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Abstract: Several Sun models suggest a radioactive balance, where the concentration of greenhouse
gases and the albedo effect are related to the Earth’s surface temperature. There is a considerable
increment in greenhouse gases due to anthropogenic activities. Climate change correlates with this
alteration in the atmosphere and an increase in surface temperature. Efficient forecasting of climate
change and its impacts could be helpful to respond to the threat of c.c. and develop sustainably.
Many studies have predicted temperature changes in the coming years. The global community has to
create a model that can realize good predictions to ensure the best way to deal with this warming.
Thus, we propose a finite-time thermodynamic (FTT) approach in the current work. FTT can solve
problems such as the faint young Sun paradox. In addition, we use different machine learning models
to evaluate our method and compare the experimental prediction and results.

Keywords: clustering; machine learning; greenhouse gas; finite-time thermodynamics; climate
change
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1. Introduction

The issue of climate change stands as one of the most significant obstacles that human-
ity must confront. Thus, extensive scientific evidence demonstrates that the altering climate
has significantly impacted societies throughout history and in the present, posing severe
effects for the future. Modern advancements in quantitative empirical studies have shed
light on the crucial interconnections within the interconnected climate–human system [1].
Various statistical studies have explored the cause-and-effect relationship between partic-
ular climate conditions and their influence on social interaction, agriculture, economics,
migratory flows, and health [2].

The emergence of scientific efforts in different fields has created a consensus concern-
ing the sustainable development of initiatives and strategies to mitigate climate change.
The most severe consequences of climate change directly affect the health of citizens due to
human activities causing the proliferation of greenhouse gases in the atmosphere, which
induces the increase in temperatures and alteration of the hydrologic cycle [3]. The analysis
of the climate change situation is very timely, because secondary effects are associated
with the negative impact on agriculture, the geographic distribution of infectious diseases,
large-scale migrations, clean water access, and others [4].

Machine learning techniques have recently successfully employed statistical down-
scaling methods for global climate models. According to Nourani et al. [5], a diverse range
of machine learning models have been developed and used in groundwater modeling
and other prediction tasks within the field of environmental engineering [6]. Prediction
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models focused on machine learning to analyze climate variables such as precipitation and
temperature have been proposed in other studies to improve accuracy [7]. The support
vector regression model, the adaptive neurofuzzy inference system, and the feedforward
neural network (FFNN) are the most frequently employed machine learning models to
analyze climate change and particular groundwater levels [8,9]. Other approaches are
based on Gaussian models, which are suitable methods for global climate modeling [10].

Recently, there has been a growing emergence of deep learning models that have
garnered significant attention across various engineering disciplines due to their ability
to extract features from data. Among these models, the long short-term memory (LSTM)
neural network stands out as a powerful deep learning model capable of capturing sequen-
tial characteristics from time series data. LSTM has already been successfully applied in
groundwater-level modeling, as demonstrated by Nourani et al. [11]. According to the
literature review, decision trees, random forests, and artificial neural networks are the most
commonly applied machine algorithms to analyze climate change risk assessment. They
have enabled the identification, classification, and detection of targets and environmental
and structural features, particularly flood and landslide risk events [12].

In the same context, analyzing changes in hydrological systems directly impacts
global climate change, in which classic machine learning algorithms could be limited to
quantifying events related to the climate variability in those hydrological systems. However,
the Gaussian process regression method has been demonstrated to improve the analysis
concerning nonlinear climate variables [13].

On the other hand, the literature reports a crucial synergy between the physics-based
models and machine-learning techniques to develop hybrid approaches to climate change
analysis [14]. Thus, Chukwujindu et al. [15] revealed a crucial relationship between physics
and artificial intelligence to understand better the climate change caused by solar radiation.

According to the development and integration of multidisciplinary fields, the last
years have involved applying physics theories to analyze various Earth phenomena. Now,
physicists and computer scientists have demonstrated enormous interest in studying the
aforementioned secondary effects of climate change. In this sense, Jusup et al. [16] consid-
ered “social physics” an essential tool to quantify social and environmental phenomena.
Moreover, this approach is oriented toward analyzing different issues in which this dis-
cipline can explicitly explain each phenomenon. For instance, in addressing the climate
change topic, the use of network area to describe the complex problem of Earth’s climate
system evidences how physics methods are suitable to work in a multidisciplinary way
with other fields to face this issue quantitatively.

Addressing the risks associated with climate change, Steffen et al. [17] recognized the
relationship between the social community and climate. Therefore, this strategy extends
beyond solely understanding the physical aspects, and requires mobilizing human action.
Scientists are striving to meet this challenge by integrating climate science, social sciences,
computer science, and humanities, resulting in a new field called earth system science,
which aims to foster a holistic understanding of the Earth’s complex dynamics.

On the other hand, global warming is a visible consequence of the heightened in-
tensity and frequency of extreme weather and climate events, which encompass a range
of phenomena, including heatwaves, droughts, wildfires, floods, and hurricanes. These
extreme events pose a substantial risk to human lives and livelihoods, evident through
consequences such as fresh and clean water scarcity and diminished food production. Such
extreme events are characterized by the climatic variable surpassing a critical threshold. It
is worth noting that some extreme events may arise from natural climate variability and
are not directly linked to human-induced forces [18].

There is a high degree of confidence that the anthropogenic rise in greenhouse gas
concentrations and other human-induced factors is responsible for more than 50% of the
reported global average surface temperature accumulation between 1951 and 2010 [16].

Thus, considering the theoretical foundations presented in [16,19], we propose a finite-
time thermodynamic approach to model and predict Earth’s global warming, comparing
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the results of the model with the implementation of machine learning techniques to assess
the predictions.

Finite-time thermodynamics (FTT) has been developed by placing realistic limits on
irreversible processes through various properties, such as power, efficiency, and dissipa-
tion. FTT can be considered an extension of classical equilibrium thermodynamics (CET),
in which thermodynamic models more similar to the real world are sought compared to
those given by CET. So, these models consider the irreversibilities of the system [20,21].
The approach incorporates the constraints of finite-time operation; constraints on system
variables; and generic models for the sources of irreversibility, and thus the production
of entropy such as finite rate, heat transfer, friction, and heat leakage, among others [22].
Moreover, an extreme or optimum of a thermodynamically significant variable is calculated,
such as minimizing entropy production, maximizing energy or availability, and maximiz-
ing power and efficiency [22]. The pioneering work of the FTT corresponds to Curzon
and Ahlborn [20,22], in which the fundamental limits of a power plant used a machine
endoreversible model. This is made up of an endoreversible Carnot cycle, where the irre-
versible processes involve the exchange of heat between the thermal reservoirs and the
active substance.

The thermal engine is composed of two temperature stores, T1 and T2, where T1 > T2,
two irreversible components that are the two thermal resistances, which produce thermal
flows towards the reversible Carnot engine with intermediate temperatures T1w and T2w,
with T1w > T2w, placed between the intermediate stores. The model considers a linear heat
transfer between two irreversible components (thermal conductances α and β) conductances
(see Figure 1).

Figure 1. Scheme of a endoreversible model proposed by De Vos [23].

Summing up, Figure 1 shows a schematic representation of the endoreversible Curzon–
Ahlborn engine. It is built by two reservoirs of temperatures T1 and T2, respectively: α and
β, which denote thermal conductance constants, and a reversible Carnot engine represented
by T1ω and T1ω, where P is the power output of the cycle.
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A problem solved by finite-time thermodynamics efficiently is the so-called weak
young Sun paradox proposed by Sagan and Mullen [24]. This study presents a drawback
for understanding the early stages of planet Earth, since the Sun’s luminosity about 4.5 Gyr
ago was between 70–80% of its value to operate [24–26]. So, it represents a terrestrial
temperature below the water freezing point. The planet’s surface temperature is controlled
by the solar radiation it acquires and its interchange with the gases in the atmosphere. We
consider a blackbody radiative equilibrium between the young Sun and the Earth obtained
in a surface temperature T = 255K, low enough to keep most of the planet’s surface frozen
down to 1–2 Gyr [24]. However, several studies, together with sedimentary records, suggest
the existence of an average surface temperature capable of having liquid water for almost
the entire history of the planet [24]. So, to resolve such a paradox, the first assumption is
taken that solar radiation has increased in the Sun’s lifetime due to the increase in density
of the solar nucleus [24]. The luminosity of the young Sun has been estimated to be 30%
less than the actual value received from the Sun, according to what was said by Gough [24],
where Isc is the present luminosity of the Sun and t0 ≈ 4.56 Gyr, which is the present age
of the Sun. Equation (1) shows the evolution of the Sun’s luminosity, and this equation
affects the amount of average solar radiation q̄s = Isc(1− ρ)/4 received by the planet.
The equation of the luminosity of Gough is expressed in the following way:

I(t) =
[

1 + 0.4
(

1− t
t0

)]−1
Isc (1)

Based on the foundation, the problem of thermodynamic equilibrium between the solar
system’s planets depends on the influx of solar incident Isc, the Earth’s albedo ρ, and the
effect of greenhouse γ. Thus, the issue of the thermal equilibrium among solar system
planets and a correct temperature estimation is solved based on the atmosphere’s physical
characteristics. Curzon and Ahlborn [22] introduced the finite-time thermodynamics
concept. They achieved this using a Carnot cycle model, incorporating limited heat transfer
between the heat reservoir and the working substance, all within a maximum-power
operating regime. Following its initial introduction, finite-time thermodynamics underwent
further development to encompass various operating regimes, including—but not limited
to—efficiency power, ecological function, and more. Using the FTT-based approach in
creating models for power converters results in more accurate representations of their
operational levels in real-world scenarios. In [20], an atmospheric convection model,
known as the Gordon–Zarmi (GZ) model, was introduced to estimate the temperature of
the Earth’s lowest atmospheric layer and establish an upper limit for average wind power.
The GZ model incorporates a convection cell, an endoreversible Carnot cycle, and two
external thermal reservoirs, such as air, surrounding the active substance.

The study presented in [27] examined the endoreversible model and recognized that
there is a dissipation of wind energy. The authors proposed to derive an upper limit for
the efficiency of converting solar energy into wind energy, which is approximately 8.3%,
assuming the atmospheric “heat engine” is fully powered by a complete power engine.

On the other hand, Van der Wel improved a new efficiency of the solar energy upper
bound wmax ≈ 10.23% with another endoreversible model based on convective Hadley
cells [24,28]. The peculiarity of the GZ models is that they offer a potential resolution to
the paradox known as the “young and weak Sun”, which was initially introduced by Carl
Sagan and George Mullen in 1972 [25,26]. The GZ and Gough models examine the evolution
of the solar constant, enabling the investigation of potential future scenarios for Earth’s
temperature. These models employ various objective functions, including maximum power,
efficient power, and ecological function, to analyze and assess these scenarios.

Hence, the present research study aims to investigate the planet’s surface temperatures
resulting from the escalating levels of greenhouse gases. The approach involves analyzing
the thermodynamic behavior of the atmosphere within a finite-time regime. We decided
to employ this methodology, considering the good results in predicting climate change in
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several geologic eras in the past. So, it is possible to modify and set the endoreversible
machine model to forecast temperatures derived from climate change in the coming years.

The remaining paper is organized as follows: The subsequent section consists of com-
prehensive state-of-the-art climate change models based on different approaches. Section 3
describes the preliminary foundations concerning finite-time thermodynamics; Section 4
outlines the methods related to the proposed endoreversible model; and Section 5 describes
the proposed model and its peculiarities. Section 6 shows the experimental results, and the
discussion of the outcomes and findings are included in Section 7, and the last section
involves the conclusion and future works.

2. Related Work

Global warming caused by human activities represents one of the most significant
challenges of the present time. The classical approaches concerning climate change have
studied complex systems such as differential equations and developments in chaos theory.
Nevertheless, the large amount of data available allows us to use artificial intelligence
techniques, which are more straightforward than those used by the areas of complexity
science, resulting in the prediction of future scenarios due to climate change.

According to Houghton [29], global warming is a climate system where several vari-
ables are responsible for raising global average temperatures. Most of these effects are
related to the radiative balance of the planetary atmosphere: water vapor feedback, cloud
radiation feedback, and ocean circulation feedback. In consequence, all of them refer to the
albedo and greenhouse effects. Therefore, to forecast global warming, a set of characteristics
that affect the global emission of greenhouse gases must be taken. These gases have had a
notable increase due to anthropogenic behavior and activity. Development projections of
global average temperature changes for the present century are in the range of 0.15–0.6 °C
per decade. Understanding this problem allows us to consider humans’ and ecosystems’
impacts and adaptive capacity [29].

One of the major consequences of global warming is the melting of ice bodies on the
Earth. The Arctic Sea is one of the leading indicators of the increase in average temperature.
The study of the ice concentration and the rise in sea level has various approaches, one of
which that is widely used is deep learning techniques to predict how the ice concentration
changes with the increase in average temperature [30]. In the same way that the Arctic
layers and their melting show the effect of climate change, all oceans experience the same
significant warming and a rising sea level, so it is necessary to generate diagnostic and
prognostic prediction models to elucidate these increases and their risks, since they are
associated with other adverse events such as the propagation of cycles, lack of rain, and the
growth and spread of diseases. According to diverse authors, the combination of machine
learning and deep learning techniques can give us entirely accurate predictions for the
future [31–34].

In the study carried out by Sidhu et al. [35], the use of machine learning is analyzed to
understand the impact of climate change on different types of crops, taking into account
climate–yield relationships. The authors compared the usual linear regression technique for
estimating historical data to approximate yield against climate change and using boosted
regression trees. The conclusions suggested that interpreting results based on a single
model can generate biases in the information obtained.

On the other hand, due to the high economic and social impacts associated with
climate change, it is essential to understand the causes and identify the patterns of the
obtained data to make correct predictions. According to Zheng et al. [36], the construction of
a reliable model based on experimental data and the relationship between temperature and
the concentration of gases in the atmosphere such as carbon dioxide (CO2), nitrous oxide
(N2O) and methane (CH4), is the first challenge to address the climate change problem.
Zheng’s study used various learning techniques, such as linear regression, support vector
machines, and random forests to build an accurate model that would identify changes in the
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atmosphere’s increasing temperature, dominated mainly by the increase in the temperature
of CO2 due to its higher concentration within greenhouse gases.

Different authors argue that the construction of a reliable model combined with the
temperature dataset and machine learning prediction tools will help us to have a better
understanding of the phenomenon, and thus be able to make a good forecast that allows
us to face the risks of climate change. The thermal equilibrium model was studied by De
Vos and Flater [28], who analyzed solar radiation as an energy converter used to examine
the average temperature of a planet. It is carried out by the radiation from the planet’s
surface and the irradiance reaching Earth. This analysis takes into account the physical
characteristics of the atmosphere, such as friendliness and the albedo effect [22,27,28]. Thus,
the total flux Q appears as shown in Equation (2).

Q = 4πR2σ

(
(1− ρ)

f
4

T4
s − (1− γ)T4

p

)
(2)

It is the first thermodynamic model that allows for a dynamic study of the different
layers of the atmosphere, with the lowest layer corresponding to the temperature on the
planetary surface. This development can analyze various scenarios where greenhouse
gases and albedo concentrations are modified. The feasibility of the model was tested in
the study of geological eras, and several authors carried out the solution of the faint young
Sun paradox [24,25]. The study of the solar converters under the regime of finite-time
thermodynamics was analyzed in this work, changing the parameters to current time,
considering the increase in CO2 main greenhouse gas [36]; its relationship with albedo was
developed too. In addition, a dissipation of energy in the system has realistic results at the
current time.

According to the state of the art, there are several proposals related to analyzing global
climate change based on prediction models developed with deep learning approaches, us-
ing specifically convolutional and recurrent neural networks. In [37], a method to efficiently
predict weather forecasting was proposed by designing a model based on a convolutional
neural network (CNN). Thus, Miloshevich et al. [38] proposed a methodology to create
forecasting artifacts trained with data of 8000-year models, considering an infrastructure
defined by a set of various CNNs, which was primarily focused on describing extreme
heatwave datasets.

On the other hand, the CNN architecture has been widely employed to assess pre-
dictions between the hourly soil temperature and the subsurface depth. Thus, ref. [39]
described a one-dimensional CNN prediction model to demonstrate that the air tempera-
ture and surface thermal radiation directly impact the soil temperature prediction model,
affecting global warming.

Diverse studies have revealed that climate change rushes the increasing global temper-
ature, causing a rise in the international sea level. Consequently, Hassan [40] implemented
a set of different multivariable prediction models based on the principal deep learning
techniques: recurrent neural networks (RNN), long short-term memory networks (LSTM),
gated recurrent unit networks (GRU), and WaveNet as a particular case of CNN. The mod-
els used 29 years of data with multiple variables such as changes in the ocean heat content,
level of carbon dioxide, mass variation in the Greenland and Antarctica regions, and global
temperature anomalies.

According to Ghimire et al. [41], the use of a convolutional neural network with a
multilayer perceptron (MLP) generates efficient forecasts of global solar radiation (GSR).
The outcomes of their model achieved a relative error of less than 10%, generating a model
with very high performance compared to climate models, especially in models developed
with convective cells, such as Gordon and Zarmi-type models. Therefore, using CNN
enriches the predictions of the climate models, inducing better forecasts that detect extreme
weather events caused by climate change.

In consequence, the impact of climate change is reflected in the manifestation of
extreme weather events such as droughts, floods, and heat waves. So, improving the
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methods for predicting global warming and its effects allows for adapting as a society
to the planet’s dynamic environment. An issue to analyze with climate change is its
correlation with the hydroclimatic systems of the Earth. Larson et al. [42] proposed a deep
convolutional residual regressive neural network to determine river basins’ response to
the water cycle’s flows. The analysis revealed that this architecture and the catchment
flow data exhibited satisfactory prediction performance for various locations at different
time scales.

Natural disasters are related to climate change; some examples of these events include
flash floods, droughts, and hurricanes. Thus, the Pacific Ocean weather phenomenon
known as El Niño-Southern Oscillation (ENSO) is caused by cyclical changes in sea surface
temperature (SST) and temperatures in the atmosphere near the tropics. The ENSO impact
generates temperature variations, making them slightly warmer or colder up to extreme
temperatures, inducing natural disasters. As claimed by Jonnalagadda and Hashemi [43],
the use of the adaptive graph convolutional recurrent neural network (AGCRNN) can cap-
ture the temporal relationships of features with the Oceanic Niño Index (ONI), increasing
the prediction time from three months to eighteen months, surpassing the current dynamic
and statistical models.

In recent years, it has been observed that the automated detection of extreme weather
events has increased. Therefore, it is required to improve the prediction performance to
deal with these weather anomalies. Current research has shown that new convolutional
neural network architectures enhance meteorological event detection. According to La-
combe et al. [44], the use of weighted loss functions counteracting the class imbalance in
the data together with a correct architecture could show a significant improvement of the
prediction up to 39.2% concerning events as natural cyclones. Due to the high impacts of
extreme weather events, an energy transition that does not depend on the burning of fossil
fuels, the main generator of greenhouse gases, is urgent. Photovoltaic power production is
a good power generation option. However, this type of energy production is sensitive to
weather, and can generate variations depending on weather conditions. To make realistic
energy production forecasts, Ramakrishnan et al. [45] suggested a combined CNN and
LSTM model, obtaining a better percentage of photovoltaic yield prediction, considering
slow climate fluctuations and substantial climatic variations.

On the other hand, among the most significant consequences of climate change is
related to the solar energy generation of power systems. Recently, the accuracy of intrahour
solar forecasting has been a crucial topic to be analyzed in the field due to two critical
aspects: (1) the accuracy of prediction models considering the dynamic coverage of clouds,
and (2) the short forecast horizon for a minimal time window [46]. Thus, different proposals
and methods to face these aspects have been proposed. Caldas and Alonso-Suárez [47]
designed a hybrid model to predict solar irradiance, merging sky (cloud status) data
provided by images and irradiance measures. The outcomes revealed that the model is
efficient in preserving solar energy resources. In this sense, Pedro et al. [48] presented a
study to compare machine learning algorithms such as k-nearest neighbors and gradient
boosting in tasks to classify data based on intrahour forecasting and irradiance, taking
information from sky images. Moreover, solar energy is the most favorable renewable
source of electricity, employing a system based on a photovoltaic power supply. In [49],
an artificial neural model was designed to predict solar irradiance values without using the
detection of clouds.

3. Preliminary
3.1. Finite-Time Thermodynamics

The endoreversible Carnot machine is not in thermodynamic equilibrium with the
reservoirs and the active substance. There is a separation between the internally reversible
processes and the irreversibilities at the system boundaries, where internal processes
with fast relaxation times can be considered reversible and the entropy change for the
thermodynamic universe ∆Su of the machine is positive, the entropy being of our null
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working substance ∆Sw = 0. This definition is known as the endoreversibility hypothesis;
when the model proposed by Curzon and Ahlborn [22] evolves in finite time, the model’s
power is nonzero, unlike that given by CET [50].

3.2. Curzon and Ahlborn Engine

The engine has thermal conductances that comply with Fourier’s law for heat conduc-
tion (Q̇ = −λ∇T). In the present work, we will use the following notation to refer to the
heat flows Q = Q̇, such that:

Q1 = α(T1 − T1w) (3)

Q2 = β(T2w − T2) (4)

A form of solution to the Curzon and Ahlborn [22] engine and the machine schematic
was proposed in [27]. From the conservation of energy, we have the heat flow Q1 from the
upper reservoir, towards the reversible machine with power P to the output flow Q2 [51].
By the entropic conservation of the system, ΣS = 0. Therefore, the production of entropy
must be zero, whereas for the reversible internal machine, we assume that its entropy
changes are zero (endoreversibility hypothesis) [23,28,51,52].

σ =
Q1

T1w
− Q2

T2w
= 0 (5)

From Equation (5) with the second law of thermodynamics, we have the following
relationship for thermal conductors T1w and T2w.

T1w =
α

α + β
T1 +

β

α + β

1
1− η

T2 (6)

T2w =
α

α + β
(1− η)T1 +

β

α + β
T2 (7)

Substituting T1w in Equation (6) and T2w in Equation (7) with our flow Q1 and Q2, we
obtain Equations (8) and (9).

Q1 = γ
T1 − T2 − T1η

1− η
(8)

Q2 = T2

(
β(T1(1− η)− T2)

γ(1− η)T1 + βT2

)
(9)

with the expression:

γ =
αβ

α + β

Thus, from the definition of efficiency, we can obtain an expression for the power
given by:

P = γ
η(T1 − T2 − T1η)

1− η
(10)

Resulting in efficiency at maximum power for the Curzon–Ahlborn machine known
in finite-time thermodynamics as ηca that satisfies 0 < ηca < ηc.

ηCA = 1−

√
T2

T1
(11)
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In the endoreversible Curzon–Ahlborn model, the dissipation will be given by formu-
las that have been derived that show the efficiency of an engine under maximum power
conditions [20,21].

Φrb = Q2 −
T2

T1
Q1 (12)

4. Materials and Methods
4.1. Gordon and Zarmi (GZ) Model

The atmospheric convection model proposed by GZ consists of a cell as an endore-
versible Carnot cycle between two thermal reservoirs of extreme temperatures: the tem-
perature T1 is the working fluid (atmosphere) temperature at the lowest altitude in the
system, related to the temperature of Earth’s surface; the temperature in the highest part
of the working fluid is the cold reservoir in the GZ model, and the temperature is related
to the cosmic background radiation T2 = 3K (see Figure 2) [20]. The input energy is solar
radiation, the active substance is the atmosphere, and the work performed by the fluid of
the thermal machine is the mean power of the winds. The GZ convection cell consists of
several components, including two isothermal branches where the atmosphere absorbs
heat at lower altitudes. Additionally, two intermediate adiabatic branches are assumed to
be instantaneous, and the remaining branch releases heat at higher altitudes into the uni-
verse [53]. The GZ maximizes the work per cycle W, subject to thermodynamic restrictions
and the average solar radiation flux qs [20,53].

q̄s =
Isc(1− ρ)

4
(13)

The GZ model works with a Sun–Earth–wind system as an endoreversible engine,
in which the input heat is the solar radiation, the active substance is the atmosphere, and the
labor produced by this cycle is the mean power of the winds. The cold store for this machine
is outer space, with the temperature of the cosmic background radiation of 3K [20].

Figure 2. Simplified schema proposed by the GZ diagram of a cyclic heat engine driven by solar
energy, the heat input is the solar radiation per area qs, and the working fluid is the atmosphere.
In contrast, the work output is the maximum wind energy. The model can obtain maximum and
minimum temperatures of the atmosphere without considering any other effect on the Earth apart
from the one already described in the convective cell [20].
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Figure 2 shows a schematic view of the simplified system, including its isothermal and
adiabatic branches. In addition, this diagram is a simplified version of a thermal engine
driven by solar energy. The description of this figure is denoted as follows:

1. The atmosphere absorbs solar radiation at low altitudes through two isothermal
branches. At the same time, heat is pushed out at high altitudes through another
branch, in which the atmosphere rejects the excess heat.

2. There are two intermediate adiabats characterized by ascending and descending air
currents, which occur instantaneously.

The temperatures associated with the four-cycle branches are as follows:

1. T1 represents the temperature of the working fluid in the isothermal branch situated
at the lowest altitude. Here, the working fluid absorbs solar radiation during every
half cycle.

2. In the second half of the cycle, heat is released from the working fluid at temperature
T2 (at the highest altitude of the cell) through blackbody radiation, which is directed to-
wards the cold reservoir at temperature Tex (representing the 3K background radiation
of the universe) [20,54].

The objective of this model is to maximize the work per cycle, equivalent to maximizing
the average power output, according to certain thermodynamic restrictions. From the first
law of thermodynamics for this model, we have the following:

∆U = −W +
∫ t=tc

t=0
qs(t)− σ[T4(t)− Tex4(t)]dt = 0 (14)

where ∆U is the change in internal energy of the active substance, σ is the Stefan–Boltzman
constant (5.67× 10−8 W

m2K4 ), tc is the cycle time, and T is the temperature of the active
substance. The entropy change is subject to the endoreversibility restriction.

∆S =
∫ t=tc

t=0

(
qs(t)− σ[T4(t)− T4

ex(t)]
T(t)

)
dt = 0 (15)

The variables T, Text are functions associated with the time.

T(t) =
{

T1 0 ≤ t ≤ tc/2
T2 tc/2 ≤ t ≤ tc

(16)

Tex(t) = 3k 0 ≤ t ≤ tc (17)

The variable qs is a function of time, Isc is the average solar constant over the Earth’s
surface (1372.7 W/m2), the average albedo ρ = 0.35, and the average values are as follows:

qs(t) =
{

Isc(1− ρ)/2 0 ≤ t ≤ tc/2
0 tc/2 ≤ t ≤ tc

(18)

T̄ = (T1 + T2)/2 (19)

T̄n = (Tn
1 + Tn

2 )/2 (20)

The mean power of the winds is obtained by:

P =
W
t0

= q̄s + σT4
ex − σT̄4 (21)

The model used by GZ considers the following approximation q̄s >> σT4
ex; we have

the following Equation:
P = q̄s − σT̄4 (22)
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From the endoreversibility condition, the variables T, Tex and the mean values we
obtained are:

∆Sint =
q̄s

T1
− σ

2
(T3

1 + T3
2 ) (23)

To maximize P subject to the endoreversibility condition, the Lagrangian is de-
fined in terms of the Lagrange multiplier λ and the thermodynamic constraint given
by L = P− λ∆S, so that:

L = T4(t) + λ[qs(t)/T(t)− σT3(t)] (24)

For finding the extreme of L, that is, solving ∂L(t)
∂T(t) = 0, we have the following system

of equations:

T5
1 (t) + 3σλT4

1 /4− λqs(t)/4 = 0 (25)

T5
2 (t) + 3σλT4

2 /4 = 0 (26)

GZ found the following temperature values for the lowest and highest layers of the
Earth’s atmosphere T1 = 277K, T2 = 192K and Pmax = 17.1 W

m2 . These values are not far
from the literature Pmax = 7 W

m2 , T1 = 290K (on the surface) and T2 = 195K (between 75 and
90 km). Gordon and Zarmi [20] stated that their mean power of winds should be taken as
an upper limit.

4.2. Nonendoreversibility Parameter in G-Z

In recent studies, the nonendoreversibility parameter R has been used to investigate
the thermal machines of TTF. This parameter was introduced from the Clausius inequality,
considering a clearance measure in the endoreversible regime [55].

∆Sw1 + ∆Sw2 ≤ 0 (27)

∆Sw1 changes in the hot isotherm and ∆Sw2 in the cold compression isotherm, in the
endoreversible case. Thus, this inequality becomes equality in the following equation.

∆Sw1 + R∆Sw2 = 0, (28)

where R is given by:

R =
∆Sw1

‖∆Sw2‖
(29)

where R = ∆Sw1
‖∆Sw2‖

; the parameter of non-endoreversibility is in the interval 0 ≤ R ≤ 1,
where R = 1 is the endoreversible limit [51]. The previous GZ convection cell process is
enriched using the parameter R. Thus, to maximize P subject to the endorreversibility
condition plus the parameter R, the Lagrangean L = P− λ∆S to occupy is given as follows:

L =
σ

2
(T4

1 + T4
2 ) + λ

[
q̄s

T1
−

Rσ(T3
1 + T3

2 )

2

]
(30)

Solving ∂L(t)
∂T(t) = 0 to find the extrema of the Lagrangian; solving the system numerically, it is

found that for a nonendoreversibility parameter R = 0.953 [55] for ρ = 0.35, Isc = 1372.7 W/m2.
GZ found the following temperature values for the lowest and highest layers of the Earth’s
atmosphere T1 = 280.562K, T2 = 194.293K.
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5. The Proposed Model
5.1. Greenhouse Factor

The planet’s surface temperature computation is modified by adding the greenhouse
parameter γ. Therefore, it is necessary to add the greenhouse effect to the equations
proposed by the thermodynamics of finite times, to obtain the temperatures of the lower
and upper layers of our active substance (in this case, the air). Thus, the equations for
entropy and internal energy are also changed.

∆U = −w +
∫ t=tc

t=0
qs(t)− σ(1− γ)[T4(t)− Tex4(t)]dt = 0 (31)

Equation (15) is expressed in terms of the nonendoreversibility parameter and the
greenhouse factor, giving as a result the following expression:

∆S =
∫ t=tc

t=0

(
qs(t)− R(1− γ)σ[T4(t)− T4

ex(t)]
T(t)

)
dt = 0 (32)

From the G-Z section, the average power of the winds P = wc
t , in which q̄s >> σT4

ex,
the power expression output for the case of the greenhouse effect is of the form:

P = q̄s −
σ

2
(1− γ)[T4

1 + T4
2 ] (33)

Equations (31) and (32) show us a greenhouse factor acting on the two layers of the
atmosphere with temperatures T1 and T2. To maximize P subject to the endoreversibility
condition, we defined the Lagrangian in terms of the Lagrange multiplier λ and the
thermodynamic constraint given by L = P− λ∆S, so that:

L = q̄s −
σ

2
(1− γ)[T4

1 + T4
2 ]− λ

{
q̄s

T1
− σ

2
(1− γ)[T3

1 + T3
2 ]

}
(34)

where λ is a Lagrange multiplier. By solving the Euler–Lagrange equations ∂L(t)
∂T(t) = 0,

a system of equations is obtained, which allows us to calculate the extremes of the power.
For ∂L(t)

∂T1(t)
= 0:

T5
1 −

3
4

RλT4
1 −

q̄s

2σ(1− γ)
= 0 (35)

For the case ∂L(t)
∂T2(t)

= 0:

T2 =
3R
4

λ (36)

Finally, for ∂L(t)
∂λ = 0 we have:

q̄s

T1
− σ

2
(1− γ)[T3

1 + T3
2 ] = 0 (37)

Eliminating λ and giving the value of qs ≈ 229 W/m2 [50], we have two equations
whose numerical solution provides the highest and lowest layer surface temperatures.
The low of the Earth’s atmosphere is under a regime of maximum power in terms of the
nonendoreversibility parameter R, the albedo ρ, the greenhouse effect γ, and the current
solar constant Isc.

T5
1 − T2T4

1 −
2qs

3Rσ(1− γ)
T2 = 0 (38)

T4
1 + T3

2 T1 −
2q̄s

Rσ(1− γ)
= 0 (39)
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5.2. Greenhouse Factor in the Lowest Layer of the Atmosphere Average Surface Temperature

The power for the G-Z model is given by P = wc
t , where for Tex = 3K q̄s >> σT4

ex, the
output power expression with the greenhouse effect in the lower part is the following:

P = q̄s −
σR
2
[(1− γ)T4

1 + T4
2 ] (40)

It is necessary to maximize P subject to the endoreversibility condition and the green-
house effect at the bottom. Then, the Lagrangian is defined in terms of the Lagrange multiplier
λ and the constraint on thermodynamics showing the following Lagrangian expression:

L = q̄s −
σ

2
[(1− γ)T4

1 + T4
2 ]− λ

{
q̄s

T1
− σ

2
[(1− γ)T3

1 + T3
2 ]

}
(41)

Solving the Euler–Lagrange equations ∂L(t)
∂T(t) = 0, we obtain the following equations:

For ∂L(t)
∂T1(t)

= 0:

T5
1 −

3
4

RλT4
1 −

q̄s

2σ(1− γ)
= 0 (42)

For ∂L(t)
∂T2(t)

= 0:

T2 =
3R
4

λ (43)

For ∂L(t)
∂λ = 0, we have:

q̄s

T1
− σ

2
[(1− γ)T3

1 + T3
2 ] = 0 (44)

Removing the λ parameters from Equations (42)–(44), we obtain:

T5
1 − T2T4

1 −
2q̄s

3Rσ(1− γ)
T2 = 0 (45)

T4
1 +

1
(1− γ)

T3
2 T1 −

2̄qs

Rσ(1− γ)
= 0 (46)

The FTT models are developed as engines that use the conversion of solar energy
into wind energy; the hypothesis is that atmospheric work as a “heat engine” provides
reasonable values for the average power of winds and extreme temperatures in specific
layers of the atmosphere. To compute the efficiency of the energy converter, it is necessary
to take the average power output associated with the yearly average solar radiation flux qs
expressed per unit area of the Earth’s surface (see Equation (47)). Therefore, solar energy
efficiency or performance is defined as w = P/qs.

w =
(1− γ)(R− 1) + R4(1− η)3[1− R(1− η)]

R[(1− γ) + R3(1− η)3]
(47)

Thus, for the endoreversible case R = 1:

w =
η(1− η)3

(1− γ) + (1− η)3 (48)

Equation (48) shows us that even for an endoreversible case, the efficiency of solar
energy depends on the greenhouse effect. For a regime at maximum power for γ = 0,
7.67% of the solar energy qs can be converted into energy, regardless of the planet and the
solar system.
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Nevertheless, it does not represent a realistic model of the atmosphere of the planets.
The model can be extended by considering other thermodynamic regimes, such as the
ecological and efficient power regimes. Other conditions, such as physical and geometric
issues about the planet, improve our thermal engine, which implies more accurate predic-
tions. According to the model developed by De Vos and Flatter [27], they obtained a value
ω = 9.64% whereas a Hadley-type considers a convection cell and divides the planet into
two hemispheres, thus generating different heat exchanges where radiation is received or
emitted from their surface areas.

The models proposed by De Vos as well as Gordon and Zarmi [20,27] can compute
the temperatures of the atmosphere of some past or future periods of the Earth, as was
carried out in the study by Angulo and Barranco-Jiménez [24], where the temperatures of
early age were calculated with enough accuracy. In the present work, we worked similarly,
but for a future time of the atmosphere (prediction event), we considered the atmosphere’s
physical characteristics, such as the albedo greenhouse effect. The model created by De
Vos shows an excellent relationship between the theoretical and experimental data. Our
proposed work approximated the albedo dependent on the greenhouse effect with a = 0.072,
b = 0.4955, and c = 0.1527.

ρ = aγ2 + bγ + c (49)

The GZ-type models with the greenhouse factor and the albedo condition above,
and the atmosphere represented by Equations (45) and (46), allow us to obtain temperatures
of the highest and lowest layers of the atmosphere. It is necessary to determine the
atmospheric characteristics of the GZ-type models. According to the solution of the faint
young Sun paradox presented in [24], the finite-time thermodynamics models efficiently
resolve the paradox, calculating the planet’s average surface temperature from different
geological stages. Using scenarios where the luminosity of the Sun is taken into account
through the Gough Equation (1), it is necessary to modify this equation to actual luminosity,
as represented in Equation (50).

I(t) =
[

1 + 0.4
(

1− t + t0

t0

)]−1
Isc (50)

Using the albedo ρ (Equation (49)), the average solar radiation flux, and greenhouse
coefficient γ, we modified the scheme proposed by Angulo and Barranco to determine
the effects of climate change due to the increase in greenhouse gas, taking the relationship
proposed in our work. That relationship between the albedo and greenhouse effect is
represented in Equation (49), including the present-day values for average luminosity,
its variation per year (Equation 50), and the changes directly proportional to the flux qs
expressed in Equation (13). Nevertheless, it is necessary to consider the dissipation in
the maximum power regime to obtain realistic results. This modification allows results
to be obtained to predict the effects of climate change in future years. Thus, the average
temperature of the surface (Ts) at present will be based on the existing relationship in the
dissipation (Equation (12)) of the system in maximum-power conditions in the GZ-type
model with Equations (45) and (46).

Ts = T1 + T2

(
β(T1(1− ηCA)− T2)

γ(1− ηCA)T1 + βT2

)
− T2γ(T1 − T2 − T1ηCA)

T1(1− ηCA)
(51)

Simplifying:

Ts = T1 + T2
(

T1(1− ηCA)− T2
(1− ηCA)T1 + T2

)
− T2

T1

(
(T1− T2− T1ηCA)

(1− ηCA)

)
(52)

6. Experimental Results

It is necessary to determine possible and future scenarios for the growth of greenhouse
gases. Most of the concentration of gases in the atmosphere has presented a significant
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increase since the 1970s due to industrial activities. According to the Mauna Loa labo-
ratory in Hawaii [53,56], the data show a massive rise in CO2 by the empirical formula
concentration for the interval 1975 ≤ t ≤ 2100 [53]. So, the expression obtained by Wubbles
concerning the trace gas trends and their potential role in climate change is valid for this
methodology [53].

[CO2] = 330e0.0056(t−1975) (53)

According to Equation (49), the albedo and the greenhouse effect are related. For the
Earth, the value of the greenhouse effect can be defined as γ = (Es − F)/Es, where Es
is the surface emission and F is the outgoing radiation [24]. Moreover, it is noticed that
the increase in greenhouse gases rises over time, according to Wubbles and different
experimental measurements. With all these characteristics, the natural average temperature
(Ts) and its possible evolution in the coming years can be determined with reasonable
accuracy. To test the GZ model, a dissipation φrb, developed in this work, is considered,
solving numerically with R = 1 and different values of γ are related to the year. It is
a data compilation by Berkeley Earth. The study shows the temperature of the Earth’s
surface, and the experimentally measured temperatures Tobs were compared against our
theoretically calculated temperatures Ts to use a forecasting technique later to determine
the future of temperatures.

On the other hand, the comparison was made using machine learning techniques
such as linear regression, Ridge regression, and artificial neural networks. Concerning
the implementation, we used the Scikit-learn framework for regression methods and the
TensorFlow package with Keras for designing the artificial neural network. The parameters
for the artificial intelligence-based approach were described according to the formalism
of Scikit-learn and TensorFlow Keras. Thus, the setup parameters and configuration were
established as follows:

• Linear regression: train_size = X_train, X_test, y_train, y_test =
train_test_split(X, y, train_size = 0.8)

• Ridge regression: train_size = X_train, X_test, y_train, y_test =
train_test_split(X, y, train_size = 0.8)

• Neural network optimizer was implemented by applying Adam’s algorithm. The re-
gression loss was defined by MeanSquaredError. Moreover, four layers were estab-
lished with the activation functions: linear, linear, relu, linear.

Data Preprocessing

To analyze the complexity of climate change, the terrestrial and oceanic temperatures
of the planet were measured. The used data are a compilation of a dataset provided by
Berkeley Laboratory. Other widely used datasets are MLOST NOAA Land-Ocean Surface
Temperature and GISTEM from NASA [57–59]. The data compilation by Berkeley records
land average temperatures in the format yyyy/mm/dd. So, a split was made by year,
month, and day, taking the temperature of each month, and the mean temperature per year
was computed. It was observed that there is a correlation with a value of 0.89 between the
variables of the year and the land average temperature from the year 1975 to 2015 [57–59].
Figure 3 shows the climatology of the average annual terrestrial temperature between 1951
and 1980 from the Berkeley Earth Data with a global mean of 9.17 Celsius. In our work,
the mean experimental temperature of each year was compared with the obtained data
from our theoretical model.

The results of the data and the surface temperatures Ts obtained from the model
expressed in Equation (52) that was developed in this work are shown in Table 1. All the
results regarding data are presented in degrees Celsius.
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Table 1. Average temperatures observed and computed by the GZ-type model.

Year Tobs Ts

1975 8.74 8.41
1976 8.34 8.44
1977 8.85 8.48
1978 8.69 8.51
1979 8.73 8.55
1980 8.98 8.58
1981 9.16 8.62
1982 8.63 8.65
1983 9.02 8.69
1984 8.65 8.73
1985 8.65 8.77
1986 8.83 8.80
1987 8.99 8.84
1988 9.20 8.88
1989 8.922 8.92
1990 9.23 8.96
1991 9.17 9.00
1992 8.83 9.04
1993 8.86 9.08
1994 9.03 9.12
1995 9.34 9.16
1996 9.03 9.21
1997 9.20 9.24
1998 9.52 9.29
1999 9.28 9.33
2000 9.20 9.37
2001 9.41 9.38
2002 9.57 9.46
2003 9.52 9.50
2004 9.32 9.48
2005 9.70 9.59
2006 9.53 9.64
2007 9.73 9.73
2008 9.43 9.74
2009 9.50 9.78
2010 9.703 9.82
2011 9.51 9.87
2012 9.507 9.92
2013 9.606 9.97
2014 9.570 10.02
2015 9.831 10.07

The temperature increase due to greenhouse gas growth has been analyzed since 1975.
It was fixed this year because of the significant increase in the concentration of CO2, as
shown by the experimental development of Wubbles in Equation (53), when seeing the
correlations of the observational variables of the temperature of the Berkeley database.
We can notice a high correlation between the year and the land’s average temperature,
and the correlation is equal to 0.89. Therefore, a linear regression model is sufficient in
this case to make a future prediction of the temperature. In the following plot (Figure 4,
average temperatures observed and calculated by the GZ-type model), we can observe a
relationship between the average temperature per year measured against the temperature
of the modified GZ model.
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Figure 3. Climatology of annual mean land temperature. NCAR, Climate Data Guide [59].

Figure 4. Average temperatures observed and computed by the GZ-type model compared with the
average measured yearly temperature.

Thus, (Figure 5, average temperatures observed since 1975 with linear regression)
shows how a linear regression adjusts perfectly to predict the evolution of the temperature
from the year 1975. It is possible to infer how the temperature change will be towards the
year 2100 thanks to this type of modeling.

On the other hand, Table 2 presents the future prediction of the temperatures using
linear regression (LR), ridge regression (RR), and an artificial neural network (ANN). Thus,
the ANN has five layers: an input layer with a linear activation function; three layers with
a rectified linear activation function, or Relu or ReLU for short; and an output layer with a
linear activation function. All techniques were applied to the observed temperatures (Tobs)
and the models’ temperatures used in the present work. In the same way, the third column
shows the temperatures computed (Ts) from our model of Gordon and Zarmi (GZM)
without applying a linear regression, where the physical characteristics of the atmosphere
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are taken into account and what theoretical temperature would be reached. In addition,
Table 2 depicts the entire prediction made up to 2100, starting in 2016.

Table 2. Average temperatures observed and computed by the GZ type model.

Year Tobs with LR Ts with LR Tobs with RR Tobs with
NN

Ts with
GZM

2016 9.839 10.049 9.845 10.089 10.121
2017 9.842 10.094 9.860 10.094 10.176
2018 9.845 10.135 9.869 10.099 10.228
2019 9.860 10.178 9.884 10.105 10.281
2020 9.885 10.219 9.907 10.110 10.334
2021 9.913 10.251 9.937 10.115 10.387
2022 9.941 10.292 9.967 10.120 10.440
2023 9.969 10.333 9.996 10.125 10.495
2024 9.997 10.374 10.026 10.130 10.550
2025 10.025 10.426 10.056 10.135 10.606
2026 10.053 10.456 10.086 10.140 10.663
2027 10.081 10.497 10.116 10.144 10.720
2028 10.109 10.538 10.146 10.149 10.777
2029 10.137 10.579 10.175 10.154 10.836
2030 10.165 10.620 10.205 10.159 10.895
2031 10.193 10.661 10.235 10.164 10.954
2032 10.221 10.702 10.265 10.169 11.014
2033 10.249 10.743 10.295 10.174 11.018
2034 10.277 10.784 10.325 10.179 11.138
2035 10.305 10.825 10.354 10.184 11.200
2036 10.333 10.866 10.384 10.189 11.263
2037 10.361 10.907 10.414 10.194 11.327
2038 10.389 10.948 10.444 10.199 11.392
2039 10.417 10.989 10.474 10.204 11.456
2040 10.445 11.030 10.504 10.209 11.524
2041 10.473 11.071 10.533 10.213 11.591
2042 10.501 11.112 10.563 10.218 11.659
2043 10.529 11.153 10.593 10.223 11.728
2044 10.557 11.194 10.623 10.233 11.798
2045 10.585 11.235 10.653 10.238 11.868
2046 10.613 11.276 10.683 10.243 11.939
2047 10.641 11.317 10.713 10.246 12.012
2048 10.669 11.358 10.742 10.248 12.085
2049 10.697 11.399 10.772 10.253 12.159
2050 10.725 11.440 10.802 10.258 12.234
2051 10.753 11.481 10.832 10.263 12.311
2052 10.781 11.522 10.862 10.268 12.388
2053 10.809 11.563 10.892 10.272 12.465
2054 10.837 11.604 10.921 10.277 12.545
2055 10.865 11.645 10.951 10.282 12.625
2056 10.893 11.686 10.981 10.287 12.707
2057 10.921 11.727 11.011 10.292 12.789
2058 10.949 11.768 11.041 10.297 12.872
2059 10.977 11.809 11.071 10.302 12.957
2060 11.005 11.850 11.100 10.307 13.043
2061 11.033 11.891 11.130 10.312 13.129
2062 11.061 11.932 11.160 10.317 13.218
2063 11.089 11.973 11.190 10.322 13.308
2064 11.117 12.014 11.220 10.327 13.398
2065 11.145 12.055 11.250 10.332 13.490
2066 11.173 12.096 11.279 10.336 13.584
2067 11.201 12.137 11.309 10.341 13.659
2068 11.229 12.178 11.339 10.346 13.775
2069 11.257 12.219 11.369 10.351 13.872
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Table 2. Cont.

Year Tobs with LR Ts with LR Tobs with RR Tobs with
NN

Ts with
GZM

2070 11.285 12.260 11.399 10.356 13.972
2071 11.313 12.301 11.429 10.361 14.072
2072 11.341 12.342 11.458 10.366 14.174
2073 11.369 12.383 11.488 10.371 14.277
2074 11.397 12.424 11.518 10.376 14.383
2075 11.425 12.465 11.548 10.381 14.490
2076 11.453 12.506 11.578 10.386 14.599
2077 11.481 12.547 11.608 10.390 14.709
2078 11.509 12.588 11.637 10.396 14.820
2079 11.537 12.629 11.667 10.401 14.935
2080 11.565 12.670 11.697 10.405 15.050
2081 11.593 12.711 11.727 10.410 15.168
2082 11.621 12.752 11.757 10.415 15.287
2083 11.649 12.793 11.787 10.420 15.408
2084 11.677 12.834 11.816 10.425 15.533
2085 11.705 12.875 11.846 10.430 15.658
2086 11.733 12.916 11.876 10.435 15.786
2087 11.761 12.957 11.906 10.440 15.916
2088 11.789 12.998 11.936 10.445 16.048
2089 11.817 13.039 11.966 10.450 16.183
2090 11.845 13.080 11.995 10.455 16.320
2091 11.873 13.121 12.025 10.460 16.460
2092 11.901 13.162 12.055 10.465 16.601
2093 11.929 13.203 12.085 10.469 16.746
2094 11.957 13.244 12.115 10.474 16.894
2095 11.985 13.285 12.145 10.479 17.043
2096 12.013 13.326 12.174 10.484 17.196
2097 12.041 13.367 12.204 10.489 17.352
2098 12.069 13.408 12.234 10.494 17.511
2099 12.097 13.449 12.264 10.499 17.673
2100 12.125 13.490 12.294 10.504 17.838

Figure 5. Average temperatures observed since 1975 with linear regression adjusted to predict the
rise of mean temperature.

Moreover, Figure 6 shows the evolution of the surface temperature (Ts), according
to the predictions made by the model proposed in our work with the initials GZM and
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the temperature prediction from the experimental data (Tobs ). Thus, TS and Tobs were
forecasted using machine learning techniques.

Figure 6. Comparison of the evolution of temperature from the year 2020 to 2100 through theoretical
and experimental models.

From a correlation analysis between the temperature variables under different machine
learning techniques, such as linear regression (LR), ridge regression (RR), artificial neural
network (ANN), and the proposed endoreversible model (GZM), it can be observed that
the GZM model is more suitable with a linear relationship (see Figure 7).

Figure 7. Comparison of the correlation between year variables and observed temperatures with the
theoretical model.
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7. Discussion

According to several authors, the changes in the concentration of gases in the atmo-
sphere, mainly greenhouse gases, in addition to their directed relationship with the albedo
effect, are related to climate change [24,29,60,61].

Climate model development and the implications in a model’s prediction reliability
can be difficult, because the climate is a complex system with many variables and factors.
The models are fully coupled when studying a complete interaction among the global
radiation budget, different layers of the atmosphere, physical and chemical atmospheric
processes, and their implications in the biosphere. The models are considered partially cou-
pled and developed in a system of Sun–atmosphere–ocean. Differential equations represent
the governing equations that describe atmospheric and ocean circulation, geophysical fluid
dynamics, continuity equations, the input of solar radiation, and physical thermodynamic
processes [29,61–65]. Therefore, global climate models can have many degrees of freedom.

Nevertheless, these models are very complex and expensive to solve through analytical
and computational methods. Thus, the nonlinearity leads to multiple solutions that must
be carefully analyzed to find physically acceptable results and predictions. A method
used to work with these chaotic systems is the use of approximations or attractors, the
use and development of simplified climate models, or the linearization of global climate
models [29,65–67].

In this work, we used a climate model based on the Gordon–Zarmi approach, where
the system is represented like a heat engine that describes an Earth–atmosphere–Sun system,
providing reasonable values of extreme temperatures in the layers of the atmosphere.
The model solved the paradox of the young and weak Sun, proposing a series of scenarios
with the different greenhouse effect and albedo values, taking into account the luminosity
of the Sun and the evolution of these values over time. These variables are responsible for
generating global warming, and the obtained prediction is correlated with the estimated
warming values from experimental data.

According to Houghton et al. [29], it is essential to note that since the climate is a chaotic
system, its predictions become very complicated, so using climate models and predictions
made from experimental data through numerical techniques or machine learning help to
provide robustness to future predictions.

In this analysis of climate change, an endoreversible modeling of the Gordon and
Zarmi type was carried out. Unlike other finite-time thermodynamic studies for studying
the atmosphere, adjustments were made to give the model realistic results if applied. As for
the climatic analysis of geological eras, as observed in other works, it is noticed that the
results do not correspond to what is reported by observations of the current temperature.
According to Levario et al. [21], for a correct thermodynamic optimization of power plants,
it is necessary to consider the system’s variations. Therefore, the modeling was performed
considering those variations, the change in luminosity per year, the increase in greenhouse
gas, and its relationship with the terrestrial albedo, thus adapting it to our model of winds at
maximum power. In this way, the family from Equation (45) to Equation (53) complements
the system to calculate climate change due to atmospheric conditions and the increase in
greenhouse gases by anthropogenic conditions.

From Table 1, an increase in the average temperature of the Earth’s surface can be seen
from 1975 to 2015, both in the observational (experimental) model and the theoretical model
developed in our work. The rise in temperature in both cases is related to the increase in
greenhouse gases in the atmosphere.

In Figure 2, we can appreciate the differences between the points obtained experimen-
tally (observation and measures in the laboratory) and the modeling proposed in our work.
Suppose we observe Figure 3 and correlation analysis; in that case, the experimental points
in blue show a high linear tendency, so linear or ridge regression is an excellent technique
for correctly predicting temperature increases.

On the other hand, the points of our previously mentioned modeling of the GZM
would seem to show the same linear trend, so in Table 2, two comparisons were made,
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taking into account a linear regression with Ts LR and an analysis obtained directly from
our modeling with Ts GZM. As a result, we obtained a difference between the analysis
with LR and GZM. This is explained considering that the temperature observations only
recorded points in our vector. In contrast, the modeling records these points, and the
physical information of the atmosphere is saved, as well as the thermodynamic variables of
the system, which gives us results of the mean temperature increase with more value than
those obtained by an analysis of experimental points.

Moreover, Figure 4 shows a plot of the predictions made from the experimental
data Tobs and the modeling of the GZM system. It is important to note that in future
scenarios with forecasting by GZM, the average temperature is higher than that obtained
by the data of the evolution of the observed temperatures Tobs from various machine
learning techniques. Nevertheless, the rate of temperature increase is in the range per
decade, according to [29]. The plot shows that the temperature evolution in the case of
the construction of an ANN, LR, and RR grows in a widespread gradual way compared
with our proposed model. The GZM model saves the atmosphere’s physical characteristics,
such as entropic relationships, radiation conditions, and irradiance. It helps to present
more realistic behavior in the data, unlike the other forecasting, which only shows us a
regression of the linear type without considering the evolution of the physical parameters
caused by the alterations in the Earth’s atmosphere.

The most significant challenge for developing a sun model is establishing a critical
finite-time thermodynamics condition. Developing objective functions that characterize the
“optimal” modes of operation is not a trivial task. However, there are no established criteria
to set the objective functions, so the objective of the modeling itself is the one that affects
the construction of the “heat engine”, in addition to affecting its behavior in the energy
converter and its performance [68].

Solar energy converters under the branch of FTT have been developed to create
models with better coupled experimental and theoretical results. These energy converters
are focused on entropy minimization and output power maximization, among others.
According to De Vos [28], the Curzon and Ahlborn engine is valid when the heat transfer is
linear or Newtonian, so another challenge related to these modeling types is to work the
heat transfer linearly.

8. Conclusions and Future Work

In this article, we proposed a new finite-time thermodynamics approach to predict
changes in surface temperature in the lowest layer of the atmosphere that corresponds to
the average temperature. The proposed approach considers the evolution in albedo and
greenhouse gases, the change in luminosity per year, and the system’s dissipation in the
regime of maximum-power conditions. Our model achieves predictions in the range of
future projections, obtaining better results than the machine learning techniques used in
the experiments. Another area for improvement is that it performs a simple climate model,
avoiding the complexity of modeling the climate as a chaotic system. The current modeling
is a modification of previous models of the GZ type that, in addition to obtaining realistic
values of the extreme temperatures of the system, also allows us to carry out the evolution
of temperatures according to the modifications of the physical processes of the planet in a
rate of change of time.

Thus, an increase in temperature is linked to physical conditions such as irradiance
and radiation. Moreover, a comparison with different machine learning techniques showed
a rise in temperature in all these methods. It is crucial to notice that machine learning
algorithms do not preserve atmospheric information in the period studied. Therefore,
the forecasting could present a bias in the prediction because these are trained only with
experimental data without considering the variables that generate climate change. The com-
parison gives robustness to the model when comparing the experimental data with the
theoretical ones. As mentioned previously, due to the high degrees of freedom of the
climate model, interdisciplinary works are necessary to face new challenges in climate
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warming. All the techniques and our modeling demonstrated an increase in temperature.
We can conclude the success of our model by comparing it with our experimental data.
In addition, according to Houghton [29], the projections of global average temperature
changes are in the range of 0.15 °C–0.6 °C per decade, which is in the threshold of the
obtained values.

In the present work, the endoreversible engines of FTT deal with the problem of the
radiative thermal balance between planets, generating a Sun–Earth–wind system through
an atmospheric heat engine that allows for the optimization of the extreme values of
the model to find the maximum output power and entropy minimization, among others.
Thus, these values allow us to work under different thermal regimes of the FTT, namely
the maximum power regime (MPR), maximum ecological regime (MER), and maximum
efficiency power (MEPR). This model was created under the MER regime. According
to several authors, to fully model, it is necessary to generalize various cases and verify
experimental data due to climate variability as a subject of study. Therefore, an extension
of our research work would be to analyze the other thermodynamic regimes. We have to
propose several cases of increases in greenhouse gases and the albedo effect, compare them
with the experimental data, and complement them with deep learning techniques. All
theoretical predictions will always be compared against experimental data to face climate
change in the best way.

On the other hand, it is necessary to conduct studies concerning the atmosphere and
consider a wind engine the most common control in obtaining the maximum power as it
works, collecting data from these experiments and generating machine learning models
to characterize the phenomenon. In this paper, studying other regimes will allow us to
analyze the whole spectrum of our modeling (wind engine) and thus observe all cases of
global warming.
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