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Abstract: Group activity recognition is a central theme in many domains, such as sports video
analysis, CCTV surveillance, sports tactics, and social scenario understanding. However, there are
still challenges in embedding actors’ relations in a multi-person scenario due to occlusion, movement,
and light. Current studies mainly focus on collective and individual local features from the spatial and
temporal perspectives, which results in inefficiency, low robustness, and low portability. To this end,
a Spatio-Temporal Attention-Based Graph Convolution Network (STAB-GCN) model is proposed
to effectively embed deep complex relations between actors. Specifically, we leverage the attention
mechanism to attentively explore spatio-temporal latent relations between actors. This approach
captures spatio-temporal contextual information and improves individual and group embedding.
Then, we feed actor relation graphs built from group activity videos into our proposed STAB-GCN
for further inference, which selectively attends to the relevant features while ignoring those irrelevant
to the relation extraction task. We perform experiments on three available group activity datasets,
acquiring better performance than state-of-the-art methods. The results verify the validity of our
proposed model and highlight the obstructive impacts of spatio-temporal attention-based graph
embedding on group activity recognition.

Keywords: group activity recognition; sports video analysis; graph convolutional network; spatio-
temporal attention

MSC: 68T45

1. Introduction

Group activity recognition (GAR) focuses on classifying the activity of a crowd of
people working together in a video clip. It is a central topic in many domains, such as sports
video analysis [1,2], CCTV surveillance [3–5], sports tactics [6], and social scenario under-
standing [7–9]. To comprehend the multi-player scenario, the model needs to recognize the
individual actions and the group activity. Differing from general individual action recogni-
tion, GAR requires the deep and precise learning of spatio-temporal interactions between
actors, which entails challenges such as the dynamics of actors and the complexity of their
underlying correlations. It is expected to embed latent relations between actors from the
spatial and temporal perspectives. Thanks to the graph convolutional network (GCN), this
paper designs an effective Spatio-Temporal Attention-Based Graph Convolution Network
(STAB-GCN) model for GAR.

Extensive efforts have been made to model actor relations for GAR in videos. In
particular, deep learning methods have achieved remarkable improvements in embedding
the relations between actors [10–13]. The existing models, as mentioned earlier, generally
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have the following disadvantages: high computational costs, low flexibility, and over-fitting.
In addition, GCN has been introduced to model the underlying relations between actors
based on appearance and location features [2]. However, this paper only considers the local
spatial relation between two actors whose distance is below a certain threshold, which may
lead to the elimination of some latent important information for GAR.

To solve the aforementioned problem, our proposed STAB-GCN introduces an atten-
tion mechanism for actors involved in a group activity with the evolution of the spatio-
temporal dimension. Specifically, we build multiple actor relation graphs to model the
relations between the pairwise actors, referring to [2]. To the best of our knowledge, only
some of the interactions in a basketball game positively impact GAR. In Figure 1, the
frame marked with a star is the key frame for the group activity on the left. The red round
box denotes the actor performing the key action on the right. Each node represents an
actor. The solid line represents the relation between a pair of actors, and the thickness of
the straight line represents the strength of the interaction. Actor 3 and actor 9 engage in
shooting and defense, respectively. They run quickly to shoot and block at the same time,
while a teammate (actor 2) moves up to set the screen on his defender (actor 6). These
interactions among “jump shot”, “block”, and “screen” are considerably stronger than
other relations, contributing more to GAR. Therefore, a crowd of actors having the closest
underlying relations usually determine the type of group activity. STAB-GCN attends
to the key frame and the key actor in a video clip, and performs reasoning about these
important semantic activities (“jump shot” or “rebound”) for GAR according to the graph
structure. In these graphs, the node represents the actor, and their relations are denoted
by the line between the two actors. Then, we take the actor relation graphs as input to
STAB-GCN, aiming to localize and embed useful contexts of individual action and group
activity. STAB-GCN designs a “soft pruning” scheme that converts the original dependency
graph into weighted graphs with the full connection. The weight of the edge denotes
the strength of the relationship between nodes, which can be learned in an end-to-end
fashion by using a spatio-temporal attention mechanism [14]. Finally, our STAB-GCN
model obtains a better graph embedding for group activity understanding.
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Figure 1. Exploring the latent relations between actors in multi-person scenarios (basketball game)
with a spatio-temporal attention mechanism. The numbers are the codes for actors. The yellow and
blue circles represent actors from two opposing teams. The red circle represents the key actor for
GAR.

It should be emphasized that we consider the spatial relation between actors involved
in a dynamic adaptive distance based on a global view, which is different from a localized
actor relation graph, as shown in [2]. In addition, a set of K frames are sampled consistently
from every video clip to ensure sufficient temporal semantic information. A series of
experiments show that STAB-GCN achieves state-of-the-art performance on three datasets:
the Volleyball dataset [10], the Collective Activity dataset [3], and the NBA dataset [15]. The
results verify that STAB-GCN exceeds the existing models for GAR in terms of accuracy.

In this paper, our contributions are summarized as follows:
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• We propose the novel STAB-GCN that uses the GCN with a spatio-temporal attention
mechanism, which learns how to selectively attend to the features in videos. Our
STAB-GCN model employs a multilayer structure to yield better graph embedding.

• We build elastic and effective actor relation graphs to capture key actors and the
latent relations between actors in multi-person scenarios. It leverages an attention
mechanism to dynamically embed the relationship strength between actors and yields
multiple actor relation graphs of different structures with the evolution of the spatio-
temporal dimension, thus effectively recognizing different group activities.

• The proposed model achieves state-of-the-art performance on the available datasets,
i.e., the NBA dataset, the Volleyball dataset, and the Collective Activity dataset. Experi-
mental results demonstrate that our STAB-GCN is efficient and effective in embedding
spatio-temporal actor relations in GAR.

The remainder of the paper is organized as follows. Section 2 surveys the related works,
and Section 3 introduces our proposed STAB-GCN. Section 4 describes the experimental
results. The conclusions are presented in Section 5.

2. Related Work
2.1. Group Activity Recognition

In recent years, group activity recognition has attracted plenty of attention and has
recently been applied in valuable work. The previous approaches leverage probabilistic
graphical models [16,17] and AND-OR grammar methods [18], which mostly take advan-
tage of hand-crafted features. Deep convolutional neural networks (CNN) [10,11], recurrent
neural networks (RNNs) [12,13,16], and long short-term memory [19,20] have achieved
outstanding performance owing to the spatio-temporal context and multidimensional
information. Bagautdinov et al. [10] propose an integrated model for object detection and
GAR by introducing a convolutional neural network that embeds the individual features
and concatenates these acquired features to form a collective feature. Ibrahim et al. [11]
build a two-stage framework to classify individual action and group action. Ibrahim et
al. [13] design a hierarchical network model for the embedding of person-level information
by leveraging an RNN. The representative works [15,21] propose a criss-cross graph to
improve the recognition accuracy for GAR. Our work differs from the above-mentioned
approaches in that it dynamically represents the interaction information by embedding
the spatio-temporal features of individual and collective information. It also develops an
attention-based GCN to acquire different relationships between actors.

2.2. Transformer Models

Transformer-based models have been paid more and more attention regarding the em-
bedding of the semantic relations between collective features and they represent significant
improvements in GAR [8,21–25]. Transformer usually lies on top of the actor features to
learn spatio-temporal contexts with conditional random fields [21]. Kirill et al. [22] utilize
Vanilla Transformer and I3D to represent actors’ temporal features and construct actors’
spatial relations. Li et al. [23] propose a cluster attention mechanism and leverage spatio-
temporal contexts to efficiently explore collective features with Transformer. Yuan et al. [25]
use Transformer to encode individual contexts to recognize individual activity. Bertasius et
al. [26] propose TimeSformer to embed spatio-temporal relations with different space and
time attention mechanisms. Fan et al. [27] aggregate multi-scale features to improve the
embedding of spatio-temporal relations. Motionformer [28] proposes a self-attention block
to track spatio-temporal patches for GAR. As discussed above, Transformer-based methods
have become a widely applied backbone for video analysis occupations. However, several
researchers still face great challenges in fully learning the latent relationships between
actors in video clips. We propose a flexible and effective model, STAB-GCN, to embed deep
relations between relative actors, which introduces a spatio-temporal attention-based GCN
for GAR.



Mathematics 2023, 11, 3074 4 of 13

3. Methodology

To embed latent actor relations in multi-person scenarios, we propose a Spatio-
Temporal Attention-Based Graph Convolution Network (STAB-GCN) model for GAR.
We also give a detailed description in the following subsections. First, we offer an overview
of the STAB-GCN model. Second, we describe our proposed spatio-temporal attention
mechanism. Then, we present the effective and efficient embedding in the GCN. Finally,
we introduce a new fusion strategy to optimize our STAB-GCN model.

3.1. The Model of STAB-GCN

As shown in Figure 2, our proposed STAB-GCN model is divided into three phases:
spatio-temporal feature extraction, inferring and embedding on GCN, and feature aggrega-
tion. We build feature vectors of actors from sampled frames and construct multiple actor
relation graphs. Then, we propose a spatio-temporal attention-based graph convolutional
network to perform deep reasoning on the graphs. In the second stage, we feed the node
embedding into the n attention guided layer to generate n adjacency matrices by utilizing
the spatio-temporal attention mechanism, as shown in the figure; these are transformed
into n different fully connected weighted graphs and fed into the densely connected layer to
generate a new embedding for GAR, as shown at the lower right. Afterward, a combination
layer is utilized to concatenate the outputs of the densely connected layer into a latent
embedding. Eventually, we combine the initial feature and the latent feature into feature
classifiers for GAR.
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Figure 2. The proposed STAB-GCN model for GAR.

The uniform sampling technique obtains K frames in the first stage from a video clip.
Then, we extract frame-level feature vectors with the strategy proposed in [10] based on
the K frames. To verify the performance of STAB-GCN, we introduce Inception-v3 as a
backbone to embed latent features for each sampled frame. Meanwhile, we also perform
extensive experiments with other state-of-the-art backbones to show the superiority of
STAB-GCN. Then, RoIAlign [29] is used to acquire the actor-level features on the frame-
level features based on bounding boxes of N actors. After this, we leverage an fc layer to
aggregate each actor feature into an M-dimensional vector, which is represented as a matrix
W ∈ RK×N×M.



Mathematics 2023, 11, 3074 5 of 13

Given these actor features, we construct multiple actor relation graphs to embed latent
relationships. In the graphs, every node denotes an actor in a multiple-person scenario and
every edge denotes a relation between pairwise actors. The weight of every node denotes
the relationship strength according to relative actors’ appearance features and coordinate
positions. Then, inferring and embedding in the GCN consists of X identical blocks,
which include an attention-guided layer, a densely connected layer, and a combination
embedding layer. The attention-guided layer mainly transforms multiple actor graphs
into n fully connected weighted graphs and corresponding adjacency matrices by utilizing
spatio-temporal attention, which further ensures no loss of latent valuable spatio-temporal
relation information for GAR. Moreover, the attention-guided layer further highlights the
spatio-temporal dependencies of different graph convolution features. Then, n adjacency
matrices are input into n densely connected layers to produce a novel spatio-temporal
embedding that is subsequently fed into a combination embedding layer and combined to
generate the final feature embedding.

In the final stage, we leverage two classifiers to recognize individual actions and
group activities by fusing the original feature embedding and final feature embedding.
Specifically, we introduce a fully connected layer for the recognition of individual actions.
Then, the actor-level feature vectors are max-pooled to produce group-level vectors. After
this, we utilize another fully connected layer for the recognition of group activities.

3.2. Spatio-Temporal Attention Mechanism

As an important component of the Transformer network, the self-attention mechanism
can also be successfully used to reason about actors’ relations and interactions [20]. To
embed latent relations for complex group activities, we propose a spatio-temporal attention
mechanism to capture actor interactions, which is divided into a spatial attention unit and
temporal attention unit in this paper. Following the Transformer concept, we describe how
to build the spatial and temporal actor relation modules in detail.

First, we build actor relation graphs by introducing the method proposed in [2],
where each node denotes an actor, and each edge denotes the relation between pairwise
actors based on their appearance features and the 2D coordinates. We can obtain multiple
graphs to embed latent relation features. Subsequently, the multiple graphs are fed into the
spatio-temporal attention unit to acquire a more comprehensive relation representation.

3.2.1. Spatial Attention Unit

First, we design a spatio-temporal actor Transformer. From the spatial dimension,
Y j ∈ RN×M denotes the initial feature vectors of N actors in the j-th frame. Furthermore,
we utilize the Transformer model Ŷ j = S− Trans(Y j) to attend to the spatial relationships
among these actors, which mainly includes three important modules as follows:

Y′ = SPE(Y j) + Y j, (1)

Y′′ = LN(Y′ + MHSA(Y′)), (2)

Ŷ j = LN(Y′′ + FFN(Y′′)). (3)

In this paper, spatial position encoding (SPE) is applied to capture the spatial features
of actors and generate the spatial feature vectors Y′ in the scenario, as shown in Equation (1).
Meanwhile, we leverage the central point coordinates of each actor’s bounding box to
represent the spatial positions, which are subsequently encoded with the position encoding
(PE) function from [22]. Then, we introduce a multi-head self-attention (MHSA) module to
embed the spatial interaction of the actors [14] and acquire the corrective feature vectors
Y′′, as shown in Equation (2). Lastly, we utilize a feed-forward network (FFN) to further
boost the performance of the spatial relation inference [14], as shown in Equation (3). Ŷ j

denotes the final spatial feature vectors of N actors in the j-th frame.
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3.2.2. Temporal Attention Unit

To capture the temporal features of each actor across frames, we design a temporal
attention unit according to the Transformer model. We take the feature vectors of the i-th
actor as an input across K frames, as shown in Zi ∈ RK×M. We also introduce temporal posi-
tion encoding (TPE) to encode the temporal features of K frames, as shown in Equation (4).
Furthermore, we use the MHSA module to attend to the temporal evolution of actor i
across different time steps, as shown in Equation (5). We similarly use FFN to improve the
learning accuracy of the temporal relation unit, as shown in Equation (6). Finally, the actor
features improved by temporal interactions are obtained by Ẑi = T − Trans(Zi).

Z′ = TPE(Zi) + Zi, (4)

Z′′ = LN(Z′ + MHSA(Z′)), (5)

Ẑi = LN(Z′′ + FFN(Z′′)). (6)

Zi denotes the initial temporal feature vectors of the i-th actor. Z′ and Z′′ denote the
modified temporal feature vectors. Ẑi denotes the generative temporal feature vectors of
the i-th actor.

3.2.3. Spatio-Temporal Actor Relation Embedding

Based on actors’ spatial and temporal relations, we construct a spatio-temporal feature
embedding matrix E through the tensor product, as shown in Equation (7). The actor
embedding is reweighted and combined in terms of the diversified spatio-temporal context
by observing and integrating spatial and temporal relative features. The spatial attention
unit mainly focuses on the relationships between different actors in the scenario. In contrast,
the temporal attention unit is able to capture the evolution of actor interactions across
different frames. Thus, we propose a spatio-temporal attention mechanism to recognize
multiple activities with different spatio-temporal patterns.

E =
[
Ŷ1, Ŷ2, . . . , ŶK]⊗ [Ẑ1, Ẑ2, . . . , ẐN]′. (7)

By leveraging the embedding of actors due to a spatio-temporal attention mechanism,
we can predict individual actions and group activities more efficiently and effectively.

3.3. Embedding on Graph Convolutional Network

Unlike state-of-the-art strategies, which obtain a smaller graph than the initial one, we
leverage a spatio-temporal attention mechanism to build a larger, fully connected graph.
Then, we introduce a densely connected layer into the STAB-GCN model to mine deeper
information on large graphs, which contributes to the capture of rich local and global
information to learn a better actor relation.

In the densely connected layer, we define g(l)j as the integration of the initial node

embedding xj and the node embedding induced in different layers (h(1)j · · · h
(l−1)
j ). The

node embedding in the l layer is shown as follows:

g(l)j =
[

xj; h(1)j ; · · · ; h(l−1)
j

]
. (8)

Each densely connected layer generally consists of L sub-layers whose dimension is
determined by their number and the entered feature dimension d. In this paper, we set
L = 4 and d = 1024, respectively. Then, we obtain the new embedding by concatenating
the output of each sub-layer. To our knowledge, the dimension of the sub-layers in the
original GCN is not smaller than the input dimension. However, we reduce the dimension
to improve the learning efficiency further.
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Considering n attention-guided adjacency matrices, we utilize n densely connected
layers correspondingly. The inference of each layer is listed as follows:

h(l)ti
= σ

(
N

∑
j=1

Ã(t)
ij W(l)

t g(l)j + b(l)t

)
, (9)

where t = 1, · · · , n, W(l)
t ∈ R d

L×d(l) denotes the weight matrix, and d(l) = d + l−1
L × d.

h(l)ti
denotes the induced representation of node i at the l-th layer in the t-th densely

connected layer. σ is an activation function. b(l)t denotes the bias vector. d denotes the input
feature dimension.

The STAB-GCN model introduces the combination embedding layer to generate an
embedding from n separate densely connected layers. Specifically, the final output H′′ is
shown as

H′′ = W ′H′ + b′, (10)

where H′ denotes the output obtained by integrating the outputs obtained from the densely
connected layers, and H′ =

[
h(1); · · · ; h(n)

]
∈ Rd×n. W ′ and b′ denote a weight matrix and

a bias vector. In the end, STAB-GCN fuses the output relational features with the original
features to generate the scenario embedding, which is taken as the input of two classifiers
to make individual action and group activity predictions.

3.4. Training Objective

Our model is trained with the standard cross-entropy loss in an end-to-end manner.
In STAB-GCN, Sg denotes the score of group activity recognition, which is obtained from
our proposed framework. Si denotes the score of individual action prediction based on
actor feature embedding. In this paper, we introduce the cross-entropy loss to optimize the
training process, as shown in Equation (11).

Ψ = Ψ1(Sg, Sg) + λΨ2(Si, Si), (11)

where Ψ1 and Ψ2 are the functions of cross-entropy loss. Si denotes the ground truth for
the individual actions. Sg denotes the ground truth for group activities. λ represents the
hyper-parameter to equalize the two terms.

4. Experiments
4.1. Datasets

In our experiments, two public datasets (the Volleyball dataset and the Collective
Activity dataset) are leveraged for GAR. In addition, we introduce an available NBA
dataset to verify the performance of our proposed model.

The Volleyball dataset [11] is made up of 4830 clips originating from 55 volleyball
games; it includes 4 group activity categories, i.e., pass, spike, set, and winpoint. Meanwhile,
9 individual action labels (spiking, jumping, waiting, failing, setting, standing, digging,
moving, standing) and the player’s bounding boxes are used in the middle frame of each
clip. Following the settings in [11], we leverage 3220 clips as a training set and 1610 clips
as a testing set. Thanks to [10], we solve the problem of the lack of benchmark bounding
boxes for unlabelled frames.

The Collective Activity dataset [3] consists of 44 video clips, which are divided into
5 group activities, namely crossing, waiting, queuing, walking, and talking, and 6 individ-
ual actions, namely N/A, crossing, queuing, waiting, talking, and walking. Group activity
annotation depends on the most individual action labels in a clip. According to the settings
in [30], we select two thirds of the video clips as a training set and the rest as the testing set.

The NBA dataset contains 181 NBA games from 2019, downloaded from the web, with
9172 video clips and 9 group activity categories: two points success, two points failure,
layup success, layup failure, three points success, and three points failure for offensive
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rebounds. We choose 7624 clips for training and 1548 clips for testing, in accordance with
the experimental settings of [15].

4.2. Implementation Details

In the process of implementation, Inception-v3 is used as our backbone network and
our detailed settings are consistent with [25,31]. To verify the performance of STAB-GCN,
we also utilize state-of-the-art models as the backbone networks for other datasets and
make a further comparison with previous approaches. We leverage linear embedding
to obtain actor feature vectors with 1024 dimensions. STAB-GCN has a 256-dimensional
two-tier architecture. PyTorch is used as the implementation platform in this paper. We
utilize 4 Tesla T4 GPUs to analyze the video clips.

4.3. Comparison with Up-to-Date Methods

We made a series of experiments to compare STAB-GCN with state-of-the-art methods
on the Volleyball dataset. As observed in Table 1, the accuracy of STAB-GCN is 94.8%
with Inception-v3 and 84.3% with ResNet-18 for group activity and individual action
recognition, respectively, showing better performance. STAB-GCN surpasses other up-to-
date approaches for group activity recognition. Although STAB-GCN is almost equal to
the suboptimal method (Dual [1]) for individual action recognition, it is 0.4 percentage
points better than Dual for GAR in terms of accuracy. STAB-GCN is able to embed the
most relevant feature information between actors. Furthermore, STAB-GCN outperforms
ARG [2] by a good margin, which is attributed to the proposed attention mechanism to
capture the key actors and the latent relationship strength.

Table 1. Performance comparison between STAB-GCN and other methods (Volleyball).

Method Backbone Individual
Action

Group
Activity

HDTM [11] AlexNet - 81.9
CERN [32] VGG-16 - 83.3
StagNet [30] VGG-16 - 89.3
HRN [13] VGG-19 - 89.5
AFormer [22] I3D - 91.4
DIN [31] ResNet-18 - 93.1
SSU [10] Inception-v3 81.8 90.6
ARG [2] Inception-v3 83.0 92.5
TCE + STBiP [25] Inception-v3 - 93.3
GFormer [23] Inception-v3 83.7 94.1
Dual [1] Inception-v3 84.4 94.4

STAB-GCN Inception-v3 82.9 94.8
STAB-GCN ResNet-18 84.3 92.2

Referring to Table 2, we obtain the experimental results on the Collective Activity
dataset. STAB-GCN leverages the spatio-temporal attention-based GCN to achieve 96.5%
accuracy for GAR, which verifies the generalization and effectiveness of our method in
embedding the latent relations between actors. Dual acquires 95.2% accuracy by leveraging
a dual-path actor interaction framework and is 1.3 percentage points worse than STAB-
GCN.

As shown in Table 3, STAB-GCN outperforms the mentioned approaches by a large
margin. The accuracy of STAB-GCN is 0.6 percentage points higher than that of state-of-
the-art methods on the NBA dataset. The results demonstrate that STAB-GCN can boost
the embedding ability and acquire collective activity representations. According to the
above-mentioned analysis, STAB-GCN is fully competent for GAR.
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Table 2. Performance comparison between STAB-GCN and other methods (Collective Activity).

Method Backbone Group
Activity

SIM [12] AlexNet 81.2
HDTM [11] AlexNet 87.5
PCTDM [33] AlexNet 92.2
CERN [32] VGG-16 87.2
StagNet [30] VGG-16 89.1
PRL [34] VGG-16 93.8
SPA + KD [35] VGG-16 92.5
CRM [36] I3D 94.2
ARG [2] ResNet-18 91.0
DIN [31] ResNet-18 95.3
HiGCIN [37] ResNet-18 93.0
TCE + STBiP [25] Inception-v3 95.1
SBGAR [16] Inception-v3 86.1
Dual [1] ResNet-18 95.2

STAB-GCN Inception-v3 92.1
STAB-GCN ResNet-18 96.5

Table 3. Performance comparison between STAB-GCN and other methods (NBA).

Method Backbone Group
Activity

SACRF [24] Inception-v3 56.3
TSM [38] Inception-v1 66.6
AFormer [22] ResNet-18 47.1
DIN [31] ResNet-18 61.6
SAM [15] ResNet-18 54.3
ARG [2] Inception-v3 59.0
DFW [39] ResNet-18 75.8
Dual [1] Inception-v3 50.2

STAB-GCN Inception-v3 78.1
STAB-GCN ResNet-18 78.4

4.4. Ablation Study

To analyze the effectiveness of the different components of our proposed STAB-GCN
model, we implement a series of ablation studies on the NBA dataset by utilizing the
recognition accuracy metric.

4.4.1. Multiple Sub-Layers

To obtain latent relation information, we verify the effectiveness of the number of
sub-layers in the densely connected layer on the NBA dataset. We conduct some relative
experiments on a different number of sub-layers. Referring to Table 4, we find that using
multiple sub-layers is helpful for group activity accuracy, compared with only one sub-
layer, and can improve the accuracy from 75.3% to 78.4%. When the number of sub-layers
is 4, the accuracy in group activity recognition is the best.

Table 4. Effectiveness of number of sub-layers L.

Sub-Layer 1 4 8 16 32

Accuracy 75.3 78.4 78.1 77.5 76.8
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4.4.2. Effectiveness of Spatio-Temporal Attention-Based GCN

We perform ablation studies with the following settings to verify the effectiveness
of different attention mechanisms on the spatio-temporal semantic information captured
by STAB-GCN. (1) None: we do not use an attention mechanism. (2) SA: we utilize a
spatial attention mechanism to capture the most important features of sampled frames
without considering temporal evolution. (3) STA: we utilize a spatio-temporal attention
mechanism to embed the latent features of individual and group activities. (4) STAB-GCN:
we jointly embed spatial and temporal context information and integrate it with the GCN.
With the exception of the different components of the model, all settings are the same. As
shown in Table 5, our proposed STAB-GCN improves the performance in individual and
group activity recognition from 74.2% to 78.4% on the NBA dataset. Furthermore, STAB-
GCN obtains a performance boost by 4.2%, which is mainly due to the spatio-temporal
attention-based GCN. The results also demonstrate that STAB-GCN is effective for GAR.

Table 5. Effectiveness of different components of STAB-GCN.

Method NBA Volleyball

None 74.2 90.6
SA 75.9 92.4
STA 77.6 93.2
STAB-GCN 78.4 94.8

4.4.3. Scene Information

In this paper, we adopt different fusion methods to verify the effectiveness of scene
information, i.e., early stage, middle stage, and late stage. Referring to Table 6, late scene
fusion is better than the other two methods. Specifically, the accuracy is improved by
around 0.4 percent. The scene information includes the global context semantics, which
helps to infer the relations between actors and obtain a more effective and efficient feature
embedding for GAR.

Table 6. Effectiveness of scene information.

Scene Fusion NBA Volleyball

w/o 78.0 94.0
Early 77.6 93.6
Middle 78.1 94.1
Late 78.4 94.8

4.5. Visualization Analysis

As shown in Figure 3, we considered the t-SNE [40] visualization of group activity
feature embedding on the NBA dataset. (1) FC: we only use FC layers instead of STAB-
GCN. (2) SA: we use only a spatial attention mechanism. (3) STA: we use a spatio-temporal
attention mechanism. (4) STAB-GCN: we use the spatio-temporal-based GCN. Specifically,
we transform the group activity representation into a two-dimensional map based on t-SNE.
The feature embedding from STAB-GCN can be clustered more effectively compared with
FC, SA, and STA. The results show that our STAB-GCN is suitable for the recognition of
group activity.
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(a) FC (b) SA (c) STA (d) STA-GCN 

Figure 3. t-SNE [40] visualization of effectiveness of different components (NBA).

As shown in Figure 4, we considered the visualization of the STAB-GCN attention
maps on the NBA dataset. The results imply that STAB-GCN can capture the related actors
and the most important group activities by utilizing the spatial attention unit, the temporal
attention unit, and the graph convolutional network, which greatly improves the accuracy
in the recognition of individual actions and group activities in the video clips.

Figure 4. Visualization of our proposed STAB-GCN attention maps on the NBA dataset.

5. Conclusions

This paper proposes the Spatio-Temporal Attention-Based Graph Convolutional Net-
work to embed the latent relations between actors. We present a series of experiments on
three public datasets to verify the performance of our proposed STAB-GCN. The proposed
model leverages the spatial and temporal attention mechanism to further infer the latent
actor features on graph convolutional networks, and it achieves a good outcome compared
with up-to-date methods. In the end, the experimental results demonstrate that STAB-GCN
can embed actor interactions in a multi-person scenario.
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