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Abstract: Axially moving wing aircraft can better adapt to the flight environment, improve flight
performance, reduce flight resistance, and improve flight distance. This paper simplifies the fully un-
folded axially moving wing into a stepped cantilever plate model, analyzes the structural nonlinearity
of the system, and studies the influence of aerodynamic nonlinearity on system vibration. The model
is affected by aerodynamic forces, piezoelectric excitation, and in-plane excitation. Due to Hamilton’s
principle of least action, the mathematical model is established based on Reddy’s higher-order shear
deformation theory, and using Galerkin’s method, the governing dimensionless partial differential
equations of the system are simplified to two nonlinear ordinary differential equations, and then
a study of the influence of the various engineering parameters on the nonlinear oscillations and
frequency responses of this model is conducted by the method of multiple scales. It was found that
the different values of a5, a6, b6 and b8 can change the shape of the amplitude–frequency response
curve and size of the plate, while different symbols a7 and b7 can change the rigidity of the model.
The excitations greatly impact the nonlinear dynamic responses of the plate.

Keywords: axially moving wings; stepped cantilever plate; piezoelectric composite material;
nonlinear vibration; frequency responses; bifurcation
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1. Introduction

The aspect ratio of the wing can optimize its performance under radically differ-
ent flight conditions. Thus, axially moving wing aircraft can better adapt to the flight
environment, improve flight performance, reduce flight resistance, and improve flight
distance [1–3]. At present, the aircraft wings used in civil and military aviation are still
the fixed wing aircraft type. However, more flight requirements are set for traditional
aircraft, such as in the process of take-off, landing, and cruising; the aircraft is required
to have a high aspect ratio, light weight, and high flexibility to improve the low-speed
performance, landing performance, and cruising lift-to-drag ratio of the aircraft. If the
retractable wing is fully expanded and maintained in a stable state during takeoff, landing,
and cruising of the aircraft, it not only maintains a fixed-wing configuration but also meets
the requirements of improving the low-speed performance, landing performance, and
cruising lift-to-drag of the aircraft. If the axially moving wing is fully expanded, which can
be simplified to a stepped cantilever plate model, the nonlinear analysis of the structure
and further aerodynamic nonlinearity influence on the system vibration can be considered,
as it can provide some effective strategies for restraining the flutter of the structures and
further control research on system stability, with high value in engineering applications.

Compared with the traditional fixed wing, the axial retractable wing can meet higher
flight requirements; therefore, the research on the axial retractable wing has received exten-
sive attention from relevant scholars: during its deploying and retreating, it is simplified

Mathematics 2023, 11, 3034. https://doi.org/10.3390/math11133034 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11133034
https://doi.org/10.3390/math11133034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11133034
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11133034?type=check_update&version=2


Mathematics 2023, 11, 3034 2 of 30

into axial moving beam, plate, and shell models. In 2017, Zhang et al. [4] investigated the
nonlinear dynamic behaviors when deploying a cantilevered thin shell subjected to the
aerodynamic force in subsonic airflow. In 2022, Zhang et al. [5] studied the stability and
vibration of the telescopic cantilevered laminated composite rectangular plate subjected
to the first-order aerodynamic force and in-plane excitation using theoretical, numerical,
and experimental methods. In 2022, Liu [6] analyzed the nonlinear dynamics of an axially
moving composite laminated cantilever beam in supersonic airflow, and nonlinear dynamic
modeling and numerical simulations analysis were carried out. Moreover, Zhang and co-
workers performed studies on axially moving structures, such as belts [7,8], beams [9–11],
and plates [12–17].

At the same time, there also several other excellent studies on axially moving wing
aircraft, which mainly focused on design, manufacturing, test flight, and experimentation.
In 1998, researchers [18] designed an axially moving wing. A wind tunnel experiment
was used to test the small-scale model of this aircraft. In 2003, the Virginia Tech AE/ME
Morphing design team [19] invented another axially moving wing aircraft by varying the
sweep angle. In 2005, Henry [20] described an axially moving variable-span morphing
wing (VSMW), which could be used to change the flight direction with a variable wingspan.
In 2018, Jin and Li [21] used a numerical method to investigate the dynamic behavior and
stability of a variable-span wing subjected to supersonic aerodynamic loads to make use of
morphing technology for flutter suppression. All of the work mentioned above is about the
wing during deployment and retraction; there is no work related to the retractable wing,
which is fully expanded and maintained in a stable state, and the stepped cantilever plate
was chosen as the model for the first time.

Although in current studies the fully deployable system is simplified into a stepped
cantilever plate model, the theoretical foundation for the study of the stepped cantilever
plate model has not yet been laid. Meanwhile, a series of studies on rectangular plates have
been reported. For instance, in 2012, Amabili et al. [22] performed numerous experiments
and numerical simulations to examine the large-amplitude vibrations of plates with concen-
trated masses. Also, in 2010 and 2014, Zhang et al. [23,24] carried out nonlinear dynamics
analysis by deploying a rectangular cantilever plate and a simply supported thin rectangu-
lar plate, which were made of orthotropic and angle-ply composite laminates, respectively.

Piezoelectric fiber composite material [25,26] is the crystal material in which a voltage
appears between two ends under pressure. Compared to traditional piezoelectric ceramics,
the piezoelectric fiber composite material overcomes the defects in toughness and has
excellent flexibility and piezoelectric properties. In addition, it is thin and light, can be bent
greatly and is thus easily subjected to torsion, is easy to paste, and is especially suitable
for the spacecraft rigid-flexible coupling structure. Therefore, regular symmetric cross-ply
laminates with n layers are chosen for the plate. A layer of the PVDF (Poly Vinyli Dene
Fluoride) piezoelectric materials is embedded in the middle of two adjacent fiber-reinforced
composite materials. The PVDF piezoelectric materials act as actuators. The composite
stepped piezoelectric cantilever plate can be chosen as a model of the axially moving wings
and has theoretical and practical significance for our study.

At present, a great number of valuable research results have been obtained by re-
searchers who have performed research on piezoelectric composite laminates and piezo-
electric functionally gradient plates from the perspectives of experimental analysis [27,28],
static conditions [29,30], and dynamics [31], as well as on the control of piezoelectric beams,
plates, and shell structures [32–34]. Similarly, reference [35] studied the nonlinear dynamic
characteristics of composite laminated plates under different loads and boundary condi-
tions, and reference [36] studied the static and dynamic stability of composite cylindrical
shells. The research methods of these articles have guiding significance for the research in
this paper.

In detail, the main work in this study is as follows: the nonlinear behavior of the
piezoelectric stepped rectangular cantilever plates made of composite laminated materials
is studied. Additionally, the primary parameter resonance and 1:3 internal resonance are
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discussed. The mathematical models are formulated based on the pneumatic elastic piston
theory [37] and the higher-order shear deformation theory [38]. The nonlinear governing
partial differential equations and the ordinary differential equations of motion can be
obtained by using Hamilton’s principle and Galerkin’s method, respectively. Subsequently,
the average equations can be acquired by using the multiple scales method. Then, for
the nonlinear oscillations of the model governed by various engineering parameters, the
periodic, almost periodic, and chaotic motions of this model are studied by the numerical
simulation method. Based on the numerical simulation, the influence of the nonlinear piston
aerodynamic force, piezoelectric excitations, and in-plane excitations on the bifurcation
behaviors is discussed. This research will contribute to a better understanding of the
mechanical design and safety of stepped plate-type structures made of PVDF piezoelectric
materials as actuators.

2. Equations of Nonlinear Oscillations

The composite stepped piezoelectric cantilever plate is chosen as the model of the
axially moving wing. Regular symmetric cross-ply laminates with n layers are chosen
for the plate. A layer of the PVDF piezoelectric material is embedded in the middle of
two adjacent fiber-reinforced composite materials. It is assumed that different layers of
the symmetric cross-ply composite laminated piezoelectric stepped cantilever plate are
perfectly bonded to each other. The PVDF piezoelectric materials act as actuators. As
Figure 1 shows, the length and width of model is a and b, respectively. The plate is divided
into two regions, namely, o1 and o2. The thickness of the stepped left zone is h1 − h2, and
the remaining part of the plate has a thickness of h2 . In the x direction at x = 0, the model’s
in-plane excitations are presented in the F = F0 + F1cos Ω1t form. In the Z-axis direction,
the transversal aerodynamics loading is ∆p. The structural damping force is γ dw

dt . OXYZ is
used as the Cartesian coordinate system.
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Figure 1. Mechanical model of the axially moving wings fully extended.

The lamina constitutive relationship of the kth layer coupling the direct and converse
piezoelectric equations is given by

σxx
σyy
τxy


k

=

Q11 Q12 0
Q21 Q22 0

0 0 Q66


k


εxx
εyy
γxy


k

−

0 0 e31
0 0 e32
0 0 0


k


Ex
Ey
Ez


k

(1a)

{
τyx
τzx

}
k
=

[
Q44 0

0 Q55

]
k

{
γyz
γzx

}
k

(1b)

where Qij(i = 1, 2, 4, 5, 6; j = 1, 2, 4, 5, 6) are elastic moduli of this model, which is given
as follows

Q11 = Q22 =
E

1− ν2 (1c)

Q12 = Q21 =
νE

1− ν2 (1d)
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Q44 = Q55 = Q66 =
E

2(1− ν)
(1e)

where E represent Young’s modulus, and ν represent Poisson’s ratio.
According to the third-order Piston Theory, the transversal aerodynamics loading can

be expressed as

∆pi = −
4qdγ

M∞

(
∂w0i
∂x

+
∂w0i
∂y

+
1
νa

∂w0i
∂t

)
(2)

where qd represents the dynamic pressure, qd = 1
2 ρairν2

a , ρair denotes the air density,
the airflow supersonic speed is expressed by νa, and M∞ represents the Mach number,
γ = M∞√

M2
∞−1

(note: typical value of γ = 1.4).

The displacements of an arbitrary point in the direction of x, y, and z can be represented
by (ui, vi, wi), and the displacement of any point on the mid-plane is represented by
(u0i, v0i, w0i); the mid-plane rotations can be expressed by

(
ϕxi, ϕyi

)
, and the rotation

normal of the mid-plane on the x and y axes is represented by
(

ϕxi, ϕyi
)
.

Based on Reddy’s third-order shear deformation theory, the displacement fields of the
stepped plate are derived and can be divided into two plates, which are expressed as

ui = u0i(x, y, t) + zi ϕxi(x, y, t)− z3
i

4
3h2

(
ϕxi +

∂w0i
∂x

)
(3a)

vi = v0i(x, y, t) + zi ϕyi(x, y, t)− z3
i

4
3h2

(
ϕyi +

∂w0i
∂y

)
(3b)

wi = w0i(x, y, t) (3c)

According to the von Karman strain–displacement relationship, the relationships of
strain and displacement are expressed by Equations (4a) and (4b)

εxxi =
∂ui
∂x

+
1
2

(
∂w0i
∂x

)2
, εyyi =

∂vi
∂y

+
1
2

(
∂w0i
∂y

)2
(4a)

γxzi =
∂ui
∂z

+
∂w0i
∂x

, γyzi =
∂vi
∂z

+
∂w0i
∂y

, γxyi =
∂ui
∂y

+
∂vi
∂x

+
∂w0i
∂x

∂w0i
∂y

(4b)

Equations (4a) and (4b) can be substituted into Equations (3a)–(3c) to obtain Equations
(5a) and (5b) 

εxx
εyy
γxy

 =
{

ε0}+ z
{

ε1}+ z3 {ε3} (5a)

{
γyz
γzx

}
=
{

γ0}+ z2 {γ2} (5b)

in which

{
ε0} =


∂u0i
∂x + 1

2

(
∂w0i
∂x

)2

∂v0i
∂y + 1

2

(
∂w0i
∂y

)2

∂v0i
∂x + ∂u0i

∂y + ∂w0i
∂x

∂w0i
∂y

,
{

ε1} =


− ∂2w0i

∂x2

− ∂2w0i
∂y2

−2 ∂2w0i
∂x∂y

 ,
{

γ0} =

{
ϕyi +

∂w0i
∂y

ϕxi +
∂w0i
∂x

}
, (5c)

{
ε3} = −c1


∂ϕxi
∂x + ∂2w0i

(∂x2)
∂ϕ0i
∂y + ∂2w0i

(∂y2)
∂ϕ0i
∂y + ∂ϕ0i

∂x + 2 ∂2w0i
∂x∂y

,
{

γ2} = −c2

{
ϕyi +

∂w0i
∂y

ϕxi +
∂w0i
∂x

}
, (5d)
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c1 =
4

3h2 , c2 = 3c1 (5e)

The internal force and moment resultants can be computed from the formulas below:

(
Nxxi, Nyyi, Nxyi

)
=

N

∑
k=1

∫ zk+1

zk

(
σxxi, σyyi, τxyi

)
dz (6a)

(
Mxxi, Myyi, Mxyi

)
=

N

∑
k=1

∫ zk+1

zk

(
σxxi, σyyi, τxyi

)
zdz (6b)

(
Pxxi, Pyyi, Pxyi

)
=

N

∑
k=1

∫ zk+1

zk

(
σxxi, σyyi, τxyi

)
z3dz (6c)

(
Rxxi, Ryyi

)
=

N

∑
k=1

∫ zk+1

zk

(
τzxi, τzyi

)
z2dz (6d)

(
Qxxi, Qyyi

)
=

N

∑
k=1

∫ zk+1

zk

(
τzxi, τzyi

)
dz (6e)

Substituting constitutive Equations (1a)–(1e) into internal force and bending moment
(6a)–(6e), Equations (7a)–(7d) is obtained

Nxxi
Nyyi
Nxyi

 =

A11 A12 0
A21 A22 0
0 0 A66

{ε0}−


Np
x

Np
y

0

 (7a)


Mxxi
Myyi
Mxyi

 =


D11 D12 0
D21 D22 0

0 0 D66

{ε1}+


F11 F12 0
F21 F22 0
0 0 F66

{ε3} (7b)


Pxxi
Pyyi
Pxyi

 =


F11 F12 0
F21 F22 0
0 0 F66

{ε1}+


H11 H12 0
H21 H22 0

0 0 H66

{ε3} (7c)

{
Qxxi
Qyyi

}
=

{
A44 0
0 A55

}{
γ0}+{D44 0

0 D55

}{
γ2} (7d)

in which

Np
x = Np

x ∑N
k=1

∫ zk+1

zk

e31EZdz, Np
y = ∑N

k=1

∫ zk+1

zk

e32EZdz, (7e)

where e31 and e32 are piezoelectric coefficients; according to the lamination theory, the shear
stiffness coefficients are Aij, Bij, Dij, Eij, Fij, and Hij and are defined as follows:

(
Aij , Bij, Dij, Eij, Fij, Hij) = ∑N

k=1

∫ zk+1

zk

Qk
ij (1, z, z2, z3, z4, z6 )dz, (i, j = 1, 2, 6), (7f)

(
Aij , Dij, Fij) = ∑N

k=1

∫ zk+1

zk

Qk
ij (1, z, z4 )dz, (i, j = 4, 5), (7g)

Ii =
N

∑
k=1

ρ(k)Zidz, (i = 0, 1, 2, . . . , 6) (7h)

Ji= Ii − c1 Ii+2, K2 = I2 − 2c1 I4 + c2
1 I6 (7i)

The nonlinear governing equations for the two regions and of the system according to
Hamilton’s principle are given by Equations (8a)–(8e) and (9a)–(9e)
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For the inner plate O1:

A11
∂2u01
∂x2

1
+ A66

∂2u01
∂y2

1
+ (A12 + A66)

∂2v01
∂x1∂y1

+ A11
∂w01
∂x1

∂2w01
∂x2

1
+

A66
∂w01
∂x1

∂2w01
∂y2

1
+(A12 + A66 )

∂w01
∂y1

∂2w01
∂x1∂y1

= I0
..
u01 + (I1 − c1 I3)

..
ϕx1 − c1 I3

∂
..
w01
∂x1

(8a)

A22
∂2v01
∂y2

1
+ A66

∂2v01
∂x2

1
+ (A21 + A66)

∂2u01
∂x1∂y1

+ A66
∂w01
∂y1

∂2w01
∂x2

1
+

A22
∂w01
∂y1

∂2w01
∂y2

1
+(A21 + A66 )

∂w01
∂x1

∂2w01
∂x1∂y1

= I0
..
v01 + (I1 − c1 I3)

..
ϕy1 − c1 I3,

(8b)

A11
∂u01
∂x1

∂2w01
∂x2

1
+ A21

∂u01
∂x

∂2w01
∂y2

1
+ 2A66

∂u01
∂y1

∂2w01
∂x1∂y1

+ A11
∂2u01
∂x2

1

∂w01
∂x1

+(A21 + A66)
∂2u01

∂x1∂y1

∂w01
∂y1

+ A66
∂2v01
∂x2

1

∂w01
∂y1

+ (A12 + A66)
∂2v01

∂x1∂y1

∂w01
∂x1

+A22
∂2v01
∂y2

1

∂w01
∂y1

+ 3
2 A11

(
∂w01
∂x1

)2 ∂2w01
∂x2

1
+ ( 1

2 A21 + A66)
(

∂w01
∂x1

)2 ∂2w01
∂y2

1

+(A12 + A21 + 4A66)
∂w01
∂x1

∂w01
∂y1

∂2w01
∂x1∂y1

+ 3
2 A11

(
∂w01
∂x1

)2 ∂2w01
∂y2

1
+ ( 1

2 A21

+A66)
(

∂w01
∂x1

)2 ∂2w01
∂x2

1
+ (A55 − 2c2D55 − c2

2F55 − Np
x cos(Ω2t) ) ∂2w01

∂x2
1

+(A44 − 2c2D44 − c2
2F44 − Np

y cos(Ω3t) ) ∂2w01
∂y2

1
− c2

1H11
∂4w01

∂x4
1

−c2
1(H21 − 4H66 − H12)

∂4w01
∂x2

1∂y2
1
+ (A55 − 2c2D55 − c2

2F44)
∂ϕx1
∂x1
− c2

1H22
∂4w01

∂y4
1

+(A44 − 2c2D44 + c2
2F44)

∂ϕy1
∂y1

+ c1(F12 + 2F66 − c1H12 − 2c1H66)
∂3 ϕy1

∂x2
1∂y1

+c1(F11 − c1H11)
∂3 ϕx1

∂x3
1

+ c1(F12 + 2F66 − c1H21 − 2c1H66)
∂3 ϕy1

∂x1∂y2
1

+c1(F22 − c1H22)
∂3 ϕy1

∂y3
1

+ ∆p− γ
.

w01 + (F0 + F1 cos(Ω1t))

= I0
..
w01 − c2

1 I6 (
∂2 ..

w01
∂x2

1
+ ∂2 ..

w01
∂y2

1
) + c1 I3 (

∂
..
u01

∂x1
+ ∂

..
v01

∂y1
) + c1 J4 (

∂2 ..
ϕx1

∂x1
+

∂2 ..
ϕy1

∂y1
),

(D11 − 2c1F11 − c2
1H11)

∂2 ϕx1
∂x2

1
+ (D12 + D66 − c2

1H66 − 2c1F66 + c2
1F12)

∂2 ϕy1
∂x1∂y1

(D66 − 2c1F66 − c2
1H66)

∂2 ϕx1
∂y2

1
+
(
2c2D55 − A55 − c2

2F55
)

ϕx1

−c1(F11 − c1H11)
∂3w01

∂x3
1
−
(
c2

2F55 − 2c2D55 + A55
) ∂w01

∂x1

−c1(2F66 + F12 − 2c1H66 − c1H12)
∂3w01
∂x1∂y2

1

(8c)

= (I1 − c1 I3)
..
u01 + (I2 − 2c1 I4 + c2

1 I6 )
..
ϕx1
− c1(I4 − c1 I6)

∂
..
w01

∂x1
, (8d)

(D22 − 2c1F22 + c2
1H22)

∂2 ϕx1
∂y2

1
− c1(F22 − c1H22 + A55)

∂3w01
∂y3

1

+(D21 + D66 + c2
1H66 + c2

1H21 − 2c1F66 − 2c1F21)
∂2 ϕx1
∂x1∂y1

+(D66 − 2c1F66 + c2
1H66)

∂2 ϕy1

∂x2
1

+
(
2c2D44 − c2

2F44 − A44
)

ϕy1

−
(
c2

2F44 − 2c2D44 + A44
) ∂w01

∂y1
− c1(2F66 + F12 − 2c1H66 − c1H21)

∂3w01
∂x2

1∂y1

= (I1 − c1 I3)
..
v01 +

(
I2 − 2c1 I4 + c2

1 I6
) ..

ϕy1 − c1(I4 − c1 I6)
∂

..
w01
∂y1

,

(8e)

where
I∗1 = (I1 − c1 I3), I∗2 = (I2 − 2c1 I4 + c2

1 I6 ), I∗3 = (I4 − c1 I6). (8f)
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For the outer plate O2:

A11
∂2u02
∂x2

2
+ A66

∂2u02
∂y2

2
+ (A12 + A66)

∂2v02
∂x2∂y2

+ A11
∂w02
∂x21

∂2w01
∂x2

2

A66
∂w02
∂x2

∂2w02
∂y2

2
+ (A12 + A66)

∂w02
∂y2

∂2w02
∂x2∂y2

= I2
..
u02 + (I1 − c1 I3)

..
ϕx2
− c1 I3

∂
..
w02
∂x2

,

(9a)

A22
∂2v02
∂y2

2
+ A66

∂2v02
∂x2

2
+ (A21 + A66)

∂2u02
∂x2∂y2

A66
∂w02
∂y2

∂2w02
∂x2

2
+ A22

∂w02
∂y2

∂2w02
∂y2

2
+ (A21 + A66)

∂w02
∂x2

∂2w02
∂x2∂y2

= I2
..
v02 + (I1 − c1 I3)

..
ϕy2
− c1 I3

∂
..
w02
∂y2

(9b)

A11
∂u02
∂x2

∂2w02
∂x2

2
+ A21

∂u02
∂x2

∂2w02
∂y2

1
+ 2A66

∂u02
∂y2

∂2w02
∂x2∂y2

+ A11
∂2u01
∂x2

2

∂w02
∂x2

+(A21 + A66)
∂2u02

∂x2∂y2

∂w02
∂y2

+ A66
∂2v02
∂x2

2

∂w02
∂y2

+ (A12 + A66)
∂2v02

∂x2∂y2

∂w02
∂x2

+A22
∂2v02
∂y2

2

∂w02
∂y2

+ 3
2 A11

(
∂w02
∂x2

)2
∂2w02

∂x2
2

+
(

1
2 A21 + A66

)(
∂w02
∂x2

)2
∂2w02

∂y2
2

+(A12 + A21 + 4A66)
∂w02
∂x2

∂w02
∂y2

∂2v02
∂x2∂y2

+ 3
2 A11

(
∂w02
∂y2

)2
∂2w02

∂y2
2

+
(

1
2 A12 + A66

)(
∂w02
∂y2

)2
∂2w02

∂x2
2
− c2

1H11
∂4w02

∂x4
2

+(A55 − 2c2D55 + c2
2F55 − Np

x cos(Ω2t) ) ∂2w02
∂x2

2

+(A44 − 2c2D44 + c2
2F44 − Np

x cos(Ω3t) ) ∂2w02
∂y2

2

−c2
1(H21 + 4H11 + H12)

∂4w02
∂x2

2∂y2
2
+ c1(F11 − c1H11)

∂3 ϕx2
∂x3

2

+
(

A55 − 2c2D55 + c2
2F55

) ∂ϕx2
∂x2
− c2

1H22

+c1(F12 + 2F66 − c1H21 − 2c1H66)
∂3 ϕx2
∂x2∂y2

2

+
(

A44 − 2c2D44 + c2
2F44

) ∂ϕy2
∂y2

+c1(F22 + 2F66 − c1H21 − 2c1H66)
∂3 ϕy2

∂x2∂y2
2

+c1(F22 − c1H22)
∂3 ϕy2

∂y3
2

+ ∆p− γ
.

w02 + (F0 + F1 cos(Ω1t))

= I0
..
w02 − c2

1 I6(
∂2 ..

w02
∂x2

2
+ ∂2 ..

w02
∂y2

2
) + c1 I3(

∂
..
u02

∂x2
+ ∂

..
v02

∂y2
) + c1 J4(

∂
..
ϕx2

∂x2
+

∂
..
ϕy2

∂y2
),

(9c)

(
D11 + 2c1F11 − c2

1H11
) ∂2 ϕx2

∂x2
2
− c1(F11 − c1H11)

∂3w02
∂x3

2

+
(

D12 + D66 + c2
1H66 − 2c1F66 + c2

1F12
) ∂2 ϕy2

∂x2∂y2

+
(

D66 − 2c1F66 + c2
1H66

) ∂2 ϕx2
∂y2

2
+
(
2c2D55 − A55 − c2

2F22
)

ϕx2

−
(
c2

2F55 − 2c2D55 + A55
) ∂ϕ02

∂x2
− c1(2F66 + F12 − 2c1H66 − c1H12)

∂3w02
∂x2∂y3

2

= (I1 − c1 I3)
..
u02 +

(
I2 − 2c1 I4 + c2

1 I6
) ..

ϕx2 − c1(I4 − c1 I6)
..

∂w02
∂x2

,

(9d)

(
D22 − 2c1F22 + c2

1H22
) ∂2 ϕx2

∂y2
2
− c1(F22 − c1H22)

∂3w02
∂y3

2

+
(

D21 + D66 + c2
1H66 + c2

1H21 − 2c1F66 − 2c1F21
) ∂2 ϕx2

∂x2∂y2

+
(

D66 − 2c1F66 + c2
1H66

) ∂2 ϕy2

∂x2
2

+
(
2c2D44 − c2

2F44 − A44
)

ϕy2

−
(
c2

2F44 − 2c2D44 + A44
) ∂w02

∂y2
− c1(2F66 + F12 − 2c1H66 − c1H21)

∂3w02
∂x2

2∂y2

= I1 − c1 I3
..
v02 +

(
I2 − 2c1 I4 + c2

1 I6
) ..

ϕy2 − c1(I4 − c1 I6)
∂

..
w02
∂y2

(9e)
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For the rectangular cantilever plate fixed at x = 0 and clamped at L(0) with the other
edges L free, the boundary conditions can be expressed as follows:

x1 = 0, L(0), u = v = w = ϕx = ϕy = 0, (10a)

x2 = L, Nxx = Nyy = Mxx = Mxy = 0,
Pxx = Pxy = Qx = Rx = 0

(10b)

y = 0, b, Nyy = Nxy = Myy = Mxy = 0,
Pyy = Pxy = Qy = Ry = 0.

(10c)

The connection conditions are represented as follows;

x1 = L(0),
w01(L(0))

∂x1

∂2w01(L(0))
∂t∂x1

= 0, (10d)

x2 = L(0),
w02(L(0))

∂x2

∂2w02(L(0))
∂t∂x2

= 0. (10e)

3. Two-Mode Nonlinear System

The variables and parameters can be expressed as follows:

u0 = u0
a , v0 = v0

b , w0 = w0
h , x = x

a , y = y
b , ϕx = ϕx, ϕ y = ϕy,

Ii =
1

(ab)(i+1)/2ρ
Ii, t = π2

(
E

abρ

)1/2
t, F = (ab)7/2

Eh7 F, P = b2

Eh3 P,

γ = 1√
ρE

a2b2

h4 γ, Aij =
(ab)1/2

Eh2 Aij, Bij =
(ab)1/2

Eh3 Bij, Dij =
(ab)1/2

Eh4 Dij ,

Eij =
(ab)1/2

Eh5 Eij, Fij =
(ab)1/2

Eh6 Fij, Hij =
(ab)1/2

Eh8 Hij.

(11)

In the following analysis, for convenience, the symbol “-” will be removed, and the first
two modes of the nonlinear dynamics of this model are mainly considered. Considering
the boundary condition of the model, the modal functions can be expressed as follows:

ui = u1(t) sin
πx
2Li

cos
πy
b

+ u2(t) sin
3πx
2Li

cos
2πy

b
, (12a)

vi = v1(t) sin
πx
2Li

sin
πy
b

+ v2(t) sin
3πx
2Li

sin
2πy

b
, (12b)

wi = w1(t)Xi1(x)Y1(y) + w2(t)Xi2(x)Y2(y), (12c)

ϕxi = ϕxi1(t) sin
πx
2Li

cos
πy
b

+ ϕxi2(t) sin
πx
Li

cos
2πy

b
, (12d)

ϕyi = ϕyi1(t)
(

1− cos
πx
2Li

)
sin

πy
b

+ ϕyi2(t)
(

1− cos
πx
Li

)
sin

2πy
b

, (12e)

where Xij(x) represents the fixed-free beam function in the direction of x, and Yij(y) denotes
the free-free beam function in the direction of y:

Xij(x) = sin
λijx
Li
− sinh

λijx
Li

+ αi

(
cos

λijx
Li
− cos

λijx
Li

)
(13a)

Yij(y) = sin
µijy

b
+ sinh

µijy
b

+ βij

(
cosh

µijy
b

+ cos
µijy

b

)
(13b)



Mathematics 2023, 11, 3034 9 of 30

λij and µij are the eigenvalues given by the roots of the transcendental equations

cosλija·coshλija + 1 = 0, cosµijb·coshµijb− 1 = 0, (14a)

and

αij =
sinλija + sinλija

coshλija + cosλija
, βij =

sinhµijLi − sinµijLi

coshµijLi − cosµijLi
(14b)

Equations (11), (12a)–(12e), (13a), (13b), (14a) and (14b) are substituted into Equations
(8a)–(8e) and (9a)–(9e) with the aid of the boundary conditions and the application of
Galerkin’s method, mainly considering the transverse nonlinear oscillations. Therefore,
a two degrees-of-freedom governing differential equation of the composite laminated
piezoelectric stepped rectangular cantilever plate is derived as follows.

For the inner plate O1:

..
w11(t) + ω1

2w11 + a11
.

w11(t) + a12cos(Ω1t)w11(t)
+a13 cos(Ω2t)w11(t) + a14cos(Ω3t)w11(t)

+a15w11
2w12 + a16w11w12

2 + a17w11
3 + a18w12

3 = 0,

(15a)

..
w12(t) + ω2

2w12 + b11
.

w12(t) + b12cos(Ω1t)w12(t)
+a13 cos(Ω2t)w11(t) + a14cos(Ω3t)w11(t)

+b15w12
2w11 + b16w11

2w12 + b17w12
3 + b18w11

3 = 0

(15b)

For the outer plate O2:

..
w21(t) + ω1

2w21 + a21
.

w21(t) + a22cos(Ω1t)w21(t)
+a23 cos(Ω2t)w21(t) + a24cos(Ω3t)w21(t)

+a25w21
2w22 + a26w21w22

2 + a27w21
3 + a28w22

3 = 0,

(16a)

..
w22(t) + ω2

2w22 + b21
.

w22(t) + b22cos(Ω1t)w22(t)
+a23 cos(Ω2t)w22(t) + b24cos(Ω3t)w22(t)

+b25w22
2w21 + b26w21

2w22 + b27w22
3 + b28w21

3 = 0

(16b)

where aij and bij(i = 1, 2; j = 1, , 8) are non- dimensional coefficients; all coefficients are
given in Appendix A.

Equations (15a), (15b), (16a) and (16b), including the quadratic, cubic terms, and
parametric excitations, describe the nonlinear vibration of the model in the first two modes.

4. Averaged Equations in Polar Form and Cartesian Form
4.1. The Polar Form Four-Dimensional Averaged Equations and Frequency Response Analysis

In order to perform perturbation analysis of Equations (15) and (16), the following
multi-scale transformation aij → εaij , bij → εbij is introduced; Equations (13) and (14) are
substituted into equations of motion with small parameters. Then, the multi-scale method
is used to find an approximate solution of the original non-autonomous system as follows:

xn(t, ε) = xn0(T0, T1) + εxn1(T0, T1) + · · ·, n = 1, 2, (17)

where T0 = t,T1 = εt..
Then, the differential operators are as follows:

d
dt

=
∂

∂T0

∂T0

∂t
+

∂

∂T1

∂T1

∂t
+ · · · = D0 + εD1 + · · · , (18a)

d2

dt2 = (D0 + εD1 + · · ·)2 = D2
0 + 2εD0D1 + · · · (18b)
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where D0 = ∂
∂T0

, D1 = ∂
∂T1

.
The case of primary parametric resonance and 1:3 internal resonance are considered,

the relationships are as follows:

ω2
1 =

1
9

Ω2 + εσ1, ω2
2 = Ω2 + εσ2, Ω1 = Ω2 = Ω3 =

2
3

Ω (19)

By inserting Equations (17), (18a) and (18b) into Equations (15a), (15b), (16a) and
(16b) and balancing the coefficient of ε on the left side and right side of the corresponding
equations, the acquired differential equations are given by

Order ε0

D2
0x10 +

1
9
ω2

1x10 = 0, (20a)

D2
0x20 +ω

2
2x20 = 0 (20b)

Order ε1

D2
0x11 +

1
9 ω2

1x11 = −a1D0x10 − σ1x10 − f1cos(Ω1t)x10 − a3cos(Ω2t)x10

−a4cos(Ω3t)x10 − a5x2
10x20 − a6x10x2

20 − a7x3
10 − a8x3

20 − 2D1D0x10,
(21a)

D2
0x21 + ω2

2x21 = b1D0x20 − σ2x20 − f2cos(Ω1t)x20 − b3cos(Ω2t)x20

−b4cos(Ω3t)x20 − b5x10x2
20 − b6x2

10x20 − b7x3
20 − b8x3

10 − 2D1D0x20,
(21b)

The solution of Equation (20) in the complex form is given by

x10 = A1(T1)e−
1
3 ωT0 + A1(T1)e−

1
3 ωT0 (22a)

x20 = A2(T1)eωT0 + A2(T1)e−ωT0 (22b)

where the conjugates of A and B are A1 and A2, respectively.
The following two expressions can be obtained by substituting Equations (22a) and (22b)

into Equation (21a) and (21b),

D2
0x10 +

1
9 ω2

1x10 =
(
− 1

3 Ia1ω1 A1 − σ1 A1 − 1
2 ( f1 + a3 + a4)A1 − a5 A2

1 A2−

2a6 A1|A2|2 − 3a7 A1|A1|2 − σ1 A1 − 2
3 IdA1

)
ei 1

3 ωT0 + cc + NST,
(23a)

D2
0x20 + ω2

2x20 =
(
−Ib1 A2 − σ2 A2 − 2b6|A1|2 A2 − 3b7 A2|A2|2 − b8 A3

1−

2IdA2)eiωT0 + cc + NST,
(23b)

where cc represents the parts of the complex conjugates of the right side function of
Equation (23), and NST represents the terms that do not produce secular terms.

The polar form of the functions A1, A1, A2, and A2 expressed as follows

A1 = 1
2 β1eiϕ1 , A1 = 1

2 β1e−iϕ1 ,

A2 = 1
2 β2eiϕ2 , A2 = 1

2 β2e−iϕ2 ,
(24)

The real and imaginary parts are separated by substituting Equation (24) into
Equation (23a), the polar coordinates form four-dimensional average equations, which
are given by

.
a11 = −1

2
a1a11 −

3
8

a5a2
11a22 sin(ϕ2 − 3ϕ1), (25a)

a11
.
ϕ1 = −1

3
σ1a11 +

3
8

a5a2
11a22 cos(ϕ2 − 3ϕ1) +

3
4

a6a2
22a11 +

9
8

a7a3
11, (25b)
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.
a22 = −1

2
b1a22 −

1
8

b8a3
11 sin(3ϕ1 − ϕ2), (25c)

a22
.
ϕ2 = −σ2a22 +

1
4

b6a2
11a22 +

3
8

a7a3
22 +

1
8

b8a3
11 sin(3ϕ1 − ϕ2), (25d)

when
.
a11,

.
a22 and

.
ϕ1,

.
ϕ2 are zero, and the parameters a11, a22 and ϕ1, ϕ2 are constant

and denote the steady vibration of this model. By eliminating the trigonometric function
including formula ϕ2,−3ϕ1, in Equation (25), the frequency response function of the
structure under the conditions of primary parameter resonance and 1:3 internal res-onance
can be obtained.( a1a11

2

)2
+

(
1
3

σ1a11 −
9
8

a7a3
11 −

3
4

a6a2
22a21

)2
=

(
3
8

a5a2
11a22

)2
(26a)

(
b1a22

2

)2
+

(
σ2a22 −

1
4

b6a2
11a22 −

3
8

b7a3
22

)2
=

(
1
8

b8a3
11

)2
(26b)

We only consider the steady vibration of the first two modes under two coupling effects.
The criteria for a weak coupling effect and a strong coupling effect are the following:

(1) When the amplitude of the first-order mode is constant and the other first-order
mode changes, there exists a weak coupling effect between the two modes when the
excitation frequency changes.

(2) When the amplitude of the two modes varies with the excitation frequency, there
exists a strong coupling effect between the two modes.

For the convenience of operation, let a22 = 1 in Equation (26a) and let a11 = 1 in
Equation (26b); the amplitude–frequency response of the two modes can be observed. The
weak coupling effect between the two modes is considered by the frequency response
function as follows:( a1a11

2

)2
+

(
1
3

σ1a11 −
9
8

a7a3
11 −

3
4

a6a2
22a21

)2
=

(
3
8

a5a2
11

)2
(27a)

(
b1a22

2

)2
+

(
σ2a22 −

1
4

b6a2
11a22 −

3
8

b7a3
22

)2
=

(
1
8

b8

)2
(27b)

The frequency response curves of the two modes can be obtained under different pa-
rameters according to the frequency response function Equations (27a) and (27b). Through
the analysis of numerous parameters, the shape and size of the amplitude–frequency re-
sponse curve of the system can be changed by the different values of a5 , a6 , b6 , b8 , and
the rigidity of the system can be changed by the different symbols a7 and b7. The frequency
response curves of the two modes, when a1 = 0.1 , b1 = 0.1 , a5 = 18 , a6 = 5 , b6 = 1 ,
b8 = 3 , with a7 and b7 taking different values, are shown in Figure 2. The frequency
response curves of the first-order mode, with b7 = 5 and b7 = −5 , are shown in Figure 2a.
The frequency response curves of the second-order mode, with a7 = 5 and a7 = −5 , are
shown in Figure 2b. It can be seen from the Figure 2 that the system can exhibit different
nonlinear stiffness characteristics with different parameters a7, b7, and symbols.

The frequency response curves of the second-order mode when a1 = 0.1 , b1 = 0.1,
a7 = 5 , b7 = 5 , b6 = 1 , b8 = 3 with a5 and a6 taking different values are shown in
Figure 3. The frequency response curves of the second-order mode with a7 = 5, a5 = 9 ,
and a5 = 18 are shown in Figure 3a. The frequency response curves of the second-order
mode, with a6 = 1, a6 = 5, and a6 = 10, are shown in Figure 3b. It can be seen from the
figure that the amplitude–frequency response curves of the second-order mode shifts to
the right with the increase in the parameter values a5, a6.
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The frequency response curves of the first-order mode, when a1 = 0.1, b1 = 0.1,
a5 = 18, a6 = 5, a7 = 5, b7 = 5, with b6 and b8 taking different values, are shown
in Figure 3. The frequency response curves of the second-order mode, with b6 = 1,
b6 = 2 and b6 = 3, are shown in Figure 4a. The frequency response curves of the second-
order mode, with b8 = 3, b6 = 5 and b6 = 7, are shown in Figure 4b. It can be seen
from Figure 4 that the parameters b6, b8 have little influence on the amplitude–frequency
response curves of the second-order modes. With the increase in the parameter values, all of
the amplitude–frequency response curves of the second-order modes shift to the right, and
the amplitude–frequency response curves of the second-order mode are greatly affected.
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4.2. Four-Dimensional Averaged Equations in Cartesian Form

The elimination of the secular terms of Equations (23a) and (23b) yields the average
equations in complex form as follows,

D1 A1 = − 1
2 a1 A1 +

9
2 Ia7 A1|A1|2 + 3

2 Iσ1 A1 +
3
2 Ia5 A2

1 A2

+ 3
4 I f1 A1 + 3Ia6 A1|A2|2 + 3

4 Ia3 A1 +
3
4 Ia4 A1,

(28a)

D1 A1 =
3
2

Ib7 A2|A2|2 +
1
2

σ2 A2 +
1
2

Ib8 A3
1 + Ib6|A1|2 A2 −

1
2

b1 A2.. (28b)

The Cartesian form functions A and B are represented as follows,

A1(T1) = x1(T1) + ix2(T1) (29a)

A2(T1) = x3(T1) + ix4(T1) (29b)

Substituting Equations (29a) and (29b) into Equation (28a) and (28b), the Cartesian
form averaged equations are given by

.
x1 = − 1

2 a1x1 − 9
2 a7x2

(
x2

1 + x2
2
)
− 3

2 σ1x2 + 3a5x1x2x3

− 3
2 a5
(

x2
1 − x2

2
)
x4 +

3
4 x2 f1 − 3a6x2

(
x2

3 + x2
4
)
+ 3

4 a3x2 +
3
4 a4x2,

(30a)

.
x1 = − 1

2 a1x1 +
9
2 a7x1

(
x2

1 + x2
2
)
+ 3

2 σ1x1 +
3
2 a5x1x2x3 +

3
2 a5
(

x2
1 − x2

2
)
x3

+3a5x1x2x4 +
3
4 f1x1 + 3a6x1

(
x2

3 + x2
4
)
+ 3

4 a3x1 +
3
4 a4x1,

(30b)

.
x3 = − 3

2 a7x1
(

x2
3 + x2

4
)
− 1

2 σ2x4 − 1
2 b8
(
3x2

1x2 − x3
2
)

−b6
(
x2

1 + x2
2
)

x4 − 1
2 b1x3,

(30c)

.
x4 = 3

2 b7x3
(
x2

3 + x2
4
)
+ 1

2 σ2x3 +
1
2 b8
(

x3
2 − 3x1x2

2
)

+b6
(

x2
1 + x2

2
)
x3 − 1

2 b1x4
(30d)
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5. Numerical Simulation

In this section, according to the averaged equation in Equations (30a)–(30d), the fourth-
order Runge–Kutta method is used to numerically analyze the nonlinear dynamic behaviors
of this model. The complex nonlinear dynamics and the influence of different parameters
on the motions of the stepped rectangular cantilever plate are discussed.

From the numerical calculations, with different parameters and initial conditions, the
bifurcation diagram is drawn using different forcing amplitudes as follows:

a1 = 3.7848, a3 = 0.92939, a4 = 2.9463, a5 = 1.1326,

a6 = 3.8055, a7 = 0.12337, b1 = 3.3044, b6 = 2.8609, b7 = 1.8832,

b8 = 2.0802, σ1 = 1.4345, σ2 = 2.8415, x1 = 0.52058, x2 = 0.10872,

x3 = −0.098578, x4 = −0.53287.

The bifurcation diagram, which depicts the relationship between the forcing amplitude
f1 versus x1, is shown in Figure 5. When the forcing excitation f1 changes from 3 to 9,
three chaotic regions are observed in the system, and chaotic motion and periodic motion
alternate. The bifurcation diagram in Figure 5 reveals that the periodic responses of the
model are highly sensitive to the external excitation f1. Next, we verify the reliability of the
bifurcation diagram by taking different amplitudes of forced excitation f1.
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Figure 5. The bifurcation diagram of this model for x3 via the forcing excitation f 1.

Figures 6–9 present the two-dimensional phase portraits, time histories, three-dimen-
sional phase portraits, and Poincare maps for the composite stepped piezoelectric cantilever
plate system. In Figures 6–9, where Figure (a) shows the two-dimensional phase portraits
on the plane (x1, x2); Figure (b) shows the two-dimensional phase portraits on the plane
(x3, x4); Figure (c) shows the time history diagrams on the plane (t, x1); Figure (d) shows
the time history diagrams on the plane (t, x1); Figure (e) shows the three-dimensional phase
portraits in space (x1, x2, x3); Figure (f) shows the Poincare maps in space (x1, x2). As
shown in Figure 6, when the external excitation f1 is equal to 4.0, the composite stepped
piezoelectric cantilever plate system is in chaotic motion. As the external excitation f1
changes to 5.25, a period-8 response of this model occurs, which is shown in Figure 7. The
amplitude of the forced excitation continues to increase, and when f1 = 6.5 and f1 = 8.1,
the system still undergoes chaotic motion, as shown in Figures 8 and 9.
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Figure 6. The chaotic motion when the excitation amplitude is 4.6388, (a) the phase diagram on
plane (x1, x2), (b) the phase diagram on plane (x3, x4), (c) The time history diagrams on planes (t, x1),
(d) the time history diagrams on planes (t, x3), (e) the phase diagram on space (x1, x2, x3), (f) the
spectrum diagrams.

In Figure 6, it is found that the composite stepped piezoelectric cantilever plate system
has chaotic motion. The first- and second-mode phase diagrams, Figure 6a,b, as well as the
three-dimensional phase diagram, Figure 6e, indicate that the system has undergone chaotic
motion. The first- and second-mode time history diagrams, Figure 6c,d, and Poincare map,
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Figure 6f, also indicate that chaotic motion occurs for the composite stepped piezoelectric
cantilever plate system.
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(d) the time history diagrams on planes (t, x3), (e) the phase diagram on space (x1, x2, x3), (f) the
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When f2 = 5.25, the composite stepped piezoelectric cantilever plate system exhibits
period-8 motion, as shown in Figure 7. Figures 8 and 9 show that the system exhibits
chaotic motion, and the chaotic motion is similar. Comparing the time history diagrams
of Figures 8 and 9, it is not difficult to find that as the excitation amplitude increases, the
amplitudes of both the first and second modes increase. However, compared to Figure 6,
the vibration of the system did not increase due to the increase in the amplitude of the
forced excitation.
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Figure 8. The chaotic periodic motion of this model obtained when f2 = 6.5, (a) the phase diagram
on plane (x1, x2), (b) the phase diagram on plane (x3, x4), (c) The time history diagrams on planes
(t, x1), (d) the time history diagrams on planes (t, x3), (e) the phase diagram on space (x1, x2,x 3),
(f) the Poincare map.

Next, we study the impact of different parameters on the system’s motion characteris-
tics. By select another set of parameters and initial conditions as follows:

a1 = 0.38711, a3 = 0.69793, a4 = 3.5231,
a5 = 3.2024, a6 = 2.1273, a7 = 0.0495,
b1 = 0.8196, b6 = 2.1574 , b7 = 1.8832,
b8 = 1.2293, σ1 = 30692, σ2 = 3.3388,

x1 = 0.11306, x2 = −0.41041,
x3 = 0.31385, x4 = −0.22487

The chaotic motion of the composite stepped piezoelectric cantilever plate system was
assessed according to the criterion of the power spectrum in the descriptive method of
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chaotic motion. Figure 10 shows the periodic motion of the composite stepped piezoelectric
cantilever plate system when the excitation amplitude f1 is 7.1388. Because both the phase
portraits and the time history diagrams indicate that the system has undergone periodic
motion and there are peaks in the spectrum diagram, it can be determined that the system
has undergone periodic motion. Figure 11 shows that the composite stepped piezoelectric
cantilever plate system exhibits chaotic motion different from the previous one under this
set of parameters. Therefore, it can be concluded that different types of period doubling
and chaotic motion can be obtained by changing the system parameters.
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Figure 9. The chaotic periodic motion of this model obtained when f2 = 6.5, (a) the phase diagram
on plane (x1, x2), (b) the phase diagram on plane (x3, x4), (c) The time history diagrams on planes
(t, x1), (d) the time history diagrams on planes (t, x3), (e) the phase diagram on space (x1, x2, x3),
(f) the Poincare map.
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Figure 10. Period motion when the excitation amplitude is 7.1388, (a) the phase diagram on plane
(x1, x2), (b) the phase diagram on plane (x3, x4), (c) The time history diagrams on planes (t, x1),
(d) the time history diagrams on planes (t, x3), (e) the phase diagram on space (x1, x2, x3), (f) the
spectrum diagrams.
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Figure 11. Chaotic motion when the excitation amplitude is 15.6388, (a) the phase diagram on plane
(x1, x2), (b) the phase diagram on plane (x3, x4), (c) The time history diagrams on planes (t, x1),
(d) the time history diagrams on planes (t, x3), (e) the phase diagram on space (x1, x2, x3), (f) the
spectrum diagrams.

Next, the influence of different initial condition on the resonance behavior of the
system is studied, and only initial values are changed. Other parameters are the same as
those in Figure 10. The initial values are chosen as follows:

x1 = 0.11306, x2 = −0.41041,

x3 = 0.31385, x4 = −0.22487.
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It can be seen from Figure 12 that different initial values have a great impact on
the resonance behavior of the system, and the system presents a completely different
chaotic motion.
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Figure 12. Chaotic motion when the excitation amplitude is 4.6388, (a) the phase diagram on plane
(x1, x2), (b) the phase diagram on plane (x3, x4), (c) The time history diagrams on planes (t, x1),
(d) the time history diagrams on planes (t, x3), (e) the phase diagram on space (x1, x2, x3), (f) the
spectrum diagrams.
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Finally, we investigate the influence of the piezoelectric excitation parameter on the
composite stepped piezoelectric cantilever plate system. The bifurcation diagrams of
the first-order and the second-order modes of the system with piezoelectric excitation
are shown in Figure 13a,b, respectively. The horizontal axis represents the piezoelectric
excitation parameter, and the vertical axis represents the displacement of the first and
second modes. The initial conditions and parameter values are as follows:

a1 = 2.6343, a4 = 1.1528, a5 = 2.2338, a6 = 0.19283,
a7 = 3.8706, a8 = 3.1855, a9 = 0.1394, b1 = 0.40072,
b6 = 1.445, b7 = 3.312, b8 = 1.5662, σ1 = 0.31063,

σ2 = 3.0766, x1 = 1.5662, x2 = 0.31063,
x3 = 1.6166, x4 = 0.44727, f1 = 0.87402.
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Figure 13. The bifurcation of the system with piezoelectric excitation. (a) The bifurcation of the
first-order modes, (b) The bifurcation of the second-order modes.

The research results in Figure 13 indicate that as the piezoelectric excitation parameters
increase, both the first and second modes of the system exhibit periodic motion, chaotic
motion, and then periodic motion. Therefore, the chaotic motion of the system can be
restrained by period-doubling bifurcation by adjusting the piezoelectric excitation, and the
amplitude of the system vibration can be effectively reduced, so as to maintain the stability
and controllability of the system motion.

6. Results

This paper simplified the fully unfolded axially moving wing into a composite stepped
piezoelectric cantilever plate model, and then the nonlinear dynamics of the cantilever
stepped plate were studied. Based on Hamilton’s principle, the governing equations of
the system were obtained. The nonlinear governing equations were further reduced to a
two-degree-of-freedom nonlinear system by Galerkin’s method. In addition, the case of
primary parametric resonance and 1:3 internal resonance were introduced in this study.
Using the multiple scales method, the equations of the original non-autonomous system
can be obtained, and a set of four-dimensional averaged equations were acquired. Some
conclusions are summarized.

(1) The present work deals with the dynamic problem of the smart piezoelectric composite
structure, dynamic analysis of the PVDF piezoelectric stepped plate, nonlinear trans-
verse vibrations of the symmetric cross-ply composite laminated piezoelectric stepped
cantilever plate with fiber-reinforced composite materials subjected to in-plane and
out-of-plane excitation, vibration response analysis of the PVDF piezoelectric plate
subjected to aerodynamic forces, piezoelectric excitation, and in-plane excitation.
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(2) From the analysis of the frequency response results, it is found that the system
exhibits different nonlinear stiffness characteristics, and the amplitude–frequency
response curves of the first-order mode and second-order modes are greatly affected
by different parameters.

(3) According to the numerical results of the chaos and bifurcations, it is found that the
system exhibits chaotic motion, and the chaotic motion is similar. The different initial
values have a great impact on the resonance behavior of the system, and the system
presents completely different chaotic motions.

(4) The influence of the piezoelectric excitation parameter on the composite stepped
piezoelectric cantilever plate system is investigated. It is found that the system
exhibits complex nonlinear motion, the chaotic motion of the system can be restrained
by period-doubling bifurcation by adjusting the piezoelectric excitation, and the
amplitude of the system vibration can be effectively reduced, so as to maintain the
stability and controllability of the system motion.
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Appendix A

a1 = 1.3029× 106c31
1
a∗ , a2 = 6224.789745c14

1
a∗ , a3 = 4.5983× 105c14

1
a∗ ,

a4 = 4.5983× 105c15
1
a∗ ,

a5 = (a51K11 + a52K22 + a53K21 + a54K12 + a55K41 + a56K42 + a57K32 + a58K31

−3.2986× 109c16 + 9.4045× 10−4c19 + 2.6173× 1011c19

+4.6210× 107c23 + 0.1333× 107c22)
1
a∗

a6= (a61K12 + a62K13 + a63K22 + a64K23 + a65K42

+a66K43 + a67K33 + a68K32 − 1.2741× 108c18

+5.1809× 108c19 − 3.3647× 1010c22 + 1.2194× 107c23

−1.1896× 10−5c23 + 3.5488× 107c16)
1
a∗

a7(a71K11 + a72K21 + a73K41 + a74K31+

1.0103× 1011c8 − 1.0952× 1011c19 − 3.8439× 107c16−
4.2564× 109c22 + 7.1070× 1012c23)

1
a∗

a8 = (a81K13 + a82K23 + a83K33 + a845K43

−8.7080× 109c16 + 3.6733× 1010c18 + 1.5369× 107c19

−7.4937× 1010c22 − 6.7893× 109c23)
1
a∗
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a9 = (−18.0742c24G12 +178.3855c26G12 + 44.5963c25G12

+1397.9243c26G22 − 35.4098c24G22 + 349.4810c25G22

+640.8987c27G32 − 889.1972c28G32 + 552.2871c29G32

+545.8062c27G42 − 698.9621c28G42 − 7882.7128c29G42)
1
a∗

ω2
1 =

(
A∗1 + A∗2+ A∗3 + 3.9464× 105c17 + 4.5982× 105c13

+4.5978× 105c15F0 + 1.4921× 107c20

+5.1893× 109c21
) 1

a∗

b1 = 267.8541c31
1
b∗ , b2 = −341.1268c14

1
b∗ , b3 = 2948.0244c14

1
b∗ ,

b4 = −1886.7404c15
1
b∗ ,

b5 = (b51K12+ b52K23 + b53K22 + b54K13 + b55K32 + b56K33 + b57K42 + b58K43

−5.5939× 1011c16 + 1.8210× 109c18 + 1.1355× 1012c23

−7.1120× 1011c19 − 6.1598× 108c22
) 1

b∗ ,
b6 = (b61K22+ b62K21 + b63K11 + b64K12 + b65K31 + b66K32 + b67K41 + b68K42

+5.8087× 1011c16 − 9.3861× 1010c18 + 0.00476c18

−8.3884× 107c19 − 2.0764× 107c22 − 59942.4063c23
) 1

b∗ ,
b7 = (b71K123+ b72K33 + b73K43 + b74K13 + 1.4475× 1010c16

+4.2698× 108c23 − 4.9860× 109c22 + 1.5364× 107c19

−4.6651× 1011c18
) 1

b∗ ,
b8 = (b81K11+ b82K21 + b83K31 + b84K41 − 1.1174× 109c23

+2.1581× 109c22 + 6.1442× 1010c18 + 1.1118× 1010c16

−1.0939× 1011c19
) 1

b∗ ,
b9 = (−1.5720c24G31 +116.7289c25G11 + 0.6888c24G21 − 80.1867c27G31

−18.44427c27G41 − 4083.8068c25G21 − 1.4765c29G31

−28.8557c29G41 − 7.7579c28G31 + 13.5973c28G41
ω2

2 = (−341.1271− 1.5720c24G12 + 15.5159c26G12 − 27.1947c26G22

−4.8202× 106c20
)

−9.2556× 10−8c20 − 1.4338× 106c21 + 116.7289c25G12 + 0.6888c24G22

−4083.8068c25G22 + 12421.9562− 7.7579c28G32 + 13.5973c28G42

−1.4765c29G32 − 80.1867c27G32 − 18.4427c27G42 − 28.8557c29G42

−1886.7404c15F0 + 1.6722× 107c13)
1
b

a∗ = 2.6920× 105c31 + 1.3029× 106c32 + 2150.1200c34,

a51 = −4.7305× 105c2 + 3.3585× 105c5 − 27101.7317c4 + 51125.8885c6+

3.1497× 106c3,

a52 = −4.6297× 105c5 + 9.1329× 106c6 − 4.9823× 107c4 − 1.2011×
107c3 − 1.2228× 107c2,

a53 = 6.6072× 105c2 − 3.2648× 10−7c2 + 2.1998× 107c3 − 2.1004×
105c4 + 5.6954× 106c6,

a54 = −4.3065× 105c3 − 1.9118× 107c4 − 8.2860× 105c5+

2.0686× 106c6,

a55 = −3.2445× 106c7 + 88835.0548c9 − 2.0771× 107c10−
18159.0837c8 − 3.9695× 106c11 + 31661.8179c12,

a56 = 1.15661× 107c7 − 5.4589× 106c8 − 1.5738× 107c9

−3.4688× 105c10

+3.3315× 107c11 − 7.4218× 106c12,
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a57 = −4.1433× 106c7 + 1.3714× 107c8 + 1.8851× 106c9

−6.5130× 106c10

−9.1956× 107c11 + 1.3581× 105c12,

a58 = 3.0959× 105c8 + 2.0771× 105c9 − 1362.1273c11,

a61 = −4.7305× 105c2 + 3.1497× 106c3 − 27101.7317c4 + 3.3585×
105c5 + 511258885c6,

a62 = −8.2860× 105c5 + 2.0686× 106c6 − 1.1279× 106c2

−1.2691× 10−7c2

−4.3065× 106c3 − 1.9118× 107c4,

a63 = 1.1632× 105c1 + 5.6954× 106c6 + 2.1998× 107c3 − 2.1004×
105c4 + 6.6072× 105c2,

a64 = 1.1632× 105c1 − 1.2011× 107c3 − 4.8923× 107c4 − 4.6297×
105c5 + 9.1329× 106c6,

a65 = −3.2445× 106c7 − 18159.0837c8 + 88835.0548c9 − 2.0771× 107c10

+6.9071× 10−7c10 − 3.9695× 106c11 + 31661.8179c12,

a66 = 1.1566× 107c7 − 5.4589× 106c8 − 1.5738× 107c9 − 3.4688× 105c10

+3.3315× 107c11 − 7.4218× 106c12,

a74 = 1.8851× 106c9 + 1.3714× 10−7c8 − 4.1433× 106c7 − 6.5130× 106c10

−9.1956× 107c11 + 1.3581× 105c12

a81 = −7.3916× 10−8c3 − 4.7305× 105c2 + 3.1497× 106c3

−27101.7317c4105c10105c10

+3.3585× 105c5 + 51125.8885c6,

a82 = 6.4410× 106c1 − 1.2228× 107c2 + 6.6072× 105c2 + 2.21998× 107c3

−2.1004× 105c4 + 5.6954× 106c6

a83 = 3.0959× 105c8 + 2.0771× 105c9 − 1362.1273c11 + 80031.5364c12

a84 = −3.2445× 106c7 − 18159.0837c8 + 31661.8179c12 + 88835.0548c9

−2.0771× 107c10 + 6.9071× 10−7c10 − 3.9695× 106c11

A1
∗ = −18.0742c24G11 + 178.3855c26G11 + 44.5963c25G11,

A2
∗ = 349.4810c25G21 − 35.4098c24G21 + 1397.9243c26G21,

A3
∗ = 545.8062c27G41 − 7872.7128c29G41 − 698.9621c28G41,

A4
∗ = −89.1927c28G31 + 640.8987c27G31 + 552.2871c29G31,

b∗ = 267.8541c32 − 341.1243c31 + 527.8214c34,

b51 = −4.7305× 105c2 + 9.3066× 106c3 + 5.6279× 105c4

+1.4957× 106c5 + 3.9265× 105c6,

b52 = 7.5935× 105c1 − 1.2228× 107c2 − 2.0423× 107c3 + 1.8483× 107c4

−2.5938× 106c5 − 312.6370c6,

b53 = 6.6072× 105c2 + 3.6261× 107c3 − 2.1473× 106c4 − 723409803c6

b54 = −1.1279× 106c2 + 1.2208× 106c3 + 1.9439× 106c4 + 6.4822× 10−9c4

+5.9301× 10−9c4 + 5.9301× 105c5 + 68725.8271c6,

b55 = −3.3176× 105c7 − 2.4479× 106c8 + 1.1706× 106c9

−2359.015c10 + 2.7027× 105c12,

b56 = 2919.7913c9 − 867.1266c8 − 6251.9972c10 + 6.8193× 106c11

−2.2999× 105c12,
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b57 = −6.6304× 106c7 + 85183.4316c8 − 9.6355× 106c9 + 3.1069× 107c10

+3.1265× 107c11 − 4.7050× 106c12,

b58 = 1.1121× 105c7 − 1.2151× 107c8 + 5.3576× 105c9 − 3.0235× 106c10

+3.1265× 107c11 − 1.6345× 106c12,

b61 = 2.6606× 105c1 − 1.2228× 107c2 − 2.0423× 107c3 + 1.8483× 107c4

−2.5938× 106c5 − 312.6370c6,

b62 = 4.6047× 106c1 + 6.6072× 105c2 + 3.6261× 107c3 − 2.1473× 106c4

−72340.9803c5 + 8636.2243c6,

b67 = −6.6304× 106c7 + 85183.4316c8 + 3.1069× 107c10 − 9.6355× 106c9

+3.1265× 107c11 − 4.7050× 106c12,

b68 = 1.1121× 105c7 − 1.2151× 107c8 + 5.3576× 106c9 − 3.0235× 106c10

−4.8441× 107c11 − 1.6349× 106c12,

b71 = −3.1066× 107c1K23 + 6.6072× 105c2K23 + 3.6261× 107c3K23

−2.1473× 106c4K23 − 72340.9803c5K23 + 8636.2243c6K23,

b72 = −2359.0154c10K33 − 2.4479× 106c8K33 + 1.1706× 106c9K33

+2.7027× 105c12K33 − 72340.9803c5K23 + 8636.2243c6K23,

b73 = −6.6304× 106c7K43 + 85183.4316c8K43 + 3.1265× 107c11K43

+3.1069× 107c10K43 − 9.6355× 106c9K43 − 4.7050× 106c12K43,

b74 = −1.1414× 106c1K13 + 9.3066× 106c3K13 + 5.6279× 105c4K13

+1.1967× 107c10K43 + 3.9265× 105c6K13 + 1.4957× 106c5K13,

b81 =
(
−32864.8026c1 − 1.1279× 106c2 + 1.9439× 106c4 + 1.2208× 106c3

)
+5.9301× 105c5 + 68725.8217c6)K11,

b82 =
(
−2.0423× 107c3 − 1.2228× 107c2 − 2.4589× 105 + 1.8483× 107c4

)
+2.5938× 106c5 − 312.6370c6)K21,

b83 = (−867.1266c8 + 2919.7913c9 − 2.2999× 105c12 − 6251.9972c10

+6.8193× 106c11)K31,

b84 = (1.1121× 105c7 − 1.2151× 107c8 − 4.8441× 107c11 − 3.0235× 106c10

+5.3576× 106c9 − 1.6349× 106c12)K41,

K11 = k2k6
k1k5

k8g3
(k4k8−k3k7)

, K12 = k1g6−k6g1
k1k5

+ k2k6
k1k5

(k8g4−k4g8)
(k4k8−k3k7)

,

K13 = k1g7−k6g2
k1k5

+ k2k6
k1k5

(k8g5−g9)
(k4k8−k3k7)

,

K21 = k8g3
(k4k8−k3k7)

, K22 = (k8g4−k3g8)
(k4k8−k3k7)

, K23 = (k8g5−g9)
(k4k8−k3k7)

,

K31 = − k2
k1

k8g3
(k4k8−k3k7)

, K32 = g1
k1
− k2

k1

(k8g4−k3g8)
(k4k8−k3k7)

,

K33 = g2
k1
− k2

k1

(k8g5−g9)
(k4k8−k3k7)

, K41 = k7g3
(k3k7−k4k8)

,

K42 = g8
k8
− k7

k8

(k8g4−k3g8)
(k4k8−k3k7)

, K43 = g9
k8
− k7

k8

(k8g5−g9)
(k4k8−k3k7)

,

G11 = 0, G12 = g10
k9
− k10

k9

(k13g10−k9g13)
(k10k13−k9k14)

,

G21 = − g11
(k12k15−k11k16)

, G22 = g14
k15
− (k11g12−k11g14)

(k12k15−k11k16)
,

G31 = 0, G32 = (k13g10−k9g13)
(k10k13−k9k14)

, G41 = k15g11
(k12k15−k11k16)

,

G42 = (k15g12−k11g14)
(k12k15−k11k16)

.

k1 = 0.785398a∗2 , k2 = −
(
0.616850 + 2.467401a∗1

)
,
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g1 =
(
−4.744788× 107a∗3 − 32578.33332a∗4

)
,

g2 =
(
4.981801× 105a∗3 − 3.646051× 105a∗4 + 5.445221× 106a∗5

)
k3 = 1.570796a∗2 , k4 = −9.869604a∗1 + 5.551652),

g3 = +2327.52a∗3 , g4 =
(
176.68a∗3 + 402.75a∗4 + 1.716172× 105a∗5

)
,

g5 = −
(
58326.07479a∗3 − 10547.61a∗4

)
,

k7 = −1.570796b∗2 , k8 = −
(
9.869604 + 5.551652b∗1

)
,

g8 =
(
31269.29496b∗3 + 1.5918982× 106b5

)
,

g9 = −
(
395.291414b∗3 + 6.285076× 106b∗4 + 555.037747b∗5

)
,

k9 = (−0.616850− 2.467401d2 + 0.250000d3), k10 = +1.233701d1,

g10 = (14.718968d4 − 5.65415d5 − 121.845185d6),

k11 = (−2.467401− 9.869604d2 + 0.250000d3),

k12 = 4.934802d1, g11 = −2.037991× 105d4,

g12 = (4096.280629d4 + 0.688849d5 + 35.461406d6),

k13 = −0.3370957766e1,

k14 = (−1.119017995 + 0.1685478884e2 + 0.1133802278e3),

g13 = (−62.57258940e4 − 2.461167786e5 + 54.2305720e6),

k15 = 4.934802202e1,

k16 = (−29.60881321− 2.467401101e2 + 0.750000e3),

g14 = (31.76756576e4 + 0.6170956706e5 − 74.3112589e6),

a∗1 = A66
A11

a2

b2 , a∗2 = A12+A66
A11

, a∗3 = h2

a2 , a∗4 = A66
A11

h2

b2 ,

a∗5 = A12+A66
A11

h2

b2 , a∗6 = I0
A11

a2

(ab) ,

a∗7 = 1
A11

a
(ab)1/2

(
I1 − c1(ab)I3

)
, a∗8 = I3

A11
c1h(ab)1/2, b∗1 = A66

A22

b2

a2 ,

b∗2 =
(A21+A66)

A22
, b∗3 = A66

A22

h2

a2 ,

b∗4 = h2

b2 , b∗5 =
(A21+A66)

A22

h2

a2 , b∗6 = I
A22

b2

(ab) ,

b∗7 = b
(ab)1/2

1
A22

(
I1 − c1(ab)I3

)
, a∗8 = (ab)1/2h

A22
c1 I3,

c∗ = 1
(A55−2c2D55+c2

2F55)
, c1 = A11c∗, c3 = A66

a2

b2 c∗, c4 = A12
a2

b2 c∗,

c5 = 2A66
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b2 c∗, c6 = 2
(

A21 + A66
) a2

b2 c∗,

c7 =
(

A21 + A66
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c∗, c8 = A66
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b2 c∗, c9 = A66c∗, c10 = A12c∗, c11 = A22
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b2 c∗,

c12 = 2A66c∗,

c13 = a2

b2

(
A44 − 2c2D55 + c2

2F55
)
c∗, c14 = − a2

b2 Np
y c∗,

c14 = − a2

b2
Eh7

(ab)7/2 c∗, c16 =
(

A12 + 4A66 + A21
) h2

b2 c∗,

c17 = −c2
1
(

H21 + 4H66 + H21
) 1

b2 c∗, c18 =
(

1
2 A12 + A66

)
h2

b2 c∗,

c19 =
(

1
2 A21 + A66

)
h2

b2 c∗, c20 = −c2
1H11

1
a2 c∗,

c21 = −c2
1H22

a2

b4 c∗, c22 = 3
2 A11

h2

a4 c∗,

c23 = 3
2 A22

a2h2

b4 c∗, c24 = h
a ,

c25 = c1
(

F11 − c1H11
) 1

ah c∗,

c26 = c1
(

F21 + 2F66 − c1H21 − 2c1H66
) a

b2h c∗,
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c27 =
(

A44 + 2c2D44 − c2
2F44

) a2

bh c∗,

c28 = c1
(

F12 + 2F66 − c1H12 − 2c1H66
) c1

bh c∗,

c29 =
(

F22 − c1H22
) a2

b3h c∗, c30 = −Np
x c∗, c31 = Eh4

(ab)1/2b2
c∗,

c310 = a2

b2
E(ab)3/2

h c∗, c32 = I0
Ea2

ρ(ab) c∗, c33 = −c2
1 I6

a
b3

E
ρ c∗,

c34 = −c2
1 I6

a
b3

E
ρ c∗, c35 = c1 I3

a
bh

E
ρ c∗,

c36 = c1 J0
E

ρ(a2b) , c37 = c1 J4
E

ρ(ab2)
,

d∗ = 1
(D11−2c1F11+c2

1 H11)
,

d1 =
(

D12 + D66 + c2
1H66 − 2c1F66 + c2
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)
d∗ a

b ,

d2 =
(

D66 − 2c1F66 + c2
1H12

)
d∗ a2

b2 ,

d3 =
(
2c2D55 − A55 − c2

2F55
)
d∗ a

b ,

d4 = −
(

F11 − 2c1H11
)
d∗ a

b ,

d5 = −
(
−2c2D55 + A55 + c2

2F55
)
d∗ h

b ,

d6 =
(
2F66 + F12 − 2c1H66 − c1H12

)
d∗ ah

b2 ,

d∗∗ = 1
(D11−2c1(ab)F11+(ab)2c2

1 H11)
,

d7 =
(

I1 + L2c1 I3
)
d∗∗ a3

(ab)3/2 ,

d8 =
(

I2 − 2c1(ab)I4 + c2
1(ab)2 I6

)
d∗∗ a

b ,

d9 = c1(I4 − c1(ab)I6)ahd∗∗,

e1 = b
a
(D21+D66+c2

1 H66+c2
1 H21−2c1F66−2c1F21)

(D22−2c1F22+c2
1 H22)

,

e2 = b2

a2
(D66−2c1F22+c2

1 H66)
(D22−2c1F22+c2

1 H22)
,

e3 = b
a
(2c2F44−c2

2F44−A44)
(D22−2c1F22+c2

1 H22)
,

e4 = h
b

c1(F22−c1 H44)
(D22−2c1F22+c2

1 H22)
,

e5 = h
a
(c2

2F44−c2D44−A44)
(D22−2c1F22+c2

1 H22)
,

e6 = bh
a2

(
2F66+F12−2c1 H66−2c1 H21

)
(D22−2c1F22+c2

1 H22)
,

e7 =
(

b
a

)3/2 (I1−c1(ab)I3)
(D22−2c1(ab)F22+c2

1(ab)H22)
,

e8 = b
a

(I2−2c1(ab)I4+c2
1(ab)2 I6)

(D22−2c1(ab)F22+c2
1(ab)H22)

,

e9 = − c1(I4−c1(ab)I6)bh

(D22−2c1(ab)F22+c2
1(ab)H22)

.
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