 × 10−8 NA 6.79 × 10−8 6.79 × 10−08 6.79 × 10−8

f2(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−08 NA
f3(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−08 NA
f4(x) 8.00 × 10−9 8.00 × 10−9 8.00 × 10−9 NA 7.97 × 10−9

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 26

and for f4, the ABC and CFS algorithms are both competitive when compared to rest of the

algorithms. For 100 D (Table 7), the CFS algorithm performs better for f2 and f3. for f1, FPA

is better, and for f4, ABC is better. The BFP algorithm is better for none of the functions.

The rank-sum tests from Tables 4, 6, and 8 acknowledge the superior performance of the

CFS algorithm. The convergence characteristics are shown in Figure 3.

Figure 3. Convergence curves for unimodal functions.

Table 2. Description of Unimodal Test functions.

Unimodal Test

Problems
Objective Function Search Range

Optimum

Value
D

Schwefel function
𝑓1(𝑥) = ∑[𝑥𝑖𝑠𝑖𝑛(√|𝑥𝑖|)]

𝐷

𝑖 = 1

[−500, 500] −418.9829 × D 30, 50, 100

Sphere function 𝑓2(𝑥) = ∑ 𝑥𝑖
2

𝐷

𝑖 = 1
 [−100, 100] 0 30, 50, 100

Elliptic function 𝑓3(𝑥) = ∑(106)
𝑖−1
𝐷−1𝑥𝑖

2

𝐷

𝑖 = 1

 [−100, 100] 0 30, 50, 100

0 100 200

0

2

4

6
x 10

4

Iterations

F
it
n
e
s
s
 V

a
lu

e

Sphere-30D

0 100 200

0

5

10
x 10

4

Iterations

F
it
n
e
s
s
 V

a
lu

e

Sphere-50D

0 100 200
0

1

2

3
x 10

5

Iterations

F
it
n
e
s
s
 V

a
lu

e
Sphere-100D

0 100 200

0.5

1

1.5

2

2.5
x 10

9

Iterations

F
it
n
e
s
s
 V

a
lu

e

Elliptic-30D

0 100 200

1

2

3
x 10

9

Iterations

F
it
n
e
s
s
 V

a
lu

e

Elliptic-50D

0 100 200
0

1

2

3
x 10

9

Iterations

F
it
n
e
s
s
 v

a
lu

e

Elliptic-100D

0 100 200

0

0.1

0.2

Iterations

F
it
n
e
s
s
 V

a
lu

e

Scaffer-30Dim

0 100 200
0

0.02

0.04

Iterations

F
it
n
e
s
s
 V

a
lu

e

Scaffer-50D

0 100 200
0

0.02

0.04

Iterations

F
it
n
e
s
s
 V

a
lu

e

Scaffer-100D

Figure 3. Convergence curves for unimodal functions.

Mathematics 2023, 11, 3080 13 of 25

5.1.2. Multimodal Functions

Multimodal benchmark functions feature several local minima that grow in number
exponentially with dimension. As such, they are good for testing an algorithm’s ability to
avoid local minima. The CFS algorithm has been applied to six multimodal benchmark
problems, with three-dimension sets (30, 50, and 100), as shown in Table 9. The algorithm
has been compared to the ABC, FA, FPA, BFP, and CS algorithms. For 30 D and 50 D
problems, with the f 5, f 6, and f 7 functions, the CFS algorithm performs better, while only
the FA algorithm performs better than CFS with the f 8, f 9, and f 10 functions, as shown in
Tables 10–13, respectively. For 100 D (Tables 14 and 15), the CFS algorithm performs better
for the f 5, f 6, f 7, and f 9 functions. for f 8 and f 10, the FA algorithm performs better. The
rank-sum tests from Tables 11, 13 and 15 shows that the performance of the CFS algorithm
is better statistically. The convergence characteristics are shown in Figure 4.

Table 9. Description of multimodal test problems.

Multimodal Test
Problems Objective Function Search Range Optimum

Value D

Rastrigin function f5(x) = 10D + ∑D
i=1
[
x2

i − 10cos(2πxi)
]

[−5.12, 5.12] 0 30, 50, 100

Weierstrass function
f6(x) = ∑D

i=1 ∑kmax
k=0 [akcos (2πbk(xi + 0.5))]−

D∑kmax
k=0 [akcos (2πbk ·0.5)]; where a = 0.5, b = 3, kmax = 20

[−0.5, 0.5] 0 30, 50, 100

Griewank f 7 = 1
4000 ∑N

i=1 x2
i −∏N

i=1 cos
(

xi√
i

)
+ 1 [−600, 600] 0 30, 50, 100

Penalized 1 Function

f8 = π
n {10sin(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1) + (yn − 1)2}+ ∑n

i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4 ; u(xi , a, k, m) =

 k(xi − a)mxi > a
0 − a < xi < a
k(−xi − a)m xi < −a

[−50, 50] 0 30, 50, 100

Penalized 2 function

f9 = 0.1{(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)] +

(xn − 1)2[1 + sin2(2πxn)]}+∑n
i=1 u(xi , 5, 100, 4)

u(xi , a, k, m) =

 k(xi − a)mxi > a
0 − a < xi < a
k(−xi − a)m xi < −a

[−50, 50] 0 30, 50, 100

Ackley function f10(x) = −20exp(−0.2
√

1
D

D
∑

i=1
x2

i)− exp(1
D

D
∑

i=1
cos(2πxi)) + 20+ e [−100, 100] 0 30, 50, 100

Table 10. Results comparison for multimodal functions (30 Dimension).

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f5(x)

CFS 7.53 × 10−13 3.59 × 10−9 7.46 × 10−10 9.59 × 10−10

FA 2.07 × 10−9 0.339 0.0226 0.0765
ABC 7.24 × 102 4.17 × 103 2.06 × 103 9.69 × 102

FPA 0.0017 0.2469 0.0595 0.063
CS 8.00 × 102 1.86 × 103 1.16 × 103 3.00 × 102

BFP 4.00 × 10−3 1.70 × 101 8.13 × 10 3.16 × 10

f6(x)

CFS 1.9004 2.6108 2.3049 0.2186
FA 13.279 21.3048 16.8613 1.8416

ABC 11.1346 19.6264 15.5206 2.4429
FPA 35.7517 39.4474 37.5697 1.2557
CS 16.6273 23.8924 19.9146 1.9027

BFP 42.4496 50.6708 46.8925 2.1102

Mathematics 2023, 11, 3080 14 of 25

Table 10. Cont.

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f7(x)

CFS 1.31 × 10−13 8.61 × 10−11 2.18 × 10−11 2.44 × 10−11

FA 2.25 × 10−7 1.48 × 10−5 4.01 × 10−6 3.54 × 10−6

ABC 3.5295 72.961 28.0289 16.7278
FPA 1.50 × 10−4 0.0874 0.0161 0.0231
CS 4.5803 18.3641 8.8762 3.1545

BFP 7.5279 1.65 × 102 7.69 × 101 4.51 × 101

f8(x)

CFS 0.187 4.4737 0.5345 0.9324
FA 0.0013 0.133 0.0167 0.0287

ABC 8.04 × 106 1.68 × 108 6.93 × 107 4.39 × 107

FPA 5.42 × 105 3.37 × 107 8.71 × 106 8.63 × 106

CS 9.846 81.0669 24.5174 15.5959
BFP 3.63 × 108 9.02 × 008 5.82 × 108 1.64 × 108

f9(x)

CFS 0.0086 0.0873 0.0286 0.0015
FA 0.0059 0.0619 0.0119 0.0031

ABC 2.41 × 107 3.19 × 108 1.49 × 108 8.95 × 107

FPA 1.38 × 107 1.09 × 108 4.99 × 107 2.45 × 107

CS 51.2308 1.83 × 105 3.13 × 104 5.18 × 104

BFP 4.59 × 108 1.65 × 109 1.13 × 109 3.41 × 108

f10(x)

CFS 0.5159 0.879 0.6915 0.0111
FA 0.1462 0.469 0.261 0.0745

ABC 6.0052 14.9839 11.0513 2.6699
FPA 14.0678 19.0195 17.4088 1.0373
CS 10.0393 17.1319 13.0073 1.6329

BFP 19.8877 20.849 20.5093 0.2645
Bold values in the table correspond to the best algorithmic values.

Table 11. P-test values of various algorithms for multimodal functions (30 Dimension).

Objective
Function FA FPA CS ABC BFP CFS

f5(x) 1.23 × 10−7 1.23 × 10−7 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f6(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f7(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f8(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

f9(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 7.57 × 10−4

f10(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA

Table 12. Results comparison for multimodal functions (50 Dimension).

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f5(x)

CFS 7.88 × 10−10 3.30 × 10−9 7.39 × 10−10 9.49 × 10−10

FA 1.85 × 10−09 0.1989 0.0109 0.0444
ABC 7.08 × 1003 2.62 × 1004 1.74 × 1004 6.25 × 1003
FPA 0.0083 0.323 0.1085 0.1053
CS 3.08 × 1003 5.85 × 1003 4.34 × 1003 8.13 × 1002

BFP 1.51 × 1000 1.98 × 1001 1.09 × 1001 5.08 × 1000

f6(x)

CFS 4.4288 6.3445 5.6194 0.5645
FA 28.8712 39.2514 33.3655 3.1566

ABC 32.506 46.6375 38.085 3.2999
FPA 66.9832 74.2188 70.8866 2.0856
CS 33.8792 46.2211 39.4868 3.1594

BFP 68.1743 89.0548 80.9581 5.9281

Mathematics 2023, 11, 3080 15 of 25

Table 12. Cont.

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f7(x)

CFS 9.55 × 10−14 3.91 × 10−10 4.20 × 10−11 9.14 × 10−11

FA 1.31 × 10−9 0.0038 1.91 × 10−4 8.44 × 10−4

ABC 45.2242 3.06 × 102 1.84 × 102 67.741
FPA 0.0017 0.0634 0.0144 0.0174
CS 21.4091 67.0806 38.1323 9.8239

BFP 1.5237 1.77 × 102 8.07 × 101 6.33 × 101

f8(x)

CFS 1.4169 11.1903 4.2718 2.5936
FA 0.0061 2.0945 0.4204 0.5428

ABC 8.05 × 106 1.07 × 18 5.58 × 107 2.92 × 107

FPA 4.61 × 105 9.02 × 1007 2.58 × 107 2.07 × 107

CS 65.7835 8.56 × 105 6.28 × 104 1.90 × 105

BFP 2.73 × 108 1.33 × 109 9.55 × 108 3.23 × 108

f9(x)

CFS 0.0809 1.446 0.4249 0.0559
FA 0.0075 0.3539 0.0444 0.0817

ABC 8.40 × 107 2.33 × 108 1.52 × 108 4.62 × 107

FPA 3.80 × 107 3.59 × 108 1.24 × 108 7.85 × 107

CS 1.47 × 105 1.09 × 106 5.76 × 105 2.86 × 105

BFP 4.59 × 108 1.65 × 109 1.13 × 109 3.41 × 109

f10(x)

CFS 2.3662 18.0276 9.7138 4.4605
FA 0.3074 0.8458 0.3074 0.1439

ABC 10.5978 18.3258 15.8443 1.9489
FPA 16.287 18.9147 17.6333 0.7004
CS 10.3972 17.8387 13.9978 1.9681

BFP 19.5794 20.8868 20.6361 0.3188
Bold values in the table correspond to the best algorithmic values.

Table 13. P-test values of various algorithms for multimodal functions (50 Dimension).

Objective Function FA FPA CS ABC BFP CFS

f5(x) 1.06 × 10−7 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f6(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f7(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f8(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

f9(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 9.12 × 10−7

f10(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

Table 14. Results comparison for multimodal functions (100 Dimension).

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f5(x)

CFS 3.21 × 10−10 2.21 × 10−9 7.12 × 10−10 7.73 × 10−10

FA 1.49 × 10−8 1.91 × 10−6 3.98 × 10−7 5.25 × 10−7

ABC 8.09 × 104 1.34 × 105 1.05 × 105 1.44 × 104

FPA 0.0033 0.2715 0.0813 0.0755
CS 1.22 × 104 2.03 × 104 1.65 × 104 2.37 × 103

BFP 2.10 × 10−3 1.49 × 101 8.27 × 1000 4.11 × 1000

f6(x)

CFS 16.4301 22.9819 18.3616 1.4303
FA 67.1686 81.6839 74.2381 4.1565

ABC 1.03 × 102 1.25 × 102 1.16 × 102 6.363
FPA 1.23 × 102 1.62 × 102 1.53 × 102 9.3169
CS 81.7266 96.5011 89.2076 4.8649

BFP 1.47 × 102 1.86 × 102 1.72 × 102 1.03 × 101

Mathematics 2023, 11, 3080 16 of 25

Table 14. Cont.

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f7(x)

CFS 9.20 × 10−14 3.20 × 10−10 4.46 × 10−11 7.82 × 10−11

FA 1.11 × 10−6 6.13 × 10−6 1.83 × 10−6 1.65 × 10−6

ABC 6.68 × 102 1.08 × 103 8.83 × 102 1.15 × 102

FPA 0.003 0.071 0.022 0.0212
CS 1.06 × 102 1.91 × 102 1.41 × 102 22.8388

BFP 1.0051 1.60 × 102 5.98 × 101 4.05 × 101

f8(x)

CFS 18.9008 1.86 × 102 50.7091 35.0491
FA 9.0521 48.0274 28.2233 10.0771

ABC 3.42 × 106 7.72 × 107 3.44 × 107 1.94 × 107

FPA 3.35 × 107 1.78 × 107 8.73 × 107 4.64 × 107

CS 2.67 × 104 4.32 × 106 7.91 × 105 9.75 × 105

BFP 7.01 × 108 3.61 × 109 2.49 × 109 8.69 × 108

f9(x)

CFS 1.7343 5.7693 3.5451 1.1998
FA 2.3704 9.5091 4.5693 1.5113

ABC 3.89 × 107 2.01 × 108 1.07 × 108 4.86 × 108

FPA 5.12 × 107 7.27 × 108 3.17 × 108 2.03 × 108

CS 2.86 × 106 2.04 × 107 7.63 × 106 5.15 × 106

BFP 1.64 × 109 6.02 × 109 4.75 × 109 1.40 × 109

f10(x)

CFS 4.5948 19.4525 12.4022 3.9196
FA 1.3412 3.5494 2.7283 0.5434

ABC 18.2683 19.7601 19.1378 0.3621
FPA 16.6528 19.686 18.2081 0.8273
CS 13.5684 17.8497 15.6218 1.4927

BFP 20.0389 21.0637 20.7694 0.2923
Bold values in the table correspond to the best algorithmic values.

Table 15. P-test values of various algorithms for multimodal functions (100 Dimension).

Objective Function FA FPA CS ABC CFS

f5(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f6(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f7(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f8(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

f9(x) 0.0439 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f10(x) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

5.1.3. Fixed Dimension Functions

Fixed dimension benchmark functions have finite dimensional space. The CFS algo-
rithm has been applied to nine benchmark functions, as shown in Table 16, and the results
have been compared to the ABC, CS, FA, BFP, and FPA algorithms. It can be seen from
Tables 17 and 18 that the CFS algorithm performs better than the other algorithms for all the
test problems. For functions f 14, f 15, f 16, f 17, and f 18, the ABC, FA, FPA, and CS algorithms
are not able to achieve the global optimum. For the remaining algorithms, even if the
global optimum is met, the CFS algorithm shows superior consistency because of its better
standard deviation. The CFS algorithm’s results are also statistically better, as shown in
Table 18. The convergence curves are shown in Figure 5.

Mathematics 2023, 11, 3080 17 of 25

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 26

CS 13.5684 17.8497 15.6218 1.4927

BFP 20.0389 21.0637 20.7694 0.2923

Bold values in the table correspond to the best algorithmic values.

Table 15. P-test values of various algorithms for multimodal functions (100 Dimension).

Objective

Function
FA FPA CS ABC CFS

𝑓5(𝑥) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA

𝑓6(𝑥) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA

𝑓7(𝑥) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA

𝑓8(𝑥) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

𝑓9(𝑥) 0.0439 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA

𝑓10(𝑥) NA 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8

Figure 4. Convergence curves for multimodal functions.

5.1.3. Fixed Dimension Functions

Fixed dimension benchmark functions have finite dimensional space. The CFS algo-

rithm has been applied to nine benchmark functions, as shown in Table 16, and the results

have been compared to the ABC, CS, FA, BFP, and FPA algorithms. It can be seen from

Tables 17 and 18 that the CFS algorithm performs better than the other algorithms for all

0 100 200
0

20

40

60

Iterations

F
it
n
e
s
s
 v

a
lu

e

Weierstrass-30D

0 100 200
0

50

100

Iterations

F
it
n
e
s
s
 V

a
lu

e

Weierstrass-50D

0 100 200
0

100

200
Weierstrass-100D

Iterations

F
it
n
e
s
s
 V

a
lu

e

0 100 200
0

200

400

600

Iterations

F
it
n
e
s
s
 V

a
lu

e

Griewank-30D

0 100 200
0

500

1000

1500

Iterations

F
it
n
e
s
s
 V

a
lu

e
Griewank-30D

0 100 200
0

1000

2000

3000

Iterations

F
it
n
e
s
s
 v

a
lu

e

Griewank-100D

0 100 200
0

10

20

30

Iterations

F
it
n
e
s
s
 V

a
lu

e

Ackley-30D

0 100 200
0

10

20

30

Iterations

F
it
n
e
s
s
 V

a
lu

e

Ackley-50D

0 100 200
0

10

20

30

Iterations

F
it
n
e
s
s
 V

a
lu

e

Ackley-100D

Figure 4. Convergence curves for multimodal functions.

Table 16. Description of fixed dimension test functions.

Fixed Dimension Test
Problems Objective Function Search Range Optimum

Value D

Branin RCOS
Function f11(x) =

(
x2 − 5.1

4π2 x2
1 +

5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10

x1 ε [−5, 10],
x2 ε [0, 15] 0.397887 2

Six Hump Camel
function f12(x) =

(
4− 2.1x2

1 +
x4

1
3

)
x2

1 + x1x2 +
(
−4 + 4x2

2

)
x2

2
[−5, 5] −1.0316 2

Goldstein & Price
function

f13(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x1
2 − 14

x2 + 6x1x2 + 3x2
2)) (30 + (2x1 − 3x2)

2(18− 32x1
+12x1

2 + 48x2 − 36x1x2 + 27x2
2))

[−2, 2] 3 2

Hartmann function 3 f14(x) = −∑4
i=1 αiexp[−∑3

j=1 Aij(xj − Pij)
2] [0, 1] −3.86278 3

Hartmann function 6 f15(x) = −∑4
i=1 αiexp[−∑6

j=1 Aij(xj − Pij)
2] [0, 1] −3.32237 6

Shekel 5 f16(x) = −∑5
j=1 [∑

4
i=1((xi − Cij)

2 + β j)
−1] [0, 10] −10.1532 4

Shekel 7 f17(x) = −∑7
j=1 [∑

4
i=1((xi − Cij)

2 + β j)
−1] [0, 10] −10.4029 4

Shekel 10 f18(x) = −∑10
j=1 [∑

4
i=1((xi − Cij)

2 + β j)
−1] [0, 10] −10.5364 4

Easom function f19(x) = −cosx1cosx2e(−(x1−π)2−(x2−π)2) [−10, 10] −1 2

Mathematics 2023, 11, 3080 18 of 25

Table 17. Results comparison for fixed dimension functions.

Objective
Function Algorithm Best Worst Mean Standard

Deviation

f11(x)

CFS 0.3979 0.3979 0.3979 2.19 × 10−11

FA 0.3979 0.3979 0.3979 1.30 × 10−8

ABC 0 0 0 0
FPA 0.3979 0.3983 0.398 9.64 × 10−5

CS 0.3979 0.3979 0.3979 5.32 × 10−8

BFP 0.4416 5.3576 3.0721 1.63 × 1000

f12(x)

CFS −1.0316 −1.0316 −1.0316 1.66 × 10−10

FA −1.3016 −1.3015 −1.0316 3.47 × 10−5

ABC −1.3016 −1.0250 −1.0310 0.0015
FPA −1.3016 −1.3016 −1.3016 1.24 × 10−5

CS −1.3016 −1.0316 −1.3016 8.22 × 10−11

BFP −0.9884 4.4587 0.1862 1.50 × 1000

f13(x)

CFS 3 3 3 1.54 × 10−12

FA 3 3 3 1.51 × 10−7

ABC 3.0004 3.0531 3.0107 0.0148
FPA 3 3.0015 3.0004 4.73 × 10−4

CS 3 3 3 9.86 × 10−9

BFP 3.3525 98.258 47.458 3.46 × 101

f14(x)

CFS −3.8628 −3.8628 −3.8628 6.56 × 10−12

FA −3.8628 −2.1968 −3.3064 0.6077
ABC −3.8628 −3.8621 −3.8626 2.17 × 10−4

FPA −3.8325 −1.5171 −3.3253 0.6709
CS −3.8628 −3.8628 −3.8628 1.13 × 10−8

BFP −0.5359 −3.25E−6 −0.0814 1.65 × 10−1

f15(x)

CFS −3.3224 −3.3224 −3.3224 3.74 × 10−7

FA −3.3224 −3.0639 −3.2469 9.32 × 10−2

ABC −3.3223 −3.1954 −3.2461 0.059
FPA −3.2275 −2.9663 −3.1345 0.0702
CS −3.3223 −3.3140 −3.3201 0.0028

BFP −2.6298 −0.7595 −1.6330 0.5693

f16(x)

CFS −10.1532 −10.1532 −10.1532 5.74 × 10−5

FA −5.0552 −5.0552 −5.0552 1.03 × 10−8

ABC −10.1486 −2.6075 −5.5322 3.4454
FPA −5.0546 −5.0419 −5.0513 0.0033
CS −10.0826 −9.3309 −10.0826 0.1799

BFP −3.9584 −1.2893 −2.3915 0.8119

f17(x)

CFS −10.4029 −10.4029 −10.4029 1.33 × 10−4

FA −5.0877 −5.0877 −5.0877 9.13 × 10−9

ABC −10.5359 −2.4206 −5.3332 3.1817
FPA −5.0864 −5.0771 −5.0837 0.0025
CS −10.5358 −73868 −10.3006 0.6974

BFP −4.4980 −1.6336 −2.6498 0.8739

f18(x)

CFS −10.5364 −10.5364 −10.5364 1.87 × 10−6

FA −5.1285 −5.1285 −5.1285 9.16 × 10−9

ABC −10.4895 −1.8556 −4.6289 3.0032
FPA −5.1279 −5.1185 −5.1244 0.0028
CS −10.5357 −9.8686 −10.4320 0.1724

BFP −4.3369 −1.6523 −2.5939 0.7823

f19(x)

CFS −1 −1.0000 −1.0000 6.07 × 10−14

FA −1.0000 −1.0000 −1.0000 1.26 × 10−8

ABC −1.0000 −0.9886 −0.9977 0.0029
FPA −1.0000 −0.9998 −0.9999 6.79 × 10−5

CS −1.0000 −1.0000 −1.0000 5.30 × 10−10

BFP −0.5894 −2.18 ×
10−13 −0.0574 1.51 × 10−1

Bold values in the table correspond to the best algorithmic values.

Mathematics 2023, 11, 3080 19 of 25

Table 18. P-test values of various algorithms for fixed dimension functions.

Objective Function FA FPA CS ABC BFP CFS

f11(x) 7.89 × 10−8 7.89 × 10−8 9.17 × 10−8 8.00 × 10−9 6.79 × 10−8 NA
f12(x) 6.79 × 10−8 6.79 × 10−8 0.0679 6.79 × 10−8 6.79 × 10−8 NA
f13(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f14(x) 6.79 × 10−8 6.79 × 10−8 7.89 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f15(x) 0.1895 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f16(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f17(x) 6.79 × 10−8 6.79 × 10−8 0.0012 1.60 × 10−4 6.79 × 10−8 NA
f18(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NA
f19(x) 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 6.79 × 10−8 NAMathematics 2023, 11, x FOR PEER REVIEW 20 of 26

Figure 5. Convergence curves for fixed dimension problems.

5.2. FNN−MLP Datasets

The proposed CFS algorithm was used to train FNN-MLP datasets. The standard

benchmark FNN−MLP data sets were obtained from the Machine Learning Repository of

the University of California, Irvine [53]. The datasets used are: Breast Cancer, XOR, Bal-

loon, Iris, and Heart. The results are compared with the PSO, GA, ES, ACO, GWO, PLIB

[30,54–57] algorithms, and the Whale Optimization Algorithm (WOA) [58] and the Moth

Flame Optimization (MFO) [59] for verification. The optimization parameter settings for

the CFS algorithm are presented in Table 19. Table 20 details the specifications of the da-

tasets used for comparison. The simplest dataset is the 3-bit XOR; it has three attributes

and eight training/test samples. for the Balloon dataset, there are four attributes and 16

training/test samples. For the Iris dataset, there are 150 training/test samples with four

attributes. For the Breast Cancer dataset, the highest number of 100 test samples, 599 train-

ing samples, and nine attributes are used. for the Heart dataset, there are 80 training sam-

ples, 187 test samples, and 22 attributes. The number of classes for each dataset is two,

except for Iris, which is set to three. These datasets are highly complex sets of problems

and are employed to test the performance of the CFS algorithm. The total number of runs

for the CFS algorithm is set to 10; this is the same as used in study [30]. The number of

function evaluations for the XOR and Balloon datasets is 50 × 250 = 12,500 for all the

0 100 200

0

0.5

1

Iterations

F
it
n
e
s
s
 V

a
lu

e

Branin RCOS

0 100 200
-1.1

-1

-0.9

Iterations

F
it
n
e
s
s
 V

a
lu

e

Six Hump Camel

0 100 200
0

10

20

Iterations
F

it
n
e
s
s
 V

a
lu

e

Gold Stein & Price

0 100 200
-4

-2

0

Iterations

F
it
n
e
s
s
 V

a
lu

e

Hart 3

0 100 200
-4

-2

0

Iterations

F
it
n
e
s
s
 V

a
lu

e

Hart 6

0 100 200
-15

-10

-5

0

Iterations

F
it
n
e
s
s
 V

a
lu

e
Shekel 5

0 100 200
-15

-10

-5

0

Iterations

F
it
n
e
s
s
 V

a
lu

e

Shekel 7

0 100 200
-15

-10

-5

0

Iterations

F
it
n
e
s
s
 V

a
lu

e

Shekel 10

0 100 200

-1

-0.5

0

Iterations

F
it
n
e
s
s
 V

a
lu

e

Easom

Figure 5. Convergence curves for fixed dimension problems.

5.2. FNN–MLP Datasets

The proposed CFS algorithm was used to train FNN-MLP datasets. The standard
benchmark FNN–MLP data sets were obtained from the Machine Learning Repository
of the University of California, Irvine [53]. The datasets used are: Breast Cancer, XOR,
Balloon, Iris, and Heart. The results are compared with the PSO, GA, ES, ACO, GWO,
PLIB [30,54–57] algorithms, and the Whale Optimization Algorithm (WOA) [58] and the
Moth Flame Optimization (MFO) [59] for verification. The optimization parameter settings
for the CFS algorithm are presented in Table 19. Table 20 details the specifications of
the datasets used for comparison. The simplest dataset is the 3-bit XOR; it has three

Mathematics 2023, 11, 3080 20 of 25

attributes and eight training/test samples. for the Balloon dataset, there are four attributes
and 16 training/test samples. For the Iris dataset, there are 150 training/test samples
with four attributes. For the Breast Cancer dataset, the highest number of 100 test samples,
599 training samples, and nine attributes are used. for the Heart dataset, there are 80 training
samples, 187 test samples, and 22 attributes. The number of classes for each dataset is two,
except for Iris, which is set to three. These datasets are highly complex sets of problems and
are employed to test the performance of the CFS algorithm. The total number of runs for
the CFS algorithm is set to 10; this is the same as used in study [30]. The number of function
evaluations for the XOR and Balloon datasets is 50 × 250 = 12,500 for all the algorithms.
For the Iris, Breast Cancer, and Heart datasets, the number of function evaluations is
20 × 250 = 5000 for the CFS algorithm and 200 × 250 = 50,000 for the rest. The results are
presented in the form of an average of 10 runs and their standard deviation is obtained
from the best MSEs in the last iteration of the CFS algorithm. The best results are those with
the lowest average and standard deviation, ultimately indicating the better performance of
the proposed approach [60,61].

Xt =
(x− a)× (d− c)

(b− a)
+ c (14)

Table 19. Parameters for algorithms.

Algorithm Parameters Value

CFS

Population size 50 for XOR and Balloon; 20 for the rest
Probability switch 0.8

Discovery rate of alien egg (pa) 0.25
Maximum number of iterations 250

Table 20. Classification datasets.

Classification
Datasets

Attributes
Count

Training
Samples Count Test Samples Count Number of

Classes

3-bit XOR 3 8 8 as training samples 2
Balloon 4 16 16 as training samples 2

Iris 4 150 150 as training samples 3
Breast Cancer 9 599 100 2

Heart 22 80 187 2

The number of hidden nodes for N number of inputs of datasets is kept constant and
is given by 2× N + 1. The structure for each MLP is given in Table 21.

Table 21. MLP structure for each dataset.

Classification Datasets Attributes Count MLP Structure

3-bit XOR 3 3−7−1
Balloon 4 4−9−1

Iris 4 4−9−3
Breast Cancer 9 9−19−1

Heart 22 22−45−1

5.2.1. XOR Dataset

This dataset returns XOR of input as output. It has three inputs, eight training/test
samples, and one output. This dataset has a dimension of 36 with range of [−10, 10], with
an MLP structure of 3−7−1. The results, in term of average and standard deviation, are
given in Table 22. It can be seen in Table 4 that the performance evaluation of the CFS-MLP
algorithm is far better than all other algorithms tested.

Mathematics 2023, 11, 3080 21 of 25

Table 22. Comparison results of CFS-MLP for XOR dataset.

Algorithm Average Standard Deviation

CFS−MLP 9.687 × 10−12 2.520 × 10−11

GWO−MLP 9.410 × 10−3 2.950 × 10−1

PSO−MLP 8.405 × 10−2 3.594 × 10−2

GA−MLP 1.810 × 10−4 4.130 × 10−4

ACO−MLP 1.803 × 10−1 2.526 × 10−2

ES−MLP 1.187 × 10−1 1.157 × 10−2

PBIL−MLP 3.022 × 10−2 3.966 × 10−2

WOA−MLP 8.420 × 10−2 5.140 × 10−2

MFO−MLP 5.298 × 10−6 1.038 × 10−5

Bold values in the table correspond to the best algorithmic values.

5.2.2. Balloon Dataset

The Balloon dataset has a dimension of 55, with range of [−10, 10]. This dataset has
18 training/test samples, with four attributes and two classes, with an MLP structure of
4−9−1. The results are given in Table 23. The results show that the CFS algorithm gives
far higher average and standard deviation values when compared to the GWO, PSO, GA,
ACO, ES, PBIL, WOA, and MFO algorithms.

Table 23. Comparison results of CFS-MLP for the Balloon dataset.

Algorithm Average Standard Deviation

CFS−MLP 1.19 × 10−41 1.90 × 10−41

GWO−MLP 9.38 × 10−15 2.81 × 10−14

PSO−MLP 0.000585 0.000749
GA−MLP 5.08 × 10−24 1.06E−23

ACO−MLP 0.004854 0.00776
ES−MLP 0.019055 0.17026

PBIL−MLP 2.49 × 10−5 5.27 × 10−5

WOA−MLP 4.88 × 10−6 1.41 × 10−5

MFO−MLP 1.85 × 10−15 6.18 × 10−15

Bold values in the table correspond to the best algorithmic values.

5.2.3. Iris Dataset

The Iris dataset has 75 variables to be optimized in the range of [−10, 10]. It has
150 training/test samples, with four attributes and two classes. The MLP structure of
4−9−3 is utilized to solve this dataset. The results are shown in Table 24. For the Iris
dataset, the results of the CFS algorithm are competitive with GWO in terms of average; for
standard deviation, the results of the CFS algorithm are superior.

Table 24. Comparison results of CFS-MLP for the Iris dataset.

Algorithm Average Standard Deviation

CFS−MLP 0.06673 5.31 × 10−4

GWO−MLP 0.0229 0.0032
PSO−MLP 0.22868 0.057235
GA−MLP 0.089912 0.123638

ACO−MLP 0.405979 0.053775
ES−MLP 0.31434 0.052142

PBIL−MLP 0.116067 0.036355
WOA−MLP 0.734134 0.051808
MFO−MLP 0.667957 0.003467

Bold values in the table correspond to the best algorithmic values.

Mathematics 2023, 11, 3080 22 of 25

5.2.4. Breast Cancer Dataset

This is a challenging dataset, with 100 test samples, 599 training samples, nine at-
tributes, and two classes. It has 209 dimensions, with an MLP structure of 9−19−1. The
outcomes of this dataset are given in Table 25. The results show that the CFS algorithm is
far superior than the PSO, GA, ACO, PBIL, WOA, and MFO algorithms. When compared
to GWO, they are highly competitive.

Table 25. Comparison results of CFS-MLP for the Breast Cancer dataset.

Algorithm Average Standard Deviation

CFS−MLP 0.0018 2.83 × 10−4

GWO−MLP 0.0012 7.44 × 10−5

PSO−MLP 0.034881 0.002472
GA−MLP 0.003026 0.0015

ACO−MLP 0.01351 0.002137
ES−MLP 0.04032 0.00247

PBIL−MLP 0.032009 0.003065
WOA−MLP 0.006243 0.003128
MFO−MLP 0.004038 0.003041

Bold values in the table correspond to the best algorithmic values.

5.2.5. Heart Dataset

This is the last dataset used in this paper and was solved with an MLP structure of
22−45−1. It has 187 test samples, 80 training samples, 22 attributes, and two classes. The
results are shown in Table 26. The Heart dataset is a very challenging dataset, with a
1081 dimension. The CFS algorithm performs better for this dataset when compared to
others.

Table 26. Comparison results of CFS-MLP for the Heart dataset.

Algorithm Average Standard Deviation

CFS−MLP 0.0686 0.0067
GWO−MLP 0.1226 0.0077
PSO−MLP 0.188568 0.008939
GA−MLP 0.093047 0.02246

ACO−MLP 0.22843 0.004979
ES−MLP 0.192473 0.015174

PBIL−MLP 0.154096 0.018204
WOA−MLP 0.179664 0.052152
MFO−MLP 0.08321 0.02062

Bold values in the table correspond to the best algorithmic values.

5.3. Discussion of Results

The results comparison of the CFS algorithm with the ABC, CS, FA, FPA, and BFP
algorithms show that, for test function, the CFS algorithm delivers very competitive results
for unimodal and multimodal benchmark problems. For fixed dimension problems, no
algorithm among ABC, CS, FA, FPA, and BFP are comparable. This occurs as a result of
the inability of these algorithms to emerge from local minima. The ABC algorithm has
the problem of becoming stuck in local minima, while the CS and FPA algorithms are
inconsistent due to their inability to emerge from local minima and are, hence, inconsistent.
In its initial stage, the FA algorithm has slower convergence because of random distribution
and as a result of its insufficiency in exploring ability. At the last stage, fireflies gather
around the optimal solution but, due to random motion and attractiveness, there can be
flight mistake and hence the solution converges very slowly.

The results of the CFS-MLP clearly show that, for the XOR and Balloon datasets, there
are same number of function evaluations and that the results are bothbetter and significant.

Mathematics 2023, 11, 3080 23 of 25

For the Iris, Breast Cancer, and Heart datasets, the minimum number of function evaluations
for CFS algorithms is 5000, while for others it is 50,000. Hence, it can be said that the CFS
algorithm is able to achieve a more significant result with fewer function evaluations. This
proves the superiority of the CFS algorithm over the GWO, PSO, GA, ACO, ES, PBIL, WOA,
and MFO algorithms.

In the CFS algorithm, there are two search agents: cuckoos and flower pollinators.
When cuckoos are not able to find the optimal solution, flower pollinators help them;
in turn, the flower pollinators are helped by cuckoos when stuck in a local optimum.
Therefore, two solutions (one from cuckoos and the other from flower pollinators) are
generated. The final solution is the best among the two. This helps the CFS algorithm to
achieve faster convergence and consistency in finding the optimal solution.

6. Conclusions

In this work, a new CFS algorithm was proposed for MLP training. The algorithm
was first tested over 19 standard benchmark functions and their results were statistically
compared with the ABC, CS, FA, FPA, and BFP algorithms. The results demonstrate that
the CFS algorithm perform significantly better, with higher consistency, in avoiding local
minima when compared to the ABC, CS, FA, FPA, and BFP algorithms. The CFS algorithm
was then used to train MLPs; five datasets were used. The results of the CFS-MLP were
compared, in terms of average and standard deviation, with the GWO, PSO, GA, ACO, ES,
PBIL, WOA, and MFO algorithms. The experimental results again proved the superiority
of the CFS algorithm for MLPs.

Despite this, the proposed algorithm has certain drawbacks. Because of the stochastic
nature of the algorithm, the algorithm is inefficient for several kinds of problems. As the
CFS algorithm uses two general equations for finding new solutions, the computational
complexity of the algorithm increases. Thus, it is imperative to find new and prospective
solutions to deal with the complexity problem. As a future direction of study, the parameters
of the algorithm can be exploited to find the best set of parameters. In addition, the CFS
algorithm can be applied to various other domains, including clustering, antenna array
synthesis, feature selection, medical imaging, segmentation, and others. Apart from that,
the proposed algorithm can be extended to multi-objective, hyper-parameters, and other
dimensions.

Author Contributions: Conceptualization, R.S.; methodology, R.S.; software, N.M.; validation, R.S.,
N.M. and V.M.; formal analysis, V.M.; investigation, R.S.; resources, N.M.; data curation, V.M.;
writing—original draft preparation, R.S.; writing—review and editing, R.S, and N.M.; visualization,
R.S.; supervision, R.S.; project administration, R.S. and N.M.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
2. Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [CrossRef]
3. Dorffner, G. Neural networks for time series processing. Neural Netw. World 1996.
4. Ghosh-Dastidar, S.; Adeli, H. Spiking neural networks. Int. J. Neural Syst. 2009, 19, 295–308. [CrossRef] [PubMed]
5. Bebis, G.; Georgiopoulos, M. Feed-forward neural networks. IEEE Potentials 1994, 13, 27–31. [CrossRef]
6. Rosenblatt, F. The Perceptron, A Perceiving and Recognizing Automaton Project Para; Cornell Aeronautical Laboratory: Buffalo, NY,

USA, 1957.
7. Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard

University, Cambridge, MA, USA, 1974.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/5.58325
https://doi.org/10.1142/S0129065709002002
https://www.ncbi.nlm.nih.gov/pubmed/19731402
https://doi.org/10.1109/45.329294

Mathematics 2023, 11, 3080 24 of 25

8. Reed, R.D.; Marks, R.J. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks; MIT Press: Cambridge, MA,
USA, 1998.

9. Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd
International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 161–168.

10. Hinton, G.E.; Sejnowski, T.J. Unsupervised Learning: Foundations of Neural Computation; MIT Press: Cambridge, MA, USA, 1999.
11. Wang, D. Unsupervised Learning: Foundations of Neural Computation; MIT Press: Cambridge, MA, USA, 2001; p. 101.
12. Hertz, J. Introduction to the Theory of Neural Computation. Basic Books 1; Taylor Francis: Abingdon, UK, 1991.
13. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274, 17–34. [CrossRef]
14. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Hao, G.-S. Hybrid krill herd algorithm with differential evolution for global numerical

optimization. Neural Comput. Appl. 2013, 25, 297–308. [CrossRef]
15. Van Laarhoven, P.J.; Aarts, E.H. Simulated Annealing; Springer: Berlin/Heidelberg, Germany, 1987.
16. Szu, H.; Hartley, R. Fast simulated annealing. Phys. Lett. A 1987, 122, 157–162. [CrossRef]
17. Mitchell, M.; Holland, J.H.; Forrest, S. When will a genetic algorithm outperform hill climbing? NIPS 1993, 51–58.
18. Sanju, P. Enhancing Intrusion Detection in IoT Systems: A Hybrid Metaheuristics-Deep Learning Approach with Ensemble of

Recurrent Neural Networks. J. Eng. Res. 2023; in press.
19. Mirjalili, S.; Mohd Hashim, S.Z.; Moradian Sardroudi, H. Training feedforward neural networks using hybrid particle swarm

optimization and gravitational search algorithm. Appl. Math. Comput. 2012, 218, 11125–11137. [CrossRef]
20. Whitley, D.; Starkweather, T.; Bogart, C. Genetic algorithms and neural networks: Optimizing connections and connectivity.

Parallel Comput. 1990, 14, 347–361. [CrossRef]
21. Shokouhifar, A.; Shokouhifar, M.; Sabbaghian, M.; Soltanian-Zadeh, H. Swarm intelligence empowered three-stage ensemble

deep learning for arm volume measurement in patients with lymphedema. Biomed. Signal Process. Control. 2023, 85, 105027.
[CrossRef]

22. Socha, K.; Blum, C. An ant colony optimization algorithm for continuous optimization: Application to feed-forward neural
network training. Neural Comput. Appl. 2007, 16, 235–247. [CrossRef]

23. Ozturk, C.; Karaboga, D. Hybrid Artificial Bee Colony algorithm for neural network training. In Proceedings of the 2011 IEEE
Congress on, Evolutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; pp. 84–88.

24. Mendes, R.; Cortez, P.; Rocha, M.; Neves, J. Particle swarms for feed forward neural network training. In Proceedings of the 2002
International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA, 12–17 May 2002.

25. Gudise, V.G.; Venayagamoorthy, G.K. Comparison of particle swarm optimization and backpropagation as training algorithms for
neural networks. In Proceedings of the Swarm Intelligence Symposium, SIS’03, Indianapolis, IN, USA, 26 April 2003; pp. 110–117.

26. Ilonen, J.; Kamarainen, J.-K.; Lampinen, J. Differential evolution training algorithm for feed-forward neural networks. Neural
Process. Lett. 2003, 17, 93–105. [CrossRef]

27. Uzlu, E.; Kankal, M.; Akpınar, A.; Dede, T. Estimates of energy consumption in Turkey using neural networks with the
teaching–learning-based optimization algorithm. Energy 2014, 75, 295–303. [CrossRef]

28. Moallem, P.; Razmjooy, N. A multi-layer perceptron neural network trained by invasive weed optimization for potato color image
segmentation. Trends Appl. Sci. Res. 2012, 7, 445–455. [CrossRef]

29. Darekar, R.V.; Chavan, M.; Sharanyaa, S.; Ranjan, N.M. A hybrid meta-heuristic ensemble based classification technique speech
emotion recognition. Adv. Eng. Softw. 2023, 180, 103412. [CrossRef]

30. Mirjalili, S. How effective is the Grey Wolf Optimizer in training multi-layer perceptrons. Appl. Intell. 2015, 43, 150–161. [CrossRef]
31. Yang, X.-S.; Deb, S. Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343.
32. Yang, X.-S. Flower Pollination Algorithm for Global Optimization. In Proceedings of the 11th International Conference, UCNC

2012, Orléan, France, 3–7 September 2012; Volume 7445, pp. 240–249. [CrossRef]
33. Fine, T.L. Feedforward Neural Network Methodology; Springer: Berlin/Heidelberg, Germany, 1999.
34. Mirjalili, S.; Sadiq, A.S. Magnetic optimization algorithm for training multi-layer perceptron. In Proceedings of the Communica-

tion Software and Networks (ICCSN), 2011 IEEE 3rd International Conference, Xi’an, China, 27–29 May 2011; pp. 42–46.
35. Payne, R.B.; Sorenson, M.D.; Klitz, K. The Cuckoos; Oxford University Press: Oxford, UK, 2005.
36. Barthelemy, P.; Bertolotti, J.; Wiersma, D.S. A Lévy flight for light. Nature 2008, 453, 495–498. [CrossRef]
37. Yang, X.-S.; Deb, S. Cuckoo Search via Levy Flights’. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; IEEE Publications: Piscataway, NJ, USA, 2009.
38. Brown, C.; Liebovitch, L.S.; Glendon, R. Lévy Flights in Dobe Ju/’hoansi Foraging Patterns. Human Ecol. 2007, 35, 129–138.

[CrossRef]
39. Pavlyukevich, I. Cooling down Lévy flights. J. Phys. A Math. Theory 2007, 40, 12299–12313. [CrossRef]
40. Walker, M. How Flowers Conquered the World, BBC Earth News, 10 July 2009. Available online: http://news.bbc.co.uk/earth/

hi/earth_news/newsid_8143000/8143095.stm (accessed on 1 January 2019).
41. Waser, N.M. Flower constancy: Definition, cause and measurement. Am. Nat. 1986, 127, 596–603. [CrossRef]
42. Glover, B.J. Understanding Flowers and Flowering: An Integrated Approach; Oxford University Press: Oxford, UK, 2007.
43. Xin-She, Y.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng.

Optim. 2014, 46, 1222–1237.

https://doi.org/10.1016/j.ins.2014.02.123
https://doi.org/10.1007/s00521-013-1485-9
https://doi.org/10.1016/0375-9601(87)90796-1
https://doi.org/10.1016/j.amc.2012.04.069
https://doi.org/10.1016/0167-8191(90)90086-O
https://doi.org/10.1016/j.bspc.2023.105027
https://doi.org/10.1007/s00521-007-0084-z
https://doi.org/10.1023/A:1022995128597
https://doi.org/10.1016/j.energy.2014.07.078
https://doi.org/10.3923/tasr.2012.445.455
https://doi.org/10.1016/j.advengsoft.2023.103412
https://doi.org/10.1007/s10489-014-0645-7
https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1038/nature06948
https://doi.org/10.1007/s10745-006-9083-4
https://doi.org/10.1088/1751-8113/40/41/003
http://news.bbc.co.uk/earth/hi/earth_news/newsid_8143000/8143095.stm
http://news.bbc.co.uk/earth/hi/earth_news/newsid_8143000/8143095.stm
https://doi.org/10.1086/284507

Mathematics 2023, 11, 3080 25 of 25

44. Belew, R.K.; McInerney, J.; Schraudolph, N.N. Evolving Networks: Using the Genetic Algorithm with Connectionist Learning; Cognitive
Computer Science Research Group: La Jolla, CA, USA, 1990.

45. Smizuta, T.; Sato, D.; Lao, M.; Ikeda, T. Shimizu, Structure design of neural networks using genetic algorithms. Complex Syst.
2001, 13, 161–176.

46. Yu, J.; Wang, S.; Xi, L. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 2008, 71, 1054–1060.
[CrossRef]

47. Leung, F.H.; Lam, H.; Ling, S.; Tam, P.K.S. Tuning of the structure and parameters of a neural network using an improved genetic
algorithm. IEEE Trans. Neural Netw. 2003, 14, 79–88. [CrossRef]

48. Montana, D.J.; Davis, L. Training Feedforward Neural Networks Using Genetic Algorithms. IJCAI 1989, 89, 762–767.
49. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 2011, 1, 3–18. [CrossRef]
50. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report TR-06; Erciyes University, Engineering

Faculty, Computer Engineering Department: Kayseri, Turkey, 2005.
51. Yang, X.S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications; Lecture Notes in

Computer Sciences; SAGA: Chicago, IL, USA, 2009; Volume 5792, pp. 169–178.
52. Urvinder, S.; Salgotra, R. Synthesis of linear antenna array using flower pollination algorithm. Neural Comput. Appl. 2016, 29,

435–445.
53. Blake, C.; Merz, C.J. {UCI} Repository of Machine Learning Databases; UCI: Aigle, Switzerland, 1998.
54. Beyer, H.-G.; Schwefel, H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
55. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. Evol. Comput. IEEE Trans. 1999, 3, 82–102.
56. Yao, X.; Liu, Y. Fast evolution strategies. In Proceedings of the Evolutionary Programming VI, Indianapolis, IN, USA, 13–16 April

1997; pp. 149–161.
57. Baluja, S. Population-Based Incremental Learning: A Method for Integrating Genetic Search-Based Function Optimization and Competitive

Learning; DTIC Document; Carnegie Mellon University: Pittsburgh, PA, USA, 1994.
58. Seyedali, M.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67.
59. Seyedali, M. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89,

228–249.
60. Zhou, Y.; Niu, Y.; Luo, Q.; Jiang, M. Teaching learning-based whale optimization algorithm for multi-layer perceptron neural

network training. Math. Biosci. Eng. 2020, 17, 5987–6025. [CrossRef]
61. Chong, H.Y.; Yap, H.J.; Tan, S.C.; Yap, K.S.; Wong, S.Y. Advances of metaheuristic algorithms in training neural networks for

industrial applications. Soft Comput. 2021, 25, 11209–11233. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2007.10.013
https://doi.org/10.1109/TNN.2002.804317
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.3934/mbe.2020319
https://doi.org/10.1007/s00500-021-05886-z

	Introduction
	Feed-Forward Neural Networks and Multi-Layer Perceptron
	Basic Cuckoo Search and Flower Pollination Algorithm
	Cuckoo Search Algorithm
	Flower Pollination Algorithm

	Cuckoo Flower Search Algorithm
	Algorithm Definition
	CFS-MLP Trainer

	Result and Discussion
	Benchmark Problems
	Unimodal Functions
	Multimodal Functions
	Fixed Dimension Functions

	FNN–MLP Datasets
	XOR Dataset
	Balloon Dataset
	Iris Dataset
	Breast Cancer Dataset
	Heart Dataset

	Discussion of Results

	Conclusions
	References

