
Citation: Al-Labadi, L.; Ciur, P.;

Dimovic, M.; Lim, K. Assessing

Multinomial Distributions with a

Bayesian Approach. Mathematics

2023, 11, 3007. https://doi.org/

10.3390/math11133007

Academic Editor: Chao Wang

Received: 10 June 2023

Revised: 2 July 2023

Accepted: 4 July 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Assessing Multinomial Distributions with a Bayesian Approach
Luai Al-Labadi 1,*, Petru Ciur 1, Milutin Dimovic 1 and Kyuson Lim 2

1 Department of Mathematical & Computational Sciences, University of Toronto Mississauga,
Toronto, ON L5L 1C6, Canada; petru.ciur@mail.utoronto.ca (P.C.)

2 Department of Mathematics & Statistics, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4L8, Canada; limk15@mcmaster.ca

* Correspondence: luai.allabadi@utoronto.ca

Abstract: This paper introduces a unified Bayesian approach for testing various hypotheses related
to multinomial distributions. The method calculates the Kullback–Leibler divergence between two
specified multinomial distributions, followed by comparing the change in distance from the prior to
the posterior through the relative belief ratio. A prior elicitation algorithm is used to specify the prior
distributions. To demonstrate the effectiveness and practical application of this approach, it has been
applied to several examples.
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1. Introduction

Multinomial distribution tests are a crucial statistical tool in many fields, especially
when data can be categorized into multiple groups. These tests were first proposed by
Karl Pearson in 1890 and have since been widely used to analyze and make inferences
about the probabilities or proportions associated with each category in the multinomial
distribution [1].

Let the sample space A of a random experiment be the union of a finite number k
of mutually disjoint sets (categories) A1, . . . , Ak. Assume that P(Aj) = θj, j = 1, . . . , k,
where ∑k

j=1 θj = 1. Here θj represents the probability that the outcome is an element
of the set Aj. The random experiment is to be repeated n independent times. Define
the random variables Yj to be the number of times the outcome is an element of set Aj,
j = 1, . . . , k. That is, Y1, . . . , Yk = n − Y1 − Y2 − · · · − Yk−1 denote the frequencies with
which the outcome belongs to A1, . . . , Ak, respectively. Then the joint probability mass
function (pmf) of Y1, . . . , Yk is the multinomial with parameters n, θ1, . . . , θk [2]. It is desired
to test the null hypothesis:

H1
0 : θj = θj0, for j = 1, . . . , k (1)

against all alternatives, where θj0 are known constants. Within the classical frequentist
framework, to test H1

0 , it is common to use the test statistic [3]:

χ2 =
k

∑
j=1

(Yj − nθj0)
2

nθj0
. (2)

It is known that, under H1
0 , the limiting distribution of χ2 is chi-squared with k− 1

degrees of freedom. When H1
0 is true, nθj0 represents the expected value of Yj. This implies

the observed value χ2 should not be too large if H1
0 is true. For a given significance level
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α, an approximate test of size α is to reject H1
0 if the observed χ2 > χ2

k−1(α), where the
χ2

k−1(α) is the 1− α quantile of the chi-squared distribution with k− 1 degrees of freedom;
otherwise, fail to reject H1

0 . Other possible tests for H1
0 include Fisher’s exact test and

likelihood ratio tests [4].
If there are r independent samples, then the interest is to test whether the r samples

come from the same multinomial population or that r multinomial populations are different.
Let A1, A2, . . . , Ak denote k possible types of categories in the ith sample, i = 1, . . . , k. Let
the probability that an outcome of category Aj will occur for the ith population (or ith
sample) be denoted by θj|i. Note that, ∑k

j=1 θj|i = 1 for each i = 1, . . . , r. Moreover, let Yj|i be
the number of times the outcome is an element of Aj in sample i. Consider the completely
specified hypothesis:

H2
0 : θj|i = θj0|i, for j = 1, 2, . . . , k. (3)

Under H2
0 , the test statistic in (2) can be extended to

χ2 =
r

∑
i=1

χ2
i =

r

∑
i=1

k

∑
j=1

(Yj|i − niθj0|i)
2

niθj0|i
. (4)

If H2
0 is true, then χ2 in (4) has an approximately chi-squared distribution with r(k− 1)

degrees of freedom. Likewise, for a given significance level α, an approximate test of size α
is to reject H2

0 if the observed χ2 is bigger than χ2
r(k−1)(α); otherwise, fail to reject H2

0 [5].
A third and more common hypothesis is to test whether the r multinomial popu-

lations are the same without specifying the values of the θj|i. That is, we consider the
null hypothesis:

H3
0 : θj|1 = θj|2 = · · · = θj|r = θj, for j = 1, 2, . . . , k. (5)

The test statistics to test H3
0 are given by

χ2 =
r

∑
i=1

χ2
i =

r

∑
i=1

k

∑
j=1

(Yj|i − ni θ̂j|i)
2

ni θ̂j|i
, (6)

where θ̂j|i =
∑r

i=1 Yj|i
∑r

i=1 ni
=

∑r
i=1 Yj|i

n . Here, ni denotes the sample size of sample i and ∑r
i=1 Yj|i

represents the total in category Aj. Note that θ̂j|i represents the pooled maximum likelihood
estimator (MLE) of θj under H3

0 . It is known that the limiting distribution of χ2 in (6) is a
chi-squared distribution with (r− 1)(k− 1) degrees of freedom. So, for a given significance
level α, an approximate test of size α is to reject H3

0 if the observed χ2 > χ2
(r−1)(k−1)(α);

otherwise, fail to reject H3
0 [5]. It is worth mentioning that several other frequentist methods

for testing the multinomial distribution have been proposed, utilizing different distance
measures. These methods include the Euclidean distance proposed by [6], the smooth total
variation distance introduced by [7], and φ-divergences discussed by [8]. These approaches
provide alternative ways to assess the goodness-of-fit of the multinomial distribution using
distance metrics.

Refs. [9–13] made early advances in Bayesian methods for analyzing categorical data,
focusing on smoothing proportions in contingency tables and inference about odds ra-
tios, respectively. These methods typically employed conjugate beta and Dirichlet priors.
Ref. [14,15] extended these methods to develop Bayesian analogs of small-sample frequen-
tist tests for 2× 2 tables, also using such priors. Ref. [16] recommended the use of the
uniform prior for predictive inference, but other priors were also suggested by discussants
of his paper. The Jeffreys prior is the most commonly used prior for binomial inference,
partially due to its invariance to the scale of measurement for the parameter. Reference
priors (see [17]), such as the Jeffreys prior for the binomial parameter (see [18]), are viable



Mathematics 2023, 11, 3007 3 of 16

options, but their specification can be computationally complex. Ref. [10] may have been
the first to utilize an empirical Bayesian approach with contingency tables, estimating pa-
rameters in gamma and log-normal priors for association factors. Empirical Bayes involves
estimating the prior distribution from the observed data itself and is particularly useful
when dealing with large amounts of data. Refs. [19,20] derived integral expressions for
the posterior distributions of the difference, ratio, and odds ratio under independent beta
priors. Ref. [19] introduced Bayesian highest posterior density (HPD) confidence intervals
for these measures. The HPD approach ensures that the posterior probability matches the
desired confidence level, and the posterior density is higher inside the interval than outside.
Ref. [21] discussed Bayesian confidence intervals for association parameters in 2× 2 tables.
They argued that to achieve good coverage performance in the frequentist sense across the
entire parameter space, it is advisable to use relatively diffuse priors. Even uniform priors
are often too informative, and they recommended the use of the Jeffreys prior. Bayesian
methods for analyzing categorical data have been extensively surveyed in the literature,
including comprehensive reviews by [22,23] with a focus on contingency table analysis.
Refs. [24–26] proposed tests based on Bayesian nonparametric methods using Dirichlet
process priors.

We build on the recent work of [27] by extending their Bayesian approach for hypoth-
esis testing on one-sample proportions based on Kullback–Leibler divergence and relative
belief ratio, using a uniform (0, 1) prior on binomial proportions, to multinomial distribu-
tions. Our goal is to provide a comprehensive Bayesian approach for testing hypotheses
H1

0 , H2
0 , and H3

0 . We derive distance formulas and use the Dirichlet distribution as a prior
on probabilities. To ensure proper values of the prior’s hyperparameters, we employ the
elicitation algorithm developed by [28]. The proposed approach offers several advantages,
including computational simplicity, ease of interpretation, evidence in favor of the null
hypothesis, and no requirement to specify a significance level.

The paper is structured as follows. Section 2 provides an overview of the relative belief
ratio inference and KL divergence. Section 3 details the proposed approach, including the
formulas and computational algorithms. In Section 4, several examples are presented to
illustrate the approach. Finally, Section 5 contains concluding remarks and discussions.

2. Relevant Background
2.1. Inferences Using Relative Belief

Ref. [29] introduced the relative belief ratio, which has become a popular tool in statisti-
cal hypothesis testing theory. Several works have employed this approach,
including [30–35].

Suppose we have a statistical model with a density function { fθ(y) : θ ∈ Θ} with
respect to the Lebesgue measure on the parameter space Θ. Let π(θ) be a prior on Θ. After
observing the data y, the posterior distribution of θ can be expressed as

π(θ|y) = fθ(y)π(θ)

m(y)
,

where m(y) =
∫

Θ fθ(y)π(θ)dθ.
Assume that the goal is to draw inferences about the parameter θ. If the prior π(·) and

the posterior π(·|y) are continuous at θ, then the relative belief ratio for a hypothesized
value θ0 of θ can be expressed as follows:

RB(θ0|y) =
π(θ0|y)
π(θ0)

,

the ratio of the posterior density to the prior density at θ0. In other words, RB(θ0|y)
quantifies how the belief in θ0 being the true value has changed from prior to posterior. It
is worth noting that when π(·) and π(·|y) are discrete, the relative belief ratio is defined
through limits, and further details can be found in [29].
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The relative belief ratio RB(θ0|y) provides a measure of evidence for θ0 being the
true value. A value of RB(θ0|y) > 1 indicates evidence in favor of θ0 being the true value,
whereas RB(θ0|y) < 1 indicates evidence against θ0 being the true value. If RB(θ0|y) = 1,
there is no evidence in either direction.

Once the relative belief ratio is calculated, it is important to determine the strength
of the evidence in favor of or against H0 : θ = θ0. A common way to quantify this is by
computing the tail probability [29]:

Str(θ0|y) = Π(RB(θ|y) ≤ RB(θ0|y)|y) =
∫
{θ∈Θ:RB(θ|y)≤RB(θ0|y)}

π(·|y) dθ, (7)

where Π(·|y) in (7) is the posterior cumulative distribution function with posterior density
π(·|y). Therefore, equation (7) represents the posterior probability that the true value
of θ has a relative belief ratio no greater than that of the hypothesized value θ0. When
RB(θ0|y) < 1, there is evidence against θ0. A small value of Str(θ0|y) indicates a high
posterior probability that the true value has a relative belief ratio greater than RB(θ0|y),
indicating strong evidence against θ0. Conversely, when RB(θ0|y) > 1, there is evidence
in favor of θ0. A large value of Str(θ0|y) indicates a low posterior probability that the true
value has a relative belief ratio greater than RB(θ0|y), indicating strong evidence in favor
of θ0. A small value of Str(θ0|y) indicates weak evidence in favor of θ0.

2.2. KL Divergence

The KL divergence, also referred to as relative entropy, is a measure of dissimilarity
between two probability distributions that quantifies how far apart they are from each
other. It was introduced by Solomon Kullback and Richard Leibler in 1951. Let P and Q be
two discrete cumulative distribution functions (cdf’s) on the same probability space ϕ, with
corresponding probability mass functions (pmf’s) p and q (with respect to the counting
measure). The KL divergence between p and q is given by:

d(p, q) = ∑
x∈ϕ

p(x) log
(

p(x)
q(x)

)
.

The KL divergence is always non-negative, and it attains its minimum value when
p = q almost surely. This property makes it a useful tool in many areas of machine learning
and information theory, such as hypothesis testing, model selection, and clustering. One
interpretation of the KL divergence is that it measures how much information is lost when
using Q to approximate P. It is worth noting that the KL divergence is not symmetric:
d(p, q) and d(q, p) are generally not equal. Therefore, it is important to specify which
distribution is the “true” or “target” distribution and which is the “approximating” or
“predicted” distribution for some applications when using KL divergence in practice, as
noted by [36].

The following lemma is essential to the proposed approach.

Lemma 1. Let p(y1, y2, . . . , yr) = p1(y1)p2(y2) · · · pr(yr) and q(y1, y2, . . . , yr) =
q1(y1)q2(y2) · · · qr(yr), where pi(yi) and qi(yi) are probability mass functions with supports
yi = 1, . . . , ni, i = 1, . . . , r. Then

d(p, q) =
r

∑
i=1

d(pi, qi).

Proof. We have
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d(p, q) =
n1

∑
y1=0
· · ·

nr

∑
yr=0

p(y1, y2, . . . , yr) log
p(y1, y2, . . . , yr)

q(y1, y2, . . . , yr)

=
n1

∑
y1=0
· · ·

nr

∑
yr=0

p1(y1) · · · pr(yr) log
p1(y1) · · · pr(yr)

q1(y1) · · · qr(yr)

=
n1

∑
y1=0
· · ·

nr

∑
yr=0

p1(y1) · · · pr(yr)[log p1(y1) + · · ·+ log pr(yr)− log q1(y1)− · · · − log qr(yr)]

=
n1

∑
y1=0
· · ·

nr

∑
yr=0

p1(y1) · · · pr(yr) log p1(y1) + · · ·+
n1

∑
y1=0
· · ·

nr

∑
yr=0

p1(y1) · · · pr(yr) log pr(yr)

−
n1

∑
y1=0
· · ·

nr

∑
yr=0

p1(y1) · · · pr(yr) log q1(y1)− · · · −
n1

∑
y1=0
· · ·

nr

∑
yr=0

p1(y1) · · · pr(yr) log qr(yr).

Since, for i = 1, . . . , r, ∑ni
yi=1 pi(yi) = ∑ni

yi=1 qi(yi) = 1, we have

d(p, q) =
n1

∑
y1=0

p1(y1) log p1(y1) + · · ·+
nr

∑
yr=0

pr(yr) log pr(yr)

−
n1

∑
y1=0

p1(y1) log q1(y1)− · · · −
nr

∑
yr=0

pr(yr) log qr(yr)

=
n1

∑
y1=0

p1(y1) log
p1(y1)

q1(y1)
+ · · ·+

nr

∑
yr=0

pr(yr) log
pr(yr)

qr(yr)

= d(p1, q1) + · · ·+ d(pr, qr).

3. The Approach
3.1. Bayesian One-Sample Multinomial

Let Y = (Y1, . . . , Yk) ∼ multinomial(n, θ1, . . . , θk). The joint pmf of Y1, . . . , Yk is
given by

p(y1, . . . , yk) =

(
n

y1, y2, . . . , yk

) k

∏
j=1

θ
yj
j , (8)

where ( n
y1,y2,...,yk

) = n!
y1!···yk ! , ∑k

j=1 θj = 1, and ∑k
j=1 yj = n.

To test the null hypothesis H1
0 as defined in (1), we first compute the Kullback–Leibler

(KL) divergence between p(y1, . . . , yk) and the pmf under H1
0 represented by

q(y1, . . . , yk) =

(
n

y1, y2, . . . , yk

) k

∏
j=1

θ
yi
j0. (9)

Here, θj0 denotes the null hypothesis value for θj. The following proposition provides
the formula for the KL divergence between p and q.

Proposition 1. Let p(y1, . . . , yk) and q(y1, . . . , yk) be two joint probability mass functions as
defined in (8) and (9), respectively. We have,

d(p, q) = n
k

∑
j=1

[
θj log

(
θj

θj0

)]
.
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Proof. Let the support of Yj be 1, 2, . . . , nj, j = 1, . . . , k. We have

d(p, q) =
n1

∑
y1=0
· · ·

nk

∑
yk=0

p(y1, . . . , yk) log
p(y1, . . . , yk)

q(y1, . . . , yk)

=
n1

∑
y1=0
· · ·

nk

∑
yk=0

p(y1, . . . , yk) log
( n

y1,y2,...,yk
)∏k

j=1 θ
yj
j

( n
y1,y2,...,yk

)∏k
j=1 θ

yj
j0

=
n1

∑
y1=0
· · ·

nk

∑
yk=0

p(y1, . . . , yk) log
k

∏
j=1

[
θj

θj0

]yj

.

Using the properties of logarithmic function, we get

d(p, q) =
n1

∑
y1=0
· · ·

nk

∑
yk=0

p(y1, . . . , yk)
k

∑
j=1

yj log
[

θj

θj0

]

=
n1

∑
y1=0
· · ·

nk

∑
yk=0

p(y1, . . . , yk)× y1 × log
[

θ1

θ01

]

· · ·+
n1

∑
y1=0
· · ·

nk

∑
yk=0

p(y1, . . . , yk)× yk ×
[

θk
θk0

]

= E[Y1]× log
[

θ1

θ01

]
+ · · ·+E[Yk]× log

[
θk
θk0

]
=

k

∑
j=1

E[Yj] log
[

θj

θj0

]
.

Since the marginal probability mass function of Yj, j = 1, . . . , k, is the binomial with
parameters n and θj, we get

d(p, q) =
k

∑
j=1

nθj log
[

θj

θj0

]
= n

k

∑
j=1

[
θj log

(
θj

θj0

)]
.

To connect the distance formula presented in Proposition 1 with the test statistic χ2

in (2), we use the Taylor series expansion of the function f (x) = x log x
x0

about x0. This
gives us

f (x) = (x− x0) + 0.5(x− x0)
2 1

x0
+ · · ·

If H1
0 is true and n is large, then we can approximate the distance d(p, q) as

d(p, q) ≈ n
k

∑
j=1

(
θj − θj0

)
+ 0.5n

k

∑
j=1

(
θj − θj0

)2

θj0
. (10)

Since the probabilities sum to 1, the first term in (10) equals 0. The second term in (10)
can be expressed as

0.5
k

∑
j=1

(
nθj − nθj0

)2

nθj0
= 0.5

k

∑
j=1

(
E(Yj)− nθj0

)2

nθj0
.

This shows a direct connection between the KL divergence and χ2.
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For the proposed Bayesian test, the probabilities θ1, . . . , θk are now random. The
suggested prior for the joint probabilities (θ1, . . . , θk) is the Dirichlet distribution with
parameters α1, . . . αk. That is,

(θ1, θ2, . . . , θk) ∼ Dirichlet(α1, α2, . . . , αk). (11)

To elicit the prior, we use the elicitation algorithm developed by [28], which requires
some domain knowledge to provide a lower bound for each θi. For convenience, we
have made this algorithm available on Shiny at the following link: https://bayesian-chi-
square-test.shinyapps.io/Dirichlet_process_Kyuson_lim/ (accessed on 23 May 2023). For
comparison purposes, we also considered the non-informative (uniform) prior, and Jeffreys
prior; see Section 4. For the proposed Bayesian approach, when (θ1, . . . , θk) has the prior
defined in (11), we put

D = n
k

∑
j=1

[
θj log

(
θj

θj0

)]
. (12)

We also have that the posterior distribution of (θ1, . . . , θk) given the observed data
y = (y1, . . . , yk) is Dirichlet(α1 + y1, α2 + y2, . . . , αk + yk). We write

Dy = n
k

∑
j=1

[
θj log

(
θj

θj0

)]
. (13)

Note that,

E(θj|y) =
αj + yj

∑k
j=1(αj + yj)

=
αj + yj

n + ∑k
j=1 αj

=
n

n + ∑k
j=1 αj

yj

n
+

(
1− n

n + ∑k
j=1 αj

)
αj

∑k
j=1 αj

,

which is a convex combination between the sample proportion (MLE) and the prior mean.
As n → ∞, the weak law of large numbers ensures that E(θj|y) converges in probability

to the true value of θj. Hence, if H1
0 is true, then Dy

a.s.→ 0. Conversely, if H1
0 is false, then

Dy
a.s.→ c, where c > 0. Proposition 1 establishes that d(p, q) = 0 if and only if θj = θj0.

Therefore, testing H1
0 : θj = θj0 is equivalent to testing d(p, q) = 0. It follows that when H1

0
is true, the distribution of Dy should be more concentrated around 0 than that of D. So, the
proposed test involves comparing the distributions of D and Dy around 0 using the relative
belief ratio:

RBD(0|y) =
πD(0|y)
πD(0)

, (14)

where πD(0) and πD(0|y) represent the probability density functions of D and Dy, respec-
tively. If RBD(0|y) > 1, it provides evidence in favor of H0 (since the distribution of Dy is
more concentrated around 0 than that of D). If RBD(0|y) < 1, there is evidence against H1

0
(as the distribution of Dy is less concentrated around 0 than that of D). Additionally, we
compute the strength of evidence StrD(0|y) = ΠD(RB(d|y) ≤ RB(0|y)|y), where ΠD(·|y)
is the cumulative distribution function of Dy. As πD (·|y) and πD (·) in (14) have no closed
forms, RBD(0|y) and StrD(0|y) need to be approximated. The following Algorithm 1
summarizes the steps required to test H1

0 .

 https://bayesian-chi-square-test.shinyapps.io/Dirichlet_process_Kyuson_lim/
 https://bayesian-chi-square-test.shinyapps.io/Dirichlet_process_Kyuson_lim/


Mathematics 2023, 11, 3007 8 of 16

Algorithm 1 RB test for H1
0

(i) Generate (θ1, θ2, . . . , θk) from Dirichlet(α1, α2, . . . , αk) based on the algorithm of [28]
and compute D as defined in (12).

(ii) Repeat step (ii) to obtain a sample of r1 values of D.

(iii) Generate (θ1, θ2, . . . , θk) given the observed data y = (y1, . . . , yk) from Dirichlet(α1 +
y1, α2 + y2, . . . , αk + yk) and compute Dy as defined in (13).

(iv) Repeat step (iii) to obtain a sample of r2 values of Dy.

(v) Compute the relative belief ratio and the strength as follows:

(a) Let L be a positive number. Let F̂D denote the empirical cdf of D based on
the prior sample in (3) and for i = 0, . . . , L, let d̂i/L be the estimate of di/L, the
(i/L)-the prior quantile of D. Here d̂0 = 0, and d̂1 is the largest value of D. Let
F̂D(· | y) denote the empirical cdf based on Dy. For d ∈ [d̂i/L, d̂(i+1)/L), estimate
RBD(d | y) = πD(d|y)/πD(d) by

R̂BD(d | y) = L{F̂D(d̂(i+1)/L | y)− F̂D(d̂i/L | y)}, (15)

the ratio of the estimates of the posterior and prior contents of [d̂i/L, d̂(i+1)/L). Thus,
we estimate RBD(0 | y) = πD(0|y)/πD(0) by R̂BD(0 | y) = LF̂D(d̂p0 | y) where
p0 = i0/L and i0 are chosen so that i0/L is not too small (typically i0/L ≈ 0.05).

(b) Estimate the strength ΠD(RBD(d | y) ≤ RBD(0 | y) | y) by the finite sum

∑
{i≥i0 :R̂BD(d̂i/L | y)≤R̂BD(0 | y)}

(F̂D(d̂(i+1)/L | y)− F̂D(d̂i/L | y)). (16)

For fixed L, as r1 → ∞, r2 → ∞, then d̂i/L converges almost surely to di/L
and (15) and (16) converge almost surely to RBD(d | y) and ΠD(RBD(d | y) ≤
RBD(0 | y) | y), respectively. See [34] for the details.

3.2. Bayesian r-Sample Multinomial Test with a Completely Specified Null Hypothesis

Consider r independent samples Y1, Y2, . . . , Yr where each Y i = (Y1|i, . . . , Yk|i) follows
a multinomial distribution with parameters ni and θi = (θ1|i, . . . , θk|i), where ∑k

j=1 θj|i = 1
for i = 1, . . . , r. Here, θj|i denotes the probability of an outcome falling in category j for the
ith sample, and Yj|i represents the number of times the outcome falls in category j in the ith
sample. The null hypothesis to be tested is H2

0 : θj|i = θj0|i for j = 1, 2, . . . , k, where θj0|i are
known constants.

Let the joint distribution of Y1, Y2, . . . , Yr be

p(y1, y2, . . . , yr) =
r

∏
i=1

p(yi) =
r

∏
i=1

{(
ni

y1|i, y2|i, . . . , yk|i

) k

∏
j=1

θ
yj|i
j|i

}
. (17)

The proposed test is based on measuring the KL divergence between p and

q(y1, y2, . . . , yr) =
r

∏
i=1

q(yi) =
r

∏
i=1

{(
ni

y1|i, y2|i, . . . , yk|i

) k

∏
j=1

θ
yj0|i
j0|i

}
. (18)

The following proposition provides the expression for the KL divergence between p
and q. The proof follows directly from Lemma 1 and Proposition 1.
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Proposition 2. Let p(y1, y2, . . . , yr) and q(y1, y2, . . . , yr) be the two joint probability mass func-
tions as defined in (17) and (18), respectively. Then

d(p, q) =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
θj|i
θj0|i

)]}
.

Proposition 2 provides a connection between the KL divergence formula and the test
statistic χ2 in (6). Using a Taylor series expansion, we can approximate the distance d(p, q)
as follows:

d(p, q) ≈ 0.5
r

∑
i=1

k

∑
j=1

(
niθj|i − niθj0|i

)2

niθj0|i
= 0.5

r

∑
i=1

k

∑
j=1

(
E(Yj|i)− niθj0|i

)2

niθj0|i
,

which reveals a close connection to χ2.
For the proposed Bayesian test of H2

0 , we adopt the prior (θ1|i, . . . , θk|i) ∼ Dirichlet
(α1|i, α2|i, . . . , αk|i), and use the algorithm developed in [28] to elicit the hyperparameters
αj|i for j = 1, . . . , k and i = 1, . . . , r. In this case, we define the divergence measure as

D =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
θj|i
θj0|i

)]}
, (19)

where θj0|i is the hypothesized value of θj|i under the null hypothesis.
The posterior distribution of (θ1|i, . . . , θk|i) given the observed data yi = (y1|i, . . . , yk|i)

is then Dirichlet(α1|i + y1|i, α2|i + y2|i, . . . , αk|i + yk|i). In this case, the divergence mea-
sure becomes

Dy =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
θj|i
θj0|i

)]}
. (20)

The following algorithm outlines the steps required to test H2
0 using the proposed

Bayesian test (Algorithm 2):

Algorithm 2 RB test for H2
0

(i) For i = 1, . . . , r, generate (θ1|i, θ2|i, . . . , θk|i) from Dirichlet(α1|i, α2|i, . . . , αk|i) based on
the algorithm of [28] and compute D as defined in (19).

(ii) Repeat step (i) to obtain a sample of r1 values of D.

(iii) For i = 1, . . . , r, generate (θ1|i, θ2|i, . . . , θk|i) given the observed data yi = (y1|i, . . . , yk|i)
from Dirichlet(α1|i + y1|i, α2|i + y2|i, . . . , αk|i + yk|i) and compute Dy as defined in (20).

(iv) Repeat step (iii) to obtain a sample of r2 values of Dy.

(v) Compute the relative belief ratio and strength as described in Algorithm 1.

3.3. Bayesian Test for Homogeneity in r-Sample Multinomial Data

Consider r independent samples Y1, Y2, . . . , Yr, where for i = 1, . . . , r, Y i = (Y1|i, . . . , Yk|i)

∼ multinomial(ni, θ1|i, . . . , θk|i) with ∑k
j=1 θj|i = 1. To test the null hypothesis H3

0 as defined
in (5), it is required to measure the KL divergence between p and q as defined in (17) and
(18) with θj0|i is replaced by θj. This requirement is offered in the following proposition.
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Proposition 3. Consider the probability mass functions p and q as defined in (17) and (18) with
θj0|i is replaced by θj. Then

d(p, q) =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
θj|i
θj

)]}
(21)

and

θ?j = arg min
θj

d(p, q) =
∑r

i=1 niθj|i

∑r
i=1 ni

=
∑r

i=1 niθj|i
n

. (22)

Proof. (21) follows directly from Lemma 2 by setting θj|i = θj. To prove (22), we use we
use Lagrange multiplier with the constraint ∑r

j=1 θj = 1:

L = L(θj, λ) =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
θj|i
θj

)]}
+ λ

(
r

∑
j=1

θj − 1

)
.

Now,

∂L
∂θj

= −
r

∑
i=1

ni
θj|i
θj

+ λ, j = 1, . . . , k.

Setting ∂L
∂θj

= 0 gives

θj =
∑r

i=1 niθj|i
λ

, j = 1, . . . , k.

Summing over both sides and applying the constraint gives

λ =
k

∑
j=1

r

∑
i=1

niθj|i =
r

∑
i=1

ni

k

∑
j=1

θj|i =
r

∑
i=1

ni = n.

Hence,

θ?j =
∑r

i=1 niθj|i
n

.

Note that θ?j represents the weighted average of θj|i. Substituting θ?j into (21), we get

d̂(p, q) =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
nθj|i

∑r
i=1 niθj|i

)]}
, (23)

which is equal to 0 under H3
0 . We can also establish a connection between (23) and the test

statistic χ2 in (6). By Taylor series expansion, when n is large and under H3
0 , we have
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d̂(p, q) ≈ 0.5
r

∑
i=1

ni

k

∑
j=1

(
θj|i −

∑r
i=1 niθj|i

n

)2

∑r
i=1 niθj|i

n

= 0.5
r

∑
i=1

k

∑
j=1

(
niθj|i − ni

∑r
i=1 niθj|i

n

)2

ni
∑r

i=1 niθj|i
n

= 0.5
r

∑
i=1

k

∑
j=1

(
E(Yj|i)− ni

∑r
i=1 E(Yj|i)

n

)2

ni
∑r

i=1 E(Yj|i)
n

,

which is closely linked to χ2. The proposed Bayesian test for H3
0 uses the prior described in

Section 3.1. We write

D̂ =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
nθj|i

∑r
i=1 niθj|i

)]}
. (24)

Moreover, for the posterior distribution of (θ1|i, . . . , θk|i) given the observed data
yi = (y1|i, . . . , yk|i), we write

D̂y =
r

∑
i=1

{
ni

k

∑
j=1

[
θj|i log

(
nθj|i

∑r
i=1 niθj|i

)]}
. (25)

The following algorithm is used to test H3
0 (Algorithm 3).

Algorithm 3 RB test for H3
0

(i) For i = 1, . . . , r, generate (θ1|i, θ2|i, . . . , θk|i) from Dirichlet(α1|i, α2|i, . . . , αk|i) based on
the algorithm of [28] and compute D̂ as defined in (24).

(ii) Repeat step (i) to obtain a sample of r1 values of D̂.

(iii) For i = 1, . . . , r, generate (θ1|i, θ2|i, . . . , θk|i) given the observed data yi = (y1|i, . . . , yk|i)

from Dirichlet(α1|i + y1|i, α2|i + y2|i, . . . , αk|i + yk|i) and compute D̂y as defined in (25).

(iv) Repeat step (iii) to obtain a sample of r2 values of D̂y.

(v) Compute the relative belief ratio and strength using Algorithm 1, but replace D and
Dy with D̂ and D̂y, respectively.

4. Examples

This section presents three examples that demonstrate the effectiveness of our ap-
proach in evaluating H1

0 , H2
0 , and H3

0 . We use Algorithms 1–3, with fixed values of L = 20,
i0 = 1, and r1 = r2 = 104. To further investigate the efficacy of our approach, we con-
sider three different prior distributions: uniform prior, Jeffreys prior, and an elicited prior
based [28]. Additionally, we compute the p-values using the test statistics discussed in
Section of this paper. The approach was implemented using R (version 4.2.1), and the code
is available upon request from the corresponding author.

Example 1 (Rolling Die; [5]). We roll a die 60 times and seek to test whether it is unbiased, that is,
whether H1

0 : θj = 1/6 for j = 1, . . . , k. The Table 1 below presents the recorded data:
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Table 1. Data of Example 1.

1 2 3 4 5 6 Total

Observed 8 11 5 12 15 6 60

We will use a Bayesian approach to address this problem. We employ three priors:
the uniform prior represented by Dirichlet (1, 1, 1, 1, 1, 1), Jeffreys prior represented by
Dirichlet (0.5, 0.5, 0.5, 0.5, 0.5, 0.5), and the elicited prior Dirichlet (5.83, 5.83, 5.83, 5.83, 5.83,
5.83) obtained using the algorithm proposed by [28], with a lower bound of 0.05 applied
to all probabilities. It is worth noting that setting the lower bound in [28] to 0 yields the
uniform prior. Additionally, we will include the p-value for the corresponding frequentist
test as a reference. The results of our analysis are presented in Table 2. Clearly, both the
proposed Bayesian approach, considering the three priors, and the frequentist approach
lead to the same conclusion. It should be noted that the uniform prior and the Jefferey prior
have a wider spread around zero compared to the elicited prior. As a result, they have
higher relative belief ratios in this example. However, this is not practically significant in
our case as we calibrate the relative belief ratio through the strength. See Figure 1.

Table 2. The RB and its strength (Str) for Example 1.

Prior RB (Strength) Decision

Uniform 15.125 (1) Strong evidence in favor of H1
0

Jeffreys 19.824 (1) Strong evidence in favor of H1
0

Evan et al. 1.900 (1) Strong evidence in favor of H1
0

p-value 0.3027 Fail to reject H1
0 at α = 0.05
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Figure 1. Density plot of distances in Example 1.

Example 2 (Operation Trial [5]). In a system consisting of four independent components, let θj|i
denote the probability of successful operation of the ith component, i = 1, 2, 3, 4. We will test
the null hypothesis H2

0 : θ1|1 = 0.9, θ2|1 = 0.1, θ1|2 = 0.9, θ2|2 = 0.1, θ1|3 = 0.8,θ2|3 = 0.2,
θ1|4 = 0.8, θ2|4 = 0.2, given that in 50 trials, the components operated as follows (Table 3):
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Table 3. Data of Example 2.

Component Successful Failure

1 40 10
2 48 2
3 45 5
4 40 10

We use the priors: Dirichlet (1, 1), Dirichlet (0.5, 0.5), and Dirichlet (33.38, 5.62). We
obtain the latter prior using algorithm of [28], with lower bounds of θ1|i = 0.7 and θ2|i = 0.1
for all i = 1, 2, 3, 4. Table 4 displays the results of our analysis. As in Example 1, both the
uniform prior and the Jefferey prior exhibit less concentration around zero when compared
to the elicited prior. This, in turn, leads to a notably different conclusion than that of the
elicited prior and the p-value calculated using the chi-square test. See also Figure 2.

Table 4. The RB and its strength (Str) for Example 2.

Prior RB (Strength) Decision

Uniform 20(1) Strong evidence in favor of H2
0

Jeffreys 19.998 (0.000) Weak evidence in favor of H2
0

Evan et al. 0.592 (0.047) Strong evidence against H2
0

p-value 0.030 Fail to reject H1
0 at α = 0.05
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Figure 2. Density plot of distances in Example 2.

Example 3 (Clinical Trial; [37]). A study was performed to determine whether the type of cancer
differed between blue-collar, white-collar, and unemployed workers. A sample of 100 of each type of
worker diagnosed as having cancer was categorized into one of three types of cancer. The results are
shown in Table 5. See also Table 12.6 of [37]. The hypothesis to be tested is that the proportions of
the three cancer types are the same for all three occupation groups. That is, H3

0 : θj|1 = θj|2 = θj|3
for all j (types of cancer), where θj|i is the probability of occupation i having cancer type j.
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Table 5. Data of Example 3.

Occupation
Type of Cancer

Lung Stomach Other Total

Blue collar 53 17 30 100

White Collar 10 67 23 100

Unemployed 30 30 40 100

Similar to the previous two examples, we utilize the uniform prior Dirichlet (1, 1, 1),
Jeffreys prior Dirichlet (0.5, 0.5, 0.5), and the elicited prior Dirichlet (3, 3, 3). We obtained the
elicited prior using the algorithm of [28] by setting a lower bound of 0.05 for all probabilities.
Table 6 summarizes the results of our analysis. Similar to the previous examples, Jeffreys
prior is not sufficiently concentrated around zero, which makes it inefficient when there is
evidence against H0. See Figure 3.

Table 6. The RB and its strength (Str) for Example 3.

Prior RB (Strength) Decision

Uniform 0.102 (0.010) Strong evidence against H0
Jeffreys 1.874 (0.129) Weak evidence in favor of H0

Evan et al. 0.012 (0.000) Strong evidence against H0

p-value 0.000 Reject H1
0 at α = 0.05
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Figure 3. Density plot of distances in Example 3.

5. Concluding Remarks

This study presents a Bayesian method for testing hypotheses related to multinomial
distributions. Our approach involves calculating the Kullback–Leibler divergence between
two multinomial distributions and comparing the change in distance from the prior to the
posterior through the relative belief ratio. To specify the prior distributions, we employ
a prior elicitation algorithm. We recommend avoiding the use of Jeffreys prior or the
uniform prior unless there is a valid reason to use them. Through several examples, we
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demonstrated the effectiveness of our approach. Future research may expand our approach
to include testing for independence and other related cases.
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