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Abstract: In public goods games, it is common for agents to learn strategies from those who possess
the highest utility. However, in reality, because of the lack of information, strategies and utilities
from others cannot be obtained or predicted during learning and updating. To address this issue, we
introduce a learning update mechanism based on aspirations. To make this model more universal,
we study goods that can be shared with k-hop neighbors. Additionally, when a free rider accesses an
investor, it is required to pay an access cost to him. We investigate the influence of aspiration, shared
scope k, and access cost on the social invest level and utility. It is shown that large shared scope k,
moderate aspiration, and moderate access cost are conducive to the maximum utilization of social
benefits. However, with low aspiration, the utilities of investors are very close and limited, while
both the high aspiration and high access cost could disrupt the social stability.

Keywords: public goods games; best-shot; aspiration; k-hop; access cost
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1. Introduction

With the rapid development of the economy, the demand of people for an improved
material standard of living is gradually increasing. However, this demand constantly
conflicts with limited social resources, such as urban traffic congestion [1] and the reduction
of public space [2]. In response, both corporations and governments have implemented
investment measures, such as constructing stadiums [3], where individuals who have
not made investments can directly benefit by making reservations. Consequently, self-
interested participants are motivated to benefit from the investments made by others in
order to fulfill their personal fitness needs. These conflicts of interest between individuals
and social investment can be modeled as the Public Goods Games (PGG) [4,5]. Field studies
as well as experiments attest to the fact that sustainable development and intact social
stability in this circumstance is a direction that deserves further exploration and to be
discussed [6].

In traditional Public Goods Games (PGG), agents make investment decisions for a
public good and distribute the resulting value of the collective efforts equally. As the
research in this field continues to expand, and as the number of players in the games
increases and the relationship among them becomes complex, conventional PGG cannot
meet the simulation requirement, such as the complex relationships in reality. To meet this
requirement, multitude of variants and expansions of PGG have been proposed, including
Spatial Public Goods Games (SPGG) [7], Network Public Goods Games (NPGG) [8], and
Binary Networked Public Goods Games (BNPGG) [9]. Next, to further study the socially
efficient amount of these games, Hirshleifer [10] proposed that social composition functions
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observed in practice may well involve standards of all three rules, i.e., Summation, Weakest-
Link, and Best-shot. Compared to other games and rules, Best-shot BNPGG has the
advantage of high utility potential and encouraging participants to compete. Additionally,
Best-shot BNPGG presents a more challenging cooperation scenario. This is because in this
game, if just one person invests in the entire group, others can take free rides and reap the
same benefits. Consequently, it is difficult to achieve a high social payoff that encompasses
the aggregate payoffs of all agents. Thus, the exploration of methods to enhance the social
payoff in Best-shot PGG has attracted considerable interest among researchers.

In many years of research on Best-shot BNPGG, numerous researchers have focused
on Nash equilibrium and dynamic evolution. One of the surprising discoveries was the
diversity of Nash equilibrium solutions in Best-shot BNPGG. Chowdhury et al. [11,12] iden-
tified multiple equilibria and asymmetric equilibria in a group contest. Boncinelli et al. [13]
then expanded multiple equilibria by incorporating stochastic stability into it. Among
these diverse solutions, some scholars sought the pure strategy equilibrium (PNE) case,
which yields the highest return. Komarovsky et al. [14] utilized the potential function to
demonstrate that the PNE of the Best-shot NPGG model is Pareto efficient. They proposed
side payment as a means to obtain the optimal result with the greatest social benefits.
Levit et al. [15] conducted an initial analysis of the balance between effective PNE and
stable PNE in homogeneous scenarios, which was subsequently extended to heteroge-
neous scenarios by Yu et al. [16]. In the aforementioned studies, Nash equilibrium was
considered a consequence of static stability requiring complete information, while achiev-
ing dynamic stability during dynamic evolution represented another intriguing research
area. Roth et al. [17] observed that both prediction behavior and observation behavior
rapidly approach perfect equilibrium in Best-shot models by using simple dynamic models.
Building upon this, Duffy et al. [18] incorporated the influence of information on learning
balancing strategies. In addition to simple dynamic models, evolutionary game models
are also utilized to dynamically update strategies in networks. Moreover, Wang et al. [19]
explored the dynamic changes of social income and average social investment under var-
ious network topologies using evolutionary game theory. Liu et al. [20] demonstrated
in evolutionary dynamics that a pure exclusion strategy can induce cooperation among
the three rules, Summation, Weakest-Link, and Best-shot. Besides, Cressman et al. [21]
utilized evolutionary dynamics to predict the multiple possibilities of rational behavior
under specific incentive schemes. Although dynamic gaming is extensively employed in
NPGG research, it is rarely applied in the context of best-shot BNPGG.

In the aforementioned studies on the previous Best-shot BNPGG, both Nash equi-
librium analysis and dynamic evolution require obtaining the information for strategy
updates. In the case of Nash equilibria, each decision maker most likely needs to have
access to global information [12–15], as each decision maker’s strategy is interdependent.
In the case of dynamic evolution, knowing neighbor information is necessary for policy
updates. An agent may randomly select a neighbor to gather the information that could
potentially aid their learning process, or he may deliberately choose neighbors who have
achieved the highest utilities [19,22,23]. However, it is not easy to get information in real-
ity. What is more, individuals make subjective decisions regarding whether they want to
disclose personal information for themselves. They may choose to withhold information
deliberately for competitive purposes [24] or to safeguard their privacy [25]. Unobtainable
information in Best-shot BNPGG remains a necessity to be studied. As a result, in this
paper, we introduce an aspiration-based learning mechanism in Best-shot BNPGG when
information is unobtainable. In our mechanism, whether agents update their strategies
depends on the difference between their own utilities and aspirations. When the utility
cannot meet their aspiration, they choose to learn and update towards strategies opposite
their current ones with high possibilities. To make our model more universal, we consider
goods that can be shared with k-hop neighbors. Additionally, free riders are required to pay
access costs to the corresponding investors. Thus, the three key variables in our experiment
are aspiration, k-hop, and access costs.
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The rest of this article is structured as follows: Section 2 outlines our proposed model
according to an aspiration-based learning mechanism. In Section 3, we present the results
of our experiment of aspiration, k-hop, and access costs. In Section 4, we provide analyses
respectively of the findings. Finally, Section 5 offers a summary of the conclusions drawn
from our study, as well as a discussion of the content of future research.

2. Model

This paper investigates the Best-shot BNPGG model with access costs within the
shared scope. The incorporation of access costs in our research stems from its alignment
with real-life scenarios, where sharing items often entails a fee [26]. A notable example is the
rental fee required for accessing shared bicycles. Furthermore, the shared scope, denoted
as k [27], defines the range of agents within k hops from an owner. The value of k is directly
linked to the network structure under analysis. When seeking to borrow an item, the search
for potential lenders extends beyond the immediate neighbors, encompassing individuals
who are not in close proximity [28]. For instance, a college may borrow advanced equipment
from a distant school when its neighboring institution lacks such resources.

This section provides detailed explanations of key concepts, such as strategy, utility,
cluster, updating mechanism, and simulation process.

2.1. Strategy

The game involves n agents playing on an undirected graph G = (V, E), where
V = {1, 2, . . . , n} represents the agents set. Each agent i in the set possesses a strategy
defined by (xi, hi). Here, xi represents the agent’s strategy: xi = 1 indicates investment,
and xi = 0 indicates free riding. Additionally, hi represents the agent chosen by agent i for
access, where hi = i when xi = 1, and hi = j when xi = 0 (i 6= j). Agent j is supposed to be
within the shared scope k of agent i.

2.2. Utility

An agent’s utility is impacted mainly by its own strategy and its access agent. The
selection of different strategies for an agent implies varying utilities. Accordingly, their
utilities are discussed in the following three situations:

1. If agent i chooses to invest (xi = 1), it incurs an investment cost of c, but also receives
benefits b from public goods and access costs r from agents who choose to access agent
i within shared scope k. Generally, the investment cost c should be lower than benefits
b [27,29,30]. Additionally, the investment cost c is supposed to be higher than access
cost r [31], that is r ∈ (0, c). Thus, the utility of agent i is:

u(xi) = b + mi × r− c (1)

where mi is the number of agents that choose to access i.
2. If agent i decides to take a free ride(xi = 0) and accesses another agent hi who chooses

to invest (xhi
= 1), then agent i must pay an access cost r to agent hi. Then he can

enjoy the benefits b of the public goods. The utility of agent i is given by the following
expression:

u(xi) = b− r (2)

3. If agent i decides to take a free ride (xi = 0) and accesses another agent hi who is also
a free rider (xhi

= 0), then agent i gains no utility from the public goods. The utility of
agent i is given by the following expression:

u(xi) = 0 (3)
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Therefore, the utility of i can be concluded as:

u(xi, hi) =


b + mi × r− c , i f xi = 1 and hi = i
b− r , i f xi = 0 and xhi

= 1
0 , i f xi = 0 and xhi

= 0
(4)

2.3. Cluster

In our paper, we refer to the investors who are accessed by free riders as central
investors. We take this central investor as the center of a cluster. One cluster includes one
central investor and other agents successfully access the same central investor (as illustrated
in Figure 1). The utility of agents in the cluster can be concluded as follows:{

u(xIi , hIi ) = b− c + (|AIi | − 1)× r , i f xIi = 1 and hIi = Ii
u(xAIi

−Ii , hAIi
−Ii ) = b− r , i f xAIi

−Ii = 0 and hAIi
−Ii = Ii

(5)

where Ii represents all central investors in the network. AIi represents each accessed
investment cluster, with cluster investment center Ii and other successful free riders. |AIi |
is the number of agents accessing the cluster (including the central investor).

Figure 1. The figure illustrates four green agents, denoted as I1, I2, I3, and I4, which correspond to
central investors. Each agent Ii is the center of a cluster with the same background color, denoted as
AIi . The four clusters have different k-hop scopes. The distance between each agent within a cluster
and its respective central investor is indicated below the agent number.

2.4. Updating Mechanism

We use the method of evolutionary games based on aspirations to update the agents’
strategies. Because players may engage in hidden or concealed actions, deliberately choos-
ing not to disclose their strategies or behavioral intentions to gain individual advantages,
individual agents are unaware of the current strategies of others [24,25]. During the learn-
ing update process, each agent compares its own utility with its aspiration and calculates
the probability P [32–34] using Equation (6).

P(xi(t)← xi′(t)) =
1

1 + e−K(a−ui)
(6)

where the aspiration level a provides an overall benchmark to evaluate how ‘greedy’ an
agent can be; xi(t) is the current strategy of agent i; xi′(t) represents the strategy that is
the opposite of the current strategy; ui is the current utility of agent i; K (K > 0) denotes
selection intensity in the strategy imitation. In our research, we set K to 1 [19,35,36], which
implies that individuals with higher utilities are more inclined to be imitated, while still
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providing the opportunity for learning from individuals with lower utilities. In particular,
a higher value of a indicates that individuals aspire to a higher utility.

Subsequently, a random number p between 0 and 1 is generated. If the calculated
probability P exceeds the generated random number p, the agent adjusts its current strategy.
For instance, if the agent is previously categorized as a free rider, his strategy shifts to
investment. Conversely, if he is categorized as an investment agent before, his strategy
turns to free riding, accessing any agent randomly within the k scope range.

2.5. Simulation Process

In this paper, we use the Monte Carlo (MC) method to simulate the process. The
pseudo-code is shown in Algorithm 1.

Algorithm 1: Algorithm of model
Input: undirected graph G = (V, E); Monte Carlo time steps T
Output: network after evolution, utilities of all agents

1: for all agents i ∈ V do
2: Random initialization strategy xi ∈ {0, 1}
3: if xi = 0 then
4: Access to another agent j within shared scope k randomly;
5: end if
6: end for
7: for all agents i ∈ V do
8: Calculate utility according to Equation (4);
9: end for

10: for t ∈ (0, T) do
11: for n ∈ [0, |V|) do
12: Select agent i randomly, select a number p greater than 0 but less than 1 randomly;
13: Calculate the possibility P that agent i changes strategy according to Equation (6);
14: if p < P then
15: if the strategy of agent i is investment then
16: agent i changes to take a free ride;
17: agent i access agent j randomly within k scope;
18: else if the strategy of agent i is non-investment then
19: agent i changes to invest;
20: agent i access himself;
21: end if
22: end if
23: end for
24: for all agents i ∈ V do
25: Calculate utility according to Equation (4);
26: end for
27: end for
28: return Outputs

At initialization (line 1 to line 9), each agent is given a random investment strategy
(investment, non-investment), and an investor is randomly selected for the non-investment
agent. The utilities of all agents are updated after their strategy is settled down. The
MC iteration then starts (line 10 to line 27). In each MC time step, all agents are selected
once on average, namely |V| times in total. One agent i is randomly selected each time,
and agent j is randomly selected from the shared scope of agent i. During the learning
update process, each agent compares its own utility with its aspiration and calculates the
probability P using Equation (6). If the agent i is categorized as an investment agent before,
his strategy turns to free riding, accessing any agent j within k scope range. Conversely, if
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he is previously categorized as a free rider, his strategy shifts to investment. Additionally,
he accesses himself. After making |V| selections, their benefits are updated according to
the strategies of all agents.

3. Experiments And Results

This paper presents results from 10,000 Monte Carlo simulations conducted in a lattice
network with a finite boundary of L = 50. The benefits of public goods b are initially
set to 2, and the investment cost c is set to 1. The degree k, as shown in Equation (5),
plays a crucial role in the agents’ utilities, particularly for the central investors. Therefore,
we perform experiments on a lattice network of different degrees ranging from 1 to 4.
Additionally, according to Equation (5), the access cost r significantly affects the utilities of
all players. Hence, we set r from 0 to c. Moreover, the aspiration level, denoted by a, affects
the possibility of an agent switching its strategy in Equation (5). When a exceeds b− c (the
lowest possible utility of an investment agent), it drives the whole network toward high
utility. Therefore, we set the aspiration a > b− c—but not too high. In the end, we use
social invest level lsi = ∑i∈V

xi
|V| as the evaluating indicator to represent the outcome of our

model, where xi and |V| have been defined in the previous section.
To study the impact of k, a, and r on the social invest level, we present Figure 2 and

observe the three following main phenomena:

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 2. Each figure shows the social invest level of different k-hop with (a–d) corresponding to
k = 1, k = 2, k = 3, and k = 4, respectively. a is the aspiration and r means the access cost. The darker
blue color represents a higher social invest level while the lighter yellow color represents a lower
social invest level. We take the average social invest rate from 9000 to 10,000 MC time steps as the
final social invest level.
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• Phenomenon I: As k increases, the color in each subgraph (Figure 2a–d) is lighter (the
yellow and white areas in the center grow larger). It indicates that with fixed a and r,
as k increases, the social invest level decreases.

• Phenomenon II: In each subgraph, with fixed r, as a ascends, the color also becomes
lighter and then darker. It indicates that with fixed r and k, as a increases, the social
invest level goes down and then up.

• Phenomenon III: In each subgraph, with fixed a, as r ascends, the color becomes lighter
and then darker. It indicates that with fixed a and k, as r increases, the social invest
level goes down and then up.

Next, we will further analyze the causes of the above three phenomena.

4. Analysis
4.1. Analysis of Phenomenon I

In this section, we examine how the degree k impacts the level of social investment, as
well as the relationship between k and a process that we define as Association.

4.1.1. The Impact of K on Social Invest Level

To investigate the effect of k on social resource utilization efficiency precisely, we plot
the variations in the social investment level over MC time steps (t ∈ (0, 1000)) for different
k in Figure 3. It is discernible from the graph that when t increases, the social investment
rate decreases at first and then stabilizes at a relatively low level for all k values. Most
notably, as k rises, the reduction of the social invest level becomes steeper. As the utility of
agents has an impact on the change in the invest level, we aim to investigate the utility of
agents in the network across various k values.

A heat map displaying the utilities of all agents does not clearly reveal the strategic
relationships between them. Thus, we focus on clusters as the unit of analysis, with the
utilities of the central investors serving as a proxy for the cluster’s utility. This allows us
to compare yields across clusters and observe strategy relationships within each cluster.
Based on that, we create lattice network snapshots (Figure 4) for various k values at time
step (t = 1000) when the investment rate is numerically stable. It is observed that a
decrease in k leads to a lower utility for central investors and a smaller cluster size with
scattered distribution, particularly in subgraph Figure 4a. Conversely, an increase in k leads
to a higher utility for central investors and a larger cluster size with blocky distribution,
particularly in subgraph Figure 4b–d, which illustrate the process of morphological change
from scattered distribution to blocky distribution. It is evident that Figure 4b has assumed
a cloud-like shape in contrast to Figure 4a. Within each cluster, the utility of a free rider
depends entirely on the central investor. It is worth considering how the surrounding free
rider agents will adjust their strategies if the central investors alter their strategies.

To investigate the impact of changes in the central investor’s strategy on the surround-
ing free riders, we study a comparative example. In Figure 5a, we select a specific moment
randomly as the initial set of all agents’ strategies. In Figure 5b, we keep the investors’
strategies from Figure 5a unchanged and perform strategy learning updates in the next
time step. At this point, most of the surrounding free riders’ strategies do not change. On
the contrary, in Figure 5c, we change all the investors’ strategies of Figure 5a to ride along
and perform strategy update learning in the next time step for all agents. We find that most
of the surrounding free riders change their original strategies. Thus, it demonstrated that
changes in the central investors do influence the strategies of the surrounding free riders,
a phenomenon we refer to as Association. It is hypothesized that the varying degrees of
Association for different k values result in differences in investment rates. We will examine
this hypothesis in the next subsection.
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Figure 3. The effect of different levels k on the investment rate. Fixed parameters: a = 1.0, r = 0.1.

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

Figure 4. The figures are identified by (a–d), corresponding respectively to k = 1, k = 2, k = 3, and k = 4.
Agents who access the same center are set in the same color scheme, with warm colors representing
high utility of central investors and cool colors representing low utility of central investors. Fixed
parameters: r = 0.1, a = 1.0.

(a) initial (b) strategy maintained (c) strategy changed

Figure 5. Subgraph (a) depicts the network agents’ strategies at time step (t = 1000). (b) illustrates the
strategies of the agents in the network at the subsequent moment after the central investment agent’s
strategy in (a) changes. (c) demonstrates the changes in network agent strategy after modifying the
strategy of all central investors in (a). The central investors is represented by purple, successful free
riders by green, and failed free riders by dark blue. Fixed parameters: r = 0.1, a = 1.0.

4.1.2. The Relation between K and Association

Firstly, we provide a specific example to illustrate the microscopic process of Associa-
tion formation. Figure 6 displays the association’s emerging procedures, where the central
agent is 102 with neighboring agents 52, 101, 103, and 152. In subgraph (a), agents 101, 103,
and 152 access central agent 102, leading to successful investment, while agent 52 chooses
to invest. Subsequently, in subgraph (b), central agent 102 modifies its strategy by accessing
agent 52 with low probability. Ironically, agent 52 also changes strategies and attempts to
access agent 2, as the remaining agents maintain their prior strategy.
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Figure 6. In the network, (a,c) act as partial agents with their respective strategies at t0 and t0 + 1.
At t0 + 1, (b) reflects the altered strategies of (a,c) from t0. Green nodes represent the investing agents,
yellow nodes indicate successful free riders, red nodes depict unsuccessful free riders, and gray nodes
signify strategy changers. The arrows show the sequence of free riding, beginning with free riders
and concluding with investors. Fixed parameters: k = 1, r = 0.1, a = 1.0.

Consequently, it elicits the association formation in subgraph (c). Agent 52 cannot
take a free ride to agent 2, resulting in the failure of agent 102’s free ride to agent 52. Due to
agent 102’s inability to take a free ride to agent 52, agents 101, 103, and 152 cannot gain free
rides to agent 102 either. At the next simulation, these unsuccessful free riders will invest
and contribute to improving social investment levels.

To mark the degree of Association, we use χ in Equation (7) to find the statistics of
the number of strategy-changing agents in 1000 time steps.

χ =
1000

∑
t=1

|I|

∑
i=1

(|AIi | − 1) (7)


xIi(t) = 1, hIi(t) = Ii
xIi(t+1) = 0
xAIi

−Ii (t + 1) = 0, hAIi
−Ii (t + 1) = Ii

xAIi
−Ii (t + 2) = 1

(8)

where Ii represents a central investor in the network. These agents are investment strategy
at time t, but change strategy at t + 1 as free riders. AIi represents each accessed investment
cluster, with the cluster investment center Ii and the other successful free rider. |AIi | is the
number of agents accessing the cluster (including the central investors).

The degree of association in different values of k can be reflected by χ. Figure 7
illustrates the variation of the number of associated agents in different k over the simulation.
The number of associated agents decreases more rapidly as k increases, with the number
sinking from 150. At k = 1, there are still approximately 100 associated agents, but at k = 4
they almost vanish. In conclusion, a smaller k results in a greater number of agents being
associated in the network, and it is necessary to further investigate the reason for this result.

Then, we aim to explain the relationship between k and Association. Figure 8a depicts
the scenario where A is the central investor. Given k = 1, only agents 52, 101, 103, and
152 can connect to A. Therefore, A’s maximum utility is uA = 1 + 0.1 × 4 = 1.4. In
Figure 8b, B is the central investor, and given that k = 2, there are at most 12 agents
surrounding B. Hence, B’s maximal utility is uB = 1 + 0.1× 12 = 2.2. It is evident that
uA < a (a = 1.5), while uB > a. Accordingly, A is more likely to alter its strategy and
associate with all adjacent agents, while B has a higher tendency to preserve its current
investment plan. Therefore, an increase in k enhances the stability of the central investor,
thereby reducing the likelihood of Association and promoting the social investment level,
which is the general conclusion. Equation (5) illustrates the general case, where the value
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of k determines the magnitude of |AIi |. Hence, a larger k leads to a bigger |AIi |, thereby
promoting u(xIi , hIi ). Therefore, central investors with aspiration a are highly probable to
retain their investment strategies.

Figure 7. Associate number χ with different k over 1000 MC time step. Fixed parameters: a = 1.0,
r = 0.1.

Figure 8. Each figure shows an access cluster with (a,b) corresponding to k = 1 and k = 2. Nodes in
green represent central investors while yellow nodes represent free riders. Fixed parameters: a = 1.5,
r = 0.1.

So far, our analysis of χ at varying k values has demonstrated that as k increases,
central investors tend to adhere more strictly to their respective strategy due to weak
Associations.

4.2. Analysis of Phenomenon II

Because of the independence of the individual, the expectant utility of an agent will
have an impact on the change of its strategy and ultimately affect the overall social utility.
In this section, we discuss how these three level aspirations a impact the social invest level.

4.2.1. Aspiration Impact on Social Invest Level

In Phenomenon II, we discover that when r and k are fixed, the social investment
level demonstrates a U-shape pattern as a increases. In Figure 2, we note that for r = 0.1,
the social investment level fluctuates more significantly compared to other values. To
investigate the level of social investment when r = 0.1, we illustrate Figure 9 for different
values of a, r = 0.1, and k = 1, 2, 3, 4. It indicates that, as a increases, the social investment
level initially decreases and then rises. Remarkably, when a surpasses 1.5, the social
investment level stabilizes around 0.5. As the utilities of agents have an impact on the
change in invest level, similarly, we aim to investigate the utility of agents in the network.
Moreover, because the investment level in k = 4 experiences the most significant changes,
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we capture the social network’s stable utility by taking snapshots of 12 different a at
t = 1000 in Figure 10.

Figure 9. The effect of different levels aspirations on the investment rate. Fixed parameter: r = 0.1.

(a) a = 0.1 (b) a = 0.2 (c) a = 0.3 (d) a = 0.5

(e) a = 0.7 (f) a = 0.9 (g) a = 1.0 (h) a = 1.1

(i) a = 1.2 (j) a = 1.3 (k) a = 1.4 (l) a = 1.5

Figure 10. Each figure indicates the access clusters in the network for different values of aspirations.
Agents that access the same central investors are depicted in the same color. Nodes represented by
warm colors indicate access to high-utility investors, while nodes represented by cool colors indicate
access to low-utility investors. The values of r and k are held constant at 0.1 and 4, respectively.

In Figure 10a–f, the subgraphs display nearly uniform colors when a takes a small
value, such as a < 1.0. Conversely, when a increases, such as a > 1.0, the subgraphs
Figure 10h–k exhibit a polarization phenomenon, characterized by the concurrent existence
of dark red and dark blue colors within the same subgraphs. Finally, as a continues to
increase, dark red clusters nearly disappear in Figure 10i. The phenomena above can be
observed to occur within three distinct intervals of aspirations a. When a is within a small
range, central investors possess almost the same level of utility. Nonetheless, as a continues
to increase to a middle level, the network gets populated with highly- and lowly-utility
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agents concurrently. Finally, when a increases to a larger range, highly-utility agents decline,
while the lowly-utility agents dominate the network.

Figure 10 also illustrates the pattern of social investment change depicted in Figure 9.
As shown in Figure 10, by examining the color distribution of the clusters, we observe
that as the aspiration a increases, the network transitions from a scattered pattern to a
blocked one, and then returns to a scattered pattern. This suggests that the count of central
investors initially decreases and subsequently increases, implying the U-shape pattern in
social investment (Figure 9).

In the next section, we will analyze the reasons behind the observed phenomena
corresponding to these three aspiration intervals.

4.2.2. The Impact of Varied Levels of Aspiration on Social Development

We proceed to analyze the theoretical basis for the existence of the three aspiration
intervals depicted in Figure 10 and describe the reasons behind the occurrence of the
corresponding phenomena in the network.

As shown in Table 1, we examine the significance of three distinct levels of aspirations
concerning the strategy of investment, successful free riding, and failed free riding in terms
of their conformity to aspirations. Firstly, within the low aspiration range, both the investors
and the successful free riders are likely to be content with the current strategy, while only
the failed free riders would alter its strategy. That is when a ≤ b− c. Secondly, during
the middle range, as the aspirations already surpass the minimum utility on investment
(b− c), whether the investors meet their own aspirations depends on the access number of
surrounding successful free riders. If the utility on the successful free riders, denoted as
b− r, exceeds a, then these successful free riders are satisfied with their respective utility.
In this case, central investors with high levels of visits by successful free riders are likely to
maintain their strategies to a large extent, while those with low levels of visits are more
prone to changing strategies. That is when b− c < a ≤ b− r. Thirdly, during the high
range, if b− r falls below a, there exists instability in the strategy of the successful free
riders. With low visits by successful free riders, central investors intend to fail to reach
their aspirations, leading the instability in the current strategy. In this case, irrespective of
successful or failed free riding, or the investors, the strategies prove to be unsatisfactory.
That is when a > b− r.

Table 1. Three aspiration levels .

Low a ≤ b− c

Middle b− c < a ≤ b− r

High b− r < a

After analyzing the theoretical basis for the existence of the three aspirations intervals,
we then describe the reasons behind the occurrence of the corresponding phenomena in
Figures 2 and 10.

Low Aspiration. Here we explain why in low aspirations, the utilities of all central
investors are very close and the social invest level is declining.

Firstly, we interpret why the utilities of all central investors are relatively close. Ac-
cording to Equation (5), the utility of a central investor is b− c + (|AIi | − 1)× r and that of
free riders around the central investor would be b− r, r ∈ (0, c). When a < b− c, now the
utility of free riders around central investor u(xAIi

, hAIi
) = b− r > b− c > a, which meets

the aspirations. So for them, based on Equation (6), it is difficult to alter strategies. At the
same time, the central investors’ utility is u(xIi , hIi ) = b− c + (|AIi | − 1)× r > b− c > a.
As a consequence, even when |AIi | − 1 = 0, central investors would be satisfied with the
current utility. Similarly, for these central investors, it is impossible to alter strategies. In
this scenario, both investors and successful free riders achieve their aspirations, while free
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riders are not likely to access other investors during the updates. As a result, as shown in
the subgraphs in Figure 10a–f, the utility values of central investors are similar.

Figure 10a–f depicts the phenomenon of the average utility of central investors for
k = 4 when a takes a small value. We hypothesize that similar situations would occur when
k = 1, 2, and 3. As the utility of central investors surpasses a, it leads to the insignificance of
k regarding the impact on the access number (|AIi | − 1). To support this claim, we present
the average access number of investors by successful free riders at different values of k,
while holding r = 0.1, a = 0.5, and t = 1000, as illustrated in Figure 11a. Direct evidence,
provided by Figure 11a and supporting our assertion, is provided by the maintenance of
the access number of the investors between 1 and 2, irrespective of the value of k.

(a) (b)

Figure 11. Subgraph (a) shows the average access number of an investor in different k. Fixed
parameter: r = 0.1, a = 0.5, t = 1000. Subgraph (b) shows the proportion of three types of agents in the
network. Fixed parameter: r = 0.1, k = 4, t = 100.

Secondly, as for why the social invest level continues to decrease, when 0 < a < b− c,
central investors with low |AIi | are far less profitable than successful free riders, i.e.,
b− c + (|AIi | − 1)× r < b− r. As a rises, (b− c + (|AIi | − 1)× r − a) becomes smaller,
which increases the probability that the central investors will turn to free riders. Only when
|AIi | is large enough can central investors keep their investment strategy unchanged. So
when a increases to b− c, the growth of |AIi | can stabilize the network. In Table 2, when
a = 0.5, the corresponding |AIi | is only 2.64; when a increases to 1.0, |AIi | rises to 11.4. This
suggests that as the aspirations continue to increase, only those investors with sufficient
access by free riders can survive in the network. Moreover, when a reaches b− c, central
investors in the network are in the minority, while successful free riders are in the majority.
As a result, the number of investors in this process decreases, while the number of free
riders around the central investors increases, as shown in Figure 11b.

Overall, we prove that the utilities of all central investors are very close through
Figure 11a and explain why the social invest level is declining through Figure 11b as well
as Table 2.

Table 2. Change of |AIi | with different a. Fixed parameter: r = 0.1, k = 4, t = 1000.

a 0.5 0.6 0.7 0.8 0.9 1.0

|AIi | 2.64 3.55 5.76 8.7 11.1 11.4

Middle Aspiration. Here we explain the reason for the polarization phenomenon in
Figure 10h,k and why the social invest level starts to rise at this time.

Firstly, we interpret the reason for the central investors’ utility polarization. At this
time, free riders can realize their aspirations. They will therefore stick to their strategies
with high probabilities. However, the comparison between central investors’ utility b−
c + (|AIi | − 1)× r and aspiration a mainly depends on |AIi |. Central investors who have
a vast number of visitors, denoted as α, can achieve a high level of performance (b− c +
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(|AIα | − 1)× r) that exceeds a. In these cases, their clusters are generally stable, with a
high probability rate, as shown by the dark red blocks in Figure 10. Conversely, central
investors who have fewer visitors, denoted as β, are likely to experience a utility level
(b− c + (|AIβ

| − 1)× r) that is lower than a. This type of occurrence is represented by the
dark blue blocks in Figure 10, and the coexistence of agents with high and low utility is the
primary cause of utility polarization.

Secondly, the social invest level starts to rise at this time because of the emergence
of β, b− c + (|AIβ

| − 1)× r, leading to the instability of the central investors’ strategies
and the occurrence of Association. The degree of association in different values of k can
be reflected by χ. Table 3 indicates that as a increases, so does the number of associated
agents. This results in an increase in the number of strategies shifting from non-investing
to investing. Consequently, the level of social investment increases.

Table 3. The degree of association with different a. Fixed parameter: r = 0.1, k = 4.

a 1.1 1.2 1.3 1.4 1.5

χ(×104) 1.5 4.3 15.9 48.2 82.9

High Aspiration. Here we explain the reasons behind the donations made by agents
with low utility in Figure 10i.

Firstly, we explain the reason for the donation of low-utility agents in the network. At
this time, the utility of the surrounding free riders is b− r < a, which cannot meet their
aspirations. So they intend to change to invest. It affects the utility of central investors
b− c + (|AIi | − 1)× r because the access number (|AIi | − 1) is quite small. As a result,
b− c + (|AIi | − 1)× r is about equal to b− c. With b− c < a, the investors are unable to
achieve the expected utility, leading them to be inclined to change their strategies to free
riding. In this case, the central investors’ utility can be low.

Accordingly, a network dilemma occurs: neither investors nor free riders are pleased
with their present utility, leading to an unceasing transition of a strategic shift. This
phenomenon is called Fluctuation.

Furthermore, we will show more details about Fluctuation. Microscopically, Fluctu-
ation represents the strategy changes of agents under each time step in the network, as
shown in Figure 12a. It shows that the amplitude of the yellow line always lags behind
the green line by a time step, meaning that, in the network, if there are n free riders turned
to invest at time t0, then at time t0 + 1, there would be n investors turned to free riders.
No matter what strategy the agent makes, it would be changed in the next time step. It is
therefore equiprobable for both changers, i.e., investors changing to free riders and free
riders changing to investors. Thus, the average social invest level could always remain at
0.5, which is shown in Figure 9. To be more specific about social invest level, we explore
it within 1000 simulations in Figure 12b. It is shown that the social invest level curve of
odd time steps and even time steps are approximately symmetrical about 0.5. This explains
why the social investment level is around 50% when the access costs are high, as depicted
in Figure 9.

However, it is important to note that, despite the stable display of an average social
investment rate around 50% in Figure 9, this does not imply stability in the overall societal
strategy changes. Figure 12a shows thousands of agents changing the current state between
adjacent time intervals, indicating extremely poor social stability at that time.
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(a) (b)

Figure 12. Subgraph (a) shows the number of strategy-changing agents in the first 20 simulations,
where the green line represents those changing to invest, and the yellow line represents those
changing to non-invest. Fixed parameters: a = 2.0, r = 0.1, k = 4. Subgraph (b) shows the average
social invest level of 1000 simulations. The line above represents the social invest level corresponding
to an even number of time steps. The line below represents the social invest level corresponding to
an odd number of time steps. Fixed parameter: a = 2.0, r = 0.1, k = 4.

4.3. Analysis of Phenomenon III

The access cost significantly impacts the utilities of both investors and free riders. This
influences their decision to uphold their initial strategy. In this section, we examine how
the access cost for two levels of entry, denoted as r, affects the social investment level.

4.3.1. Access Cost Impact on Social Invest Level

In Phenomenon III, we discuss that when a and k are fixed, the social investment level
demonstrates a U-shape pattern as r increases. Additionally, in Section 4.2.2, we discussed
three levels of aspirations. Here we select the aspiration threshold, which is a = 1.3, to
avoid upcoming fluctuations as a fixed parameter in this section. As shown in Figure 13,
with fixed a and k, as r increases, the social invest level goes down and then up. Because the
trend of the social invest level for k = 2 in Figure 13 is relatively obvious, we take snapshots
of the network for eight different r in Figure 14 to observe the utilities of central invest
agents. It shows in Figure 14 that when r = 0.2, the central investors profit the most, with
the highest social utility level. Based on this, we divide the access costs into two intervals
for investigation. Firstly, when the access costs are low, the returns of the central investors
are relatively small. Secondly, when the access costs are high, the returns of the central
investors are also relatively low.

Figure 13. The variation of social invest level over access cost r for k = 1, 2, 3, 4. It shows that as r
increases, the social invest level goes down and then up. Fixed parameter: a = 1.3.

4.3.2. The Impact of Varied Levels of Access Cost on Social

In Section 4.2, we mentioned that low aspirations could lead to the equalization of
central investors’ utilities while exorbitant aspirations most likely will cause network
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fluctuation. Thus, we choose a more moderate expectation period b− c < a < b to explain
phenomena with different access costs r. Assume that there exists θ > 1, when r = c

θ , the
equation b− r = a can be satisfied. Particularly, in Figure 14, the lowest social invest level
can be obtained when θ is set to 5 (r = 0.2). In fact, the optimal r corresponding to θ is
related to a, k and the probability parameter K in Equation (6).

As shown in Table 4, we examine the significance of two distinct access cost levels
concerning the strategy of investment, successful free riding, and failed free riding in terms
of their conformity to aspirations. Firstly, in the case of cheap access costs, free riders tend
to satisfy their current utility and are therefore highly likely to maintain their strategy.
Investors, due to their large visits by free riders, tend to satisfy their current utility as well.
Secondly, in the case of expensive access costs, free riders are likely to not satisfy their
current utility, resulting in a substantial change in their strategy. Investors, due to their
lower visits by free riders, do not satisfy their current utility.

(a) r = 0 (b) r = 0.05 (c) r = 0.1 (d) r = 0.15

(e) r = 0.2 (f) r = 0.4 (g) r = 0.6 (h) r = 0.8

Figure 14. Each figure indicates the access clusters in the network for different values of access costs.
Agents that access the same central investors are depicted in the same color. Nodes represented by
warm colors indicate access to high-utility investors, while nodes represented by cool colors indicate
access to low-utility utility investors. When r increases from 0 to 0.2, the color gradually changes
from dark blue to dark red. When r reaches 0.2, the most obvious blocky dark red color appears
among the snapshots. Next, r consistently grows to 1, and dark red clusters gradually disappear and
then turn to dark blue scatters. Fixed parameters: k = 2, t = 1000.

Table 4. Two access cost levels.

Cheap 0 < r < c
θ

Expensive c
θ < r < c

Cheap Access Cost. When r approaches zero, the utility of the surrounding free riders
b− r = b > a, and they will then not change the original strategy with high possibility.
Meanwhile the utility of the central investors is b− c + (|AIi | − 1)× r = b− c < a. They
can then easily change strategy. Therefore, the change of the cluster’s strategy depends
on the change of the central investors’ strategy, and the probability of the occurrence of
Association is very high.

When 0 < r < c
θ , the utility of the surrounding free riders b− r ≥ a, so they keep their

original strategy with high possibility. Meanwhile, due to the increase of r, the difference
between the utility of the central investors and a gets smaller, which firms the investors’
strategy. The degree of Association in different values of k can be reflected by χ. Table 5
shows that as the variable r increases to 0.2, the Association number χ diminishes in this
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situation. This indicates that the strategy of the central investors becomes more and more
stable during this process.

Table 5. The number of associate agents in different access costs.

r 0 0.05 0.1 0.15 0.2

χ(×104) 87.1 85.2 38.4 11.5 5.8

Expensive Access Cost. When c
θ < r < c, the utility of the surrounding free riders

b− r < a, and they will then choose to change their strategy to invest with possibility, which
leads to a decrease in |AIi | (Table 6). However, at the same time, r consistently climbs. Thus, we
need to analyze two situations: (1) b− c + (|AIi | − 1)× r > a, (2) b− c + (|AIi | − 1)× r < a.

Table 6. The average free riders for an investor. Fix parameters: a = 1.3, k = 4, t = 1000.

r 0.2 0.3 0.4 0.5 0.6 0.7

|AIi | 4.545 3.185 2.434 1.947 1.701 1.477

1. If r can still meet the condition that b− c + (|AIi | − 1)× r > a, investors keep their
strategy with high possibility. So at this time, it is the strategy change by the free
riders that contributes to the increase of social invest level. In Figure 15a, the number
of successful free riders decreases with the increase of r, while the number of investors
increases. This indicates that the surrounding free riders are gradually separating
from the central investor due to the increasing access costs, and their strategy change
to invest.

2. As r increases, the number of free riders (|AIi | − 1) tends towards zero because of the
high access cost. Then the utility of the central investors would be b− c + (|AIi | −
1)× r = b− c < a. So the central investors want to change their strategy to take a
free ride. In addition, at this time, the surrounding free riders will most likely change
their strategy, separating them from central investors. Therefore, Fluctuations occur,
as depicted in Figure 15b.

(a) (b)

Figure 15. Subgraph (a) shows the proportion of three types of agents in the network. Fixed
parameter: a = 1.3, k = 4, t = 1000. Subgraph (b) shows the number of strategy-changing agents
in the first 20 simulations, where the green and yellow lines represent the same as Figure 12a. Fix
parameters: a = 1.3, r = 1.0, k = 4.

5. Conclusions and Future Work

In this paper, we introduce an aspiration-based learning mechanism in Best-shot
BNPGG when information is unobtainable. In our mechanism, whether agents update
their strategies depends on the difference between their own utilities and aspirations. We
identify and provide reasonable explanations for three phenomena. Firstly, increasing the
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access scope k benefits the stability of clusters, leading to a lower investment rate. Secondly,
excessively high or low access costs both lead to higher investment rates, which are detri-
mental to societal development. Excessive access costs can cause significant oscillations in
individual strategies, posing a serious threat to social stability. Therefore, moderate access
cost is suggested to consolidate healthy and stable social development. Thirdly, and most
importantly, aspiration plays an indispensable role in driving social development. When
aspirations are too low, the overall social utility diminishes as in a downturn. In such cases,
goals are easily achieved, and individuals lack the motivation to pursue more challenging
tasks or realize their ambitions, resulting in stagnant development. Or, expanding the
access scope does not alleviate such a diminishment. Conversely, when aspirations are ex-
cessively high, it leads to polarization between the wealthy and the impoverished and even
oscillations of individual strategies. When high aspirations fall within an acceptable degree,
capable clusters can achieve challenging goals, while incompetent clusters face challenges
in meeting the targets. However, once aspirations exceed an acceptable degree, the entire
network experiences strategy oscillations, resulting in societal instability. Hence, moderate
overall societal expectations are preferred to mitigate the issues of downturn, polarization,
and oscillations in the network. We hope that our findings are useful for corporations and
organizations to develop strategies. In the future, except for lattice networks, other types of
networks can be introduced in dynamic evolutionary, including ErdOs-Renyi networks,
and scale-free networks.
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