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Abstract: The use of Transformer-based pre-trained language models has become prevalent in
enhancing the performance of task-oriented dialogue systems. These models, which are pre-trained
on large text data to grasp the language syntax and semantics, fine-tune the entire parameter set
according to a specific task. However, as the scale of the pre-trained language model increases, several
challenges arise during the fine-tuning process. For example, the training time escalates as the model
scale grows, since the complete parameter set needs to be trained. Furthermore, additional storage
space is required to accommodate the larger model size. To address these challenges, we propose a
new new task-oriented dialogue system called PEFTTOD. Our proposal leverages a method called
the Parameter-Efficient Fine-Tuning method (PEFT), which incorporates an Adapter Layer and prefix
tuning into the pre-trained language model. It significantly reduces the overall parameter count used
during training and efficiently transfers the dialogue knowledge. We evaluated the performance
of PEFTTOD on the Multi-WOZ 2.0 dataset, a benchmark dataset commonly used in task-oriented
dialogue systems. Compared to the traditional method, PEFTTOD utilizes only about 4% of the
parameters for training, resulting in a 4% improvement in the combined score compared to the
existing T5-based baseline. Moreover, PEFTTOD achieved an efficiency gain by reducing the training
time by 20% and saving up to 95% of the required storage space.

Keywords: natural language processing; task-oriented dialogue system; PEFT; fine-tuning; training
efficiency

MSC: 68T50

1. Introduction

In task-oriented dialogue systems, the primary objective is to enable user–system
communication to accomplish specific tasks, such as a restaurant search, hotel reservation,
or schedule management. These systems generally focus on understanding the user input,
tracking dialogue states, and generating appropriate responses.

The conventional task-oriented dialogue system follows a pipelined structure, con-
sisting of several interconnected modules: the Natural Language Understanding (NLU)
module, the Dialogue State Tracking (DST) module, the Dialogue Policy Learning (POL)
module, and the Natural-Language-Generation (NLG) module, as shown in Figure 1 [1].
First, the NLU module is responsible for extracting semantic information from user inputs.
The DST module utilizes the previous conversation history to update the belief state at
the time of the current utterance. The belief state is a structured expression method that
represents the user’s conversational goals and information gathered thus far. The system
then searches the database for relevant information based on the belief state. The POL
module determines the system action based on the knowledge retrieved from the database
and the current belief state. Finally, the NLG module generates a system response based on
the decision made by the POL module. In general, this pipelined architecture facilitates the
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flow of information in a task-oriented dialogue system, enabling efficient understanding
of the user input, tracking dialogue states, determining system actions, and generating
appropriate responses.

Figure 1. Conventional structure of the task-oriented dialogue system.

The conventional pipelined structure of task-oriented dialogue systems, however,
suffers from error propagation between independent modules and limited adaptability to
new domains. To address these problems, recent studies have proposed structures that
integrate independent modules using pre-trained language models [2–4].

Recent language models have widely adopted the Transformer-based model [5] and
have shown a dramatic increase in performance, in tasks such as object name recognition,
natural language inference, and machine translation. Theses language models generally
employ transfer learning [6], where knowledge is first learned from a source domain and
then transferred to the target domain. The Transformer-based language model consists of a
pre-training step, which first learns the syntax and semantics of the language from large
text data, and a fine-tuning step, which adjusts the model’s parameters for downstream
tasks. Therefore, pre-trained language models that capture the syntax and semantics of
a language render better performance compared to learning data from scratch. During
fine-tuning, the entire parameter set of the pre-trained language model is adjusted to fit the
downstream task.

A recent study [7] showed that larger pre-trained language models, with more param-
eters, tend to achieve better performance in downstream tasks. This trend also applies to
task-oriented dialogue systems, where the parameter count of the pre-trained language
models has reached tens of billions. However, fine-tuning such large-scale models poses
challenges. First, the training time increases as the number of parameters grows since the
entire parameter set is updated during fine-tuning. Second, fine-tuning a large-scale pre-
trained language model requires significant storage space due to the increased model size.

In this paper, we propose PEFTTOD (the name PEFTTOD comes from integrating the
PEFT method into TOD systems), a novel structure for solving task-oriented dialogue (TOD)
systems using a large-scale pre-trained language model. PEFTTOD efficiently utilizes the
parameters by employing the Adapter Layer [8] and prefix tuning [9] techniques from the
Parameter-Efficient Fine-Tuning (PEFT) method [10]. The PEFT method incorporates a
trainable layer into the pre-trained language model while freezing the parameters of the
existing model and learning only the newly added layer. The PEFT method offers several
advantages. First, although the PEFT method is trained with a much smaller parameter
count than the pre-trained language model, it achieves performance comparable to fine-
tuning. Second, by freezing the weight of the pre-trained language model and training only
the added trainable layers, the original state of the pre-trained model is preserved. Third,
whereas fine-tuning requires saving the entire model, the PEFT method only necessitates
saving the parameters of the trainable layer, resulting in significantly reduced storage space.
Lastly, since the parameters of the pre-trained language model remain frozen, the weight
update process of the frozen layers is skipped, leading to faster training speeds.

PEFTTOD utilizes PPTOD [2] as its pre-trained language model, which integrates an
extensive knowledge conversational domain based on T5 [11] and combines it with the
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PEFT method [10]. The performance of PEFTTOD was evaluated using the Multi-WOZ
2.0 benchmark dataset [12]. Compared to the conventional fine-tuning method, PEFTTOD
uses only 4% of the parameters of the existing model during the training process. This
leads to improvement in training time by 20% and storage space savings by up to 95%.
Moreover, PEFTTOD demonstrated 4% improvement in the combined score compared to
the baseline, despite using only 4% from the parameters of the previous model.

The main contribution of this paper is three-fold. Firstly, existing pre-trained language
models typically employ billions of parameters, which leads to longer training times, as
well as significant storage space due to the larger model size. In our proposed approach,
PEFTTOD, we adopted the Adapter Layer and PEFT-based prefix tuning to decrease the
number of parameters. Secondly, PEFTTOD was trained with a substantially smaller
parameter count and, thus, requires less storage space. Consequently, as the parameters of
the pre-trained language model remain frozen, the training speed is accelerated. Thirdly,
we conducted extensive experiments using the Multi-WOZ 2.0 benchmark dataset to prove
our advantages.

The remainder of the paper is organized as follows. In Section 2, we provide an
overview of the related work. Section 3 presents the details and design of our proposed
approach, and Section 4 presents the evaluation results. Finally, we conclude our paper in
Section 5.

2. Related Work

This section describes technologies related to PEFTTOD: the pre-trained language
model, the task-oriented dialogue system, and various PEFT methods.

2.1. Pre-Trained Language Models

In the field of natural language processing, since the advent of Transformer technology,
the grammar and vocabulary of a language are first learned from a large corpus in order to
apply transfer learning. This method of fine-tuning the pre-trained language model shows
good performance in all tasks of natural language processing. Transformer’s encoder-
based models (BERT [13], RoBERTa [14], DeBERTa [15]) perform fine-tuning for natural-
language-understanding tasks and show high performance. The parameters of the model
are increased in the order of BERT (110 M)-RoBERTa (125 M)-DeBERTa (1.5 B). Transformer’s
decoder-based models (GPT-1 [16], GPT-2 [17], GPT-3 [7], LaMDA [18], OPT [19]) are
fine-tuned for natural language generation and show high performance. The number
of parameters for GPT-1 (117 M)-GPT-2 (1.5 B)-GPT-3 (175 B) are increasing, and the
recently published LaMDA (137 B) and OPT (175 B) also have a very large number of
parameters. Transformer’s encoder–decoder-based models (BART [20], T5 [11]) are used
after fine-tuning for the translation and summary tasks, which require natural language
understanding and natural language generation. BART (400 M) and T5 (11 B) also have the
problem of increasing parameters.

2.2. Task-Oriented Dialogue System

In the task-oriented dialogue system, the structure typically consists of three main
components: Dialogue State Tracking (DST), Dialogue Policy Learning (POL), and Nat-
ural Language Generation (NLG). These components work together to understand user
utterances, determine the dialogue objectives, and generate appropriate responses [1].

Before the emergence of pre-trained language models, several approaches were used
in task-oriented dialogue systems. Some of these approaches include the following. First,
the LSTM+CNN structure [21] combines Long Short-Term Memory (LSTM) networks
with Convolutional Neural Networks (CNNs) for dialogue understanding. Second, the
Sequence-to-Sequence (Seq2Seq) model [22–24] is used for generating responses in dia-
logue systems. Sequicity [22] is an example of Seq2Seq-based models applied to dialogue
systems; DAMD [23] extended a single-domain dialogue system to multiple domains;
LABES-S2S [24] attempted semi-supervised learning. Third, several studies have explored
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the application of reinforcement learning in dialogue systems, including models such as
JOUST [25], LAVA [26], DORA [27], SUMBT+LaRL [28], and CASPI [29]. With the advent
of pre-trained language models, models such as DoTS [30] used Bidirectional Encoder
Representations from Transformers (BERT) and Gated Recurrent Unit (GRU) for dialogue
state tracking. Regarding the decoder structure, some models introduced specific methods.
SimpleTOD [31] used special tokens and delexicalization [21] for domain adaptation, while
SOLOIST [32] employed contrastive learning [33] and negative data samples. UBAR [34]
uses the entire conversation history to generate an answer, as opposed to the traditional
single-answer methods. The combination of encoder and decoder structure has also been
explored. Models such as MinTL [3], PPTOD [2], and MTTOD [4] use pre-trained mod-
els such as BART and T5. In MTTOD, span prediction was applied as an auxiliary loss.
GALAXY [35] used UNILM and unified reconciliation for multiple datasets as ISO norms.

2.3. Parameter-Efficient Fine-Tuning Method

Transformer-based pre-trained language models have become the foundation for
natural language processing by learning the syntax and semantics in advance. It has
become a common approach to fine-tune the entire model for transfer learning. However,
recent studies have proposed more-efficient methods for utilizing pre-trained models:
learning without adding parameters or learning by adding more parameters.

2.3.1. PEFT Method without Adding Parameters

One approach is to fine-tune only the top layer or prediction head of the pre-trained
language model while keeping the remaining layers frozen. This partial fine-tuning method,
as described by Lee et al. (2019) [36], achieves lower performance compared to fine-tuning
all parameters. Another method called BitFit [37] trains only the bias term of the pre-
trained language model, which has shown on-par performance with fine-tuning on certain
resource-constrained tasks.

2.3.2. PEFT Method with Added Parameters

The PEFT method involves adding learnable parameters inside the pre-trained lan-
guage model. During the learning process, the parameters of the pre-trained language
model are frozen, and only the added parameters are trained. This method achieves
performance similar to conventional fine-tuning.

Adapters have been introduced as an efficient way to incorporate additional param-
eters into pre-trained language models. Houlsby Adapter [8] was the pioneering work
to apply the Adapter concept, featuring a bottleneck structure that can be added to the
pre-trained model. It adds two Adapter Layers within one layer of the Transformer, one
after the Attention Layer and another after the Feed-Forward layer.

AdapterFusion [38] proposed a structure called Pfeiffer Adapters and using the
Adapters in parallel before merging. It adds an Adapter in one layer of the Transformer
after the last Feed-Forward Network after the Add and Norm. Zhu et al. [39] proposed
a parallel Adapter structure that uses the value before passing the input to the Attention
Layer as the input in the existing Adapter structure.

Additionally, studies have explored Adapters for specific purposes. In the work
in [40], a domain Adapter for domain adaptation in machine translation was proposed.
MAD-X [41] proposed a language Adapter, a task Adapter, and an invertible Adapter,
which are effective for learning the multilingual language models. LoRA [42] proposed a
method to decompose the attention weight update process during fine-tuning in the pre-
trained language model and applying it to the Adapter. He et al. [43] experimented with
multiple adaptors on various downstream tasks to propose an effective Adapter structure.
UniPELT [44] proposed an integration framework that integrates the PELT method into
submodules and enables utilizing the best method for the current data or task setup through
a gating mechanism.
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Prefix tuning [9], inspired by the prompt methodology, aims to improve the per-
formance of pre-trained language models. It involves modifying the input data format
according to the learning method of the pre-trained language model. Prefix tuning adds a
prefix vector, which can be trained within the pre-trained language model, allowing the
treatment of prompts as if they were combined with a virtual token created by the learnable
prefix vector, without directly modifying the input data.

3. Design

This paper proposes PEFTTOD, a Transformer-based task-oriented dialogue system
that leverages a parameter-efficient language-model-tuning method. This system combines
a Transformer-based language model with an efficient learning structure for conversational
knowledge. PEFTTOD’s pre-trained language model uses PPTOD [2], which is trained on a
large amount of conversational domain knowledge, based on T5 [11]. In PPTOD, a prompt
corresponding to the downstream task of the task-oriented dialogue system is combined
with the input data. For example, prompts such as “translate dialogue to belief state:”,
“translate dialogue to dialogue action:”, and “translate dialogue to system response:” are
used. However, a prompt attached to the data may not be optimized for the model’s
performance [9]. To address this issue, the proposed PEFTTOD system incorporates a
structure that enables the model to learn the prompt directly through prefix tuning.

3.1. End-to-End Dialogue Modeling

PEFTTOD incorporates a structured framework that effectively learns conversational
knowledge by leveraging PPTOD [2], a T5-based language model trained on a substantial
amount of information specific to the conversational domain.

The system architecture of PEFTTOD is based on a sequence-to-sequence architecture
model, as shown in Figure 2. At each dialog turn, the encoder takes input consisting of the
dialogue history and the user’s utterance. On the basis of the encoded conversation infor-
mation, the decoder generates a belief state, which represents the system’s understanding
of the user’s intentions and requirements.

Figure 2. Structure of PEFTTOD.
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The generated belief state is used for database search, enabling the system to obtain
the corresponding DB state from the database. Additionally, based on the encoded dialog
information and DB state, the decoder generates a system action and a system response.
The system action determines the decision or action the dialogue system should take, while
the system response represents the system’s generated reply to the user.

PEFTTOD was trained on the Multi-WOZ 2.0 dataset, specifically on the task of the
end-to-end dialogue modeling [45]. The proposed system was trained using the maximum
likelihood method, a common approach in machine learning, which aims to optimize the
model’s parameters by maximizing the likelihood of generating the correct outputs given
the inputs.

Say that D = (x, y) (here, D is the data and x = {Ht, Ut}, {Ht, Ut, DBt}, y = Bt, At, Rt),
then the loss (L) becomes:

L = −logP(yt|xt) (1)

3.2. The Proposed Model

Figure 3 shows the encoder and decoder parts of Figure 2 in detail. PEFTTOD incorpo-
rates a PEFT method within a pre-trained language model. The left part of Figure 3 shows
the structure of the existing system, while the right part represents the structure of PEFT-
TOD. PEFTTOD effectively compresses the hidden state information as it passes through
the Attention Layer and Feed-Forward Layer and then transfers it to the subsequent layers.
It then adds an Adapter, i.e., a trainable bottleneck layer, to each layer. In addition, within
the attention mechanism, prefix tuning is performed to learn PK and PV . This allows the
model to directly learn the prompt information within the language model itself, making
the structure task-independent. Unlike the existing system, which combines prompts with
input data on a task-specific basis, PEFTTOD learns and utilizes prompt information within
the language model itself. In the following subsection, we describe the parallel Adapter
and prefix tuning in more detail.

Figure 3. Combining the Transformer structure and PEFT method.

Figure 4 shows the structure with the parallel Adapter [39] applied in PEFTTOD.
PEFTTOD is a Transformer-based architecture that incorporates two Adapter Layers within
a single layer and input value x, replacing the input of the hidden state. The value x
represents the value before passing through the Attention Layer.

h←Wup · f (Wdown · x) + h (2)
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In Equation (2), Wdown down-projects the incoming hidden state h, f is a non-linear
activation function, Wup up-projects the hidden state, and r is the residual network. Here,
Wdown ∈ RDhidden×Dbottle and Wup ∈ RDbottle×Dhidden , where Dhidden is the hidden size and
Dbottle is the bottleneck size. During training, the pre-trained language model combined
with these Adapters freezes the parameters corresponding to the pre-trained language
model, and only the Adapter is fine-tuned. Thus, the conversational knowledge can be
efficiently forwarded within the pre-trained language model.

Figure 4. Structure of the parallel Adapter.

Figure 5 illustrates the structure of prefix tuning [9] in PEFTTOD. We combined the key
(K) and value (V) of the Transformer’s multi-head attention block with the prefix vectors P′k
and P′v each of length l. P′k and P′v are defined as P′k, P′v ∈ Rl×hidden. However, if we use the
combined prefix vector as a direct parameter, then the performance will degrade. To solve
this problem, we stabilized P by reparameterizing P′ through a neural network identical to
the structure of the Adapter, as shown in Equation (3) [46].

P = Wup · f (Wdown · P′) (3)

where Wdown ∈ RDhidden×Dbottle , Wup ∈ RDbottle×Dhidden , f denotes the non-linear activation
function, Dhidden is the hidden size, and Dbottle is the bottleneck size. This neural network
only maintains the matrix corresponding to the reparameterized P and can be removed
after training. In the training step, the query of the Transformer’s attention block is defined
as Q ∈ RM×hidden, the key is K ∈ RM×hidden, and the value is V ∈ RM×hidden. Here, M
is the max sequence length. During training, as shown in Equation (4), we concatenate
the prefix vectors P′k and P′v in K and V, respectively, where Pk + K ∈ R(l+M)×hidden and
Pv + VR(l+M)×hidden.

headi = Attention(QWi
q, concat(Pi

k, KWi
k), concat(Pi

v, VWi
v)) (4)

In PEFTTOD, the prefix tuning is trained by inserting a prefix vector into the attention
mechanism of the pre-trained language model. This differs from the existing model where
the prompt is combined with the input data in an arbitrary manner [2]. In contrast, the
prefix vectors Pk and Pv inserted inside the model allow for the learning of the prompt that
is optimized specifically for the entire conversation system.
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Figure 5. Structure of prefix tuning. (The parameters of the layer inside the dotted-line box can be
removed after reparametrization).

3.3. Domain Adaptation

The proposed system uses two methods for domain adaptation. The first way is to use
a special token. Special tokens are specifically designed to identify different components of
the inputs corresponding to different subtasks. As demonstrated by SimpleTOD [31], the
absence of special tokens can lead to the generation of much longer belief states, system
actions, and system responses. Therefore, it is important to clearly distinguish between the
user and the text of the system within the dialogue history of the system. To identify the
user’s utterance, the system’s utterance, the dialogue state (belief state), the DB state, and
the system action, the proposed system uses <sos_u>, <eos_u>, <sos_r>, <eos_r>, <sos_b>,
<eos_b>, <sos_db>, <eos_db>, and <sos_a>, <eos_a>, respectively.

The second method employs delexicalization. The delexicalization method is a prepro-
cessing method that groups specific slot values into categories [21]. For example, if there is
a slot called “Food” with various food options, the corresponding slots related to food are
pre-processed and categorized as “Food”. During the generation process, the actual values
are retrieved from the database and filled accordingly.

4. Evaluation

We evaluated the performance of PEFTTOD in the context of task-oriented dialogue
systems for end-to-end dialogue modeling [45]. The evaluation was conducted using the
benchmark dataset Multi-WOZ 2.0 [12]. The baseline model, PPTOD, which is described
as a language model based on T5 [11], was trained to acquire a significant amount of
knowledge about the conversation domain. We conducted a comparative experiment
according to the structure of the system combined with the PEFT method.

PPTOD uses a smaller model, and it was trained directly to replicate the same experi-
mental setup as the proposed system. In Tables 1–3, the baseline performance is indicated
as “Fine-tuning”, while the performance of direct training is indicated as “Fine-tuning (our
run)”. Additionally, “params” represents the trainable parameters of the language model
with the PEFT method applied.

4.1. Dataset and Evaluation Metrics

The experiments used the Multi-Woz 2.0 dataset, which is widely used as a benchmark
dataset for the task-oriented dialogue system. The dataset is a multi-domain dataset,
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which consists of 8438 conversations for seven domains: tourism, attractions, hospitals,
police stations, hotels, restaurants, taxis, and trains. The experiment focused on five of
these domains, excluding hospitals and police stations, due to the absence of dev and
test data for these domains. Note that a single conversation can involve conversations
from multiple domains and databases associated with the belief state are organized based
on their respective domains. Therefore, the database state uses the dialogue state (belief
state) generated through dialogue state tracking as a query to search from a predefined
database and obtain the search result. The proposed system first predicts the dialogue state
(belief state) through DST and searches the DB at the time of inference. Next, based on the
DB state and dialogue history obtained as a search result, the system action and system
response results are generated sequentially. To evaluate the performance of the model,
an end-to-end dialogue modeling evaluation was conducted, which measured the quality
of the generated belief state, system action, and system response when a user utterance
is input. The model’s evaluation metrics followed the automatic evaluation metrics [12].
The automatic evaluation metrics are widely used in dialogue system research utilizing
the MultiWOZ 2.0 dataset. Inform measures whether the system has provided the correct
entity, and success measures whether it has responded to all the requested information.
Additionally, BLEU [47] was used to assess the quality of the generated response. The
combined score was the performance evaluation index proposed in [48] and is shown as
Equation (5).

Combined Score = (In f orm + Success)× 0.5 + BLEU (5)

4.2. Adapter Types

This experiment evaluated the performance of the Adapters with different structures,
namely the Houlsby Adapter and Parallel Adapter. These Adapters were compared with
PPTOD, a model that was pre-trained on the conversation knowledge. The results are
presented in Table 1, indicating that the Parallel Adapter structure demonstrated the best
performance among the evaluated options. Therefore, the paper leveraged this parallel
Adapter structure for further experiments and analysis. Furthermore, we also explored
the usage of prefix tuning on the dialogue system. When only prefix tuning was used, it
resulted in a lack of communication knowledge within the language model. To address
this limitation, the experiments in Section 4.5 combined the use of prefix tuning with the
Adapter structure.

Table 1. Experimental results for Adapter types. In this and the following tables, the bold numbers
indicate the highest performance for each criteria.

Method Inform Success BLEU Comb. Params

Fine-tuning 87.8 75.3 19.89 101.44 100%
Fine-tuning (our run) 83.7 75.4 19.07 98.62 100%

Prefix tuning 58.5 42.7 12.28 62.88 0.30%
Houlsby Adapter 82.0 71.8 17.50 94.40 1.32%
Parallel Adapter 83.4 74.0 19.14 97.84 1.32%

4.3. Performance Comparison for the Number of Adapters

Generally, in a pre-trained language model, as more parameters are trained, the
performance tends to improve [7]. Therefore, this experiment investigated the impact of
increasing the number of Adapter Layers. Table 2 presents the results of this comparison
for both the Houlsby Adapter and the Parallel Adapter. The numbers in the parentheses
denote the number of Adapters connected in series. It was observed that, as the number
of Adapter Layers increased, the performance of both Adapter structures improved. This
suggested that incorporating more Adapter Layers enhanced the overall performance of
the model. Notably, even when the parameters corresponding to the pre-trained language
model were not trained, but the parameters related to the PEFT method increased, there
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was still a performance improvement. This indicated that the Adapter Layer played a
crucial role. However, note that, when the Adapter number reached seven, we observed a
performance degradation; thus, it is important to find the optimal number of Adapters to
achieve the best performance.

Table 2. Experimental results for the number of Adapters.

Method Inform Success BLEU Comb. Params

Fine-tuning 87.8 75.3 19.89 101.44 100%
Fine-tuning (our run) 83.7 75.4 19.07 98.62 100%

Houlsby Adapter 82.0 71.8 17.50 94.40 1.32%
Houlsby Adapter (3) 87.8 77.3 17.73 100.28 3.96%
Houlsby Adapter (5) 89.4 76.9 17.58 100.73 6.60%
Houlsby Adapter (7) 85.6 77.7 17.62 99.27 9.24%

Parallel Adapter 83.4 74.0 19.14 97.84 1.32%
Parallel Adapter (3) 87.4 76.1 17.58 99.33 3.96%
Parallel Adapter (5) 86.7 76.9 19.15 100.95 6.60%
Parallel Adapter (7) 87.0 75.4 19.61 100.81 9.24%

4.4. Prefix-Tuning Performance Comparison

In this experiment, we used the T5-based PPTOD-Small, which was trained to acquire
conversation knowledge, in order to evaluate the performance of prefix tuning. PPTOD [2]
is a trained model that incorporates a prompt with the input data. Therefore, for the
models that use prefix tuning, we excluded the combination of prompts with the input data
during training. Table 2 shows that the model with a combination of the Houlsby Adapters
and Parallel Adapters in series for three and five times, respectively, achieved the highest
performance. Hence, we incorporated prefix tuning into these Adapters in the experiments.
In Table 3, we observe that the model combining prefix tuning after connecting the Parallel
Adapter three times in series yielded the best performance. Consequently, we named this
proposed model PEFTTOD. The inclusion of prefix tuning in the model’s structure enhanced
the performance by allowing the model to learn information related to specialized prompts
within the conversation system, without explicitly combining prompts in the input data.

Table 3. Experimental results for prefix tuning.

Method Inform Success BLEU Comb. Params

Fine-tuning 87.8 75.3 19.89 101.44 100%
Fine-tuning (our run) 83.7 75.4 19.07 98.62 100%

Houlsby Adapter (3) 87.8 77.3 17.73 100.28 3.96%
Houlsby Adapter (3) + prefix tuning 84.5 74.1 18.38 97.68 4.27%
Houlsby Adapter (5) 89.4 76.9 17.58 100.73 6.60%
Houlsby Adapter (5) + prefix tuning 88.3 77.4 18.01 100.86 6.90%

Parallel Adapter (3) 87.4 76.1 17.58 99.33 3.96%
Parallel Adapter (3) + prefix tuning 88.3 78.4 19.38 102.73 4.27%
Parallel Adapter (5) 86.7 76.9 19.15 100.95 6.60%
Parallel Adapter (5) + prefix tuning 86.5 75.2 18.92 99.77 6.90%

4.5. Low-Resource Conditions

This experiment examined how effectively PEFTTOD can transfer conversational
knowledge under low-resource conditions. The MultiWOZ 2.0 dataset was used, with
training conducted using 1%, 5%, 10%, and 20% of the available training data. As presented
in the results in Table 4, when utilizing PEFTTOD with only 4.27% of the parameters
compared to the baseline, the performance decreased at low-resource levels of 1% and 5%,
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but improved at higher-resource levels of 10% and 20%. This indicated that, even when
PEFTTOD learns from a small number of parameters, if it exceeds the threshold of 10% on
MultiWOZ 2.0, the performance begins to show improvement.

Table 4. Experimental results for low-resource conditions. MultiWOZ 2.0 was tested on 1%, 5%, 10%,
and 20% of the training data (PEFTTOD is a proposed model that uses prefix tuning after connecting
a parallel Adapter three times in series).

Model Inform Success BLEU Comb.

1% of training data
Baseline 66.5 51.1 12.05 70.85
PEFTTOD 51.3 34.7 9.64 52.64

5% of training data
Baseline 80.0 63.1 14.82 86.37
PEFTTOD 76.6 54.3 17.03 82.48

10% of training data
Baseline 79.5 65.6 16.73 89.28
PEFTTOD 84.5 69.7 15.98 93.08

20% of training data
Baseline 85.4 69.0 15.77 92.97
PEFTTOD 82.9 70.9 17.17 94.07

4.6. Prefix Length

In this experiment, we investigated the optimal length of the learnable vectors Pk and
Pv, in the prefix tuning, as illustrated in Figure 5. We explored the range of lengths for Pk
and Pv from 3 to 15 to determine the optimal value. The results revealed that the optimal
prefix length for PEFTTOD was 10. The results indicated that the optimal prefix length for
PEFTTOD was 10. Therefore, finding the optimal prefix length was crucial to achieving the
best performance (Figure 6).

Figure 6. Experimental results for prefix length.

4.7. Efficiency

In order to evaluate the efficiency of PEFTTOD, we conducted experiments focusing
on the training time and storage space. PEFTTOD takes advantage of the PEFT method by
training only the Adapter Layers, without updating the baseline parameters. As a result,
the training process is faster compared to traditional methods. Additionally, since only
the parameters corresponding to the trained Adapter Layers are stored, significant storage
space is saved.
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The evaluation results in Table 5 show that PEFTTOD improved the training time
by over 20%, while utilizing only 4% of the parameters compared to the baseline model.
Additionally, it achieved a remarkable 96% savings in the storage space requirement. These
findings highlight the efficiency gains achieved by adopting PEFTTOD in task-oriented
dialogue systems.

Table 5. Experimental results for Efficiency (PEFTTOD uses prefix tuning after connecting a parallel
Adapter three times in series).

Model Training Time Storage Space Trainable Parameter

Baseline 1109 s (100%) 240 M (100%) 60.5 M (100%)

PEFTTOD 882 s (79.5%) 10 M (4.27%) 2.5 M (4.27%)

5. Conclusions and Future Work

This paper proposed a novel task-oriented dialogue system, called PEFTTOD, which
incorporates the parameter-efficient language-model-tuning method. PEFTTOD leverages
parallel Adapters and prefix tuning to efficiently train the conversation knowledge within
a task-oriented dialogue system. Through experiments, we obtained the optimal Adapter
structure and the number of stacks, and the effectiveness of combining the prefix tuning
was demonstrated. The evaluation results revealed an improvement in the combined score,
an evaluation metric of the Multi-Woz dataset, by 4% compared to the existing T5-based
baseline model. Furthermore, despite utilizing only around 4% of the parameters compared
to the baseline model, notable efficiency gains were achieved, including a 20% improvement
in training speed and an approximately 96% reduction in storage space requirements.

As future work, we intend to extend our proposal to the open-domain dialogue
systems rather than being limited to the task-oriented dialogue systems. Additionally, we
plan to explore Adapters suitable for the ever-increasing large-scale pre-trained languages,
in order to validate their effectiveness.
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