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Abstract: This paper proposes a CKF-MPSP guidance method for hitting stationary targets with
impact time and angle constraints for missiles in the presence of modeling errors. This innovative
guidance scheme is composed of three parts: First, the model predictive static programming (MPSP)
algorithm is used to design a nominal guidance method that simultaneously satisfies impact time
and angle constraints. Second, the cubature Kalman filter (CKF) is introduced to estimate values of
the influence of the inevitable modeling errors. Finally, a one-step compensation scheme is proposed
to eliminate the modeling errors’ influence. The proposed method uses a real missile dynamics
model, instead of a simplified one with a constant-velocity assumption, and eliminates the effects of
modeling errors with the compensation scheme; thus, it is more practical. Simulations in the presence
of modeling errors are conducted, and the results illustrate that the CKF-MPSP guidance method
can reach the target with a high accuracy of impact time and angles, which demonstrates the high
precision and strong robustness of the method.

Keywords: terminal guidance; impact time constraint; impact angle constraint; model predictive
static programming; cubature Kalman filter; modeling errors
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1. Introduction

Guidance methods have always been a hot research topic in the field of missiles. The
early guidance-law design considers only the minimized miss distance requirement, such
as proportional navigation (PN). With the development of military science and technology,
classical guidance methods no longer satisfy combat requirements [1]. There is an urge to
research advanced guidance methods with multiple constraints. Impact angle and impact
time constraints are essential for advanced terminal guidance methods. Impact angles are
divided into path angle and azimuth angle. Attacking the target with a missile with proper
impact angles may improve the destructive effect and hit weak parts of the target. The im-
pact time is vital for attacking time-sensitive targets. Moreover, the guidance method with
impact angle and time constraints gives the multi-missile cooperative guidance capability.
Thus, investigating the impact time and angle-constrained guidance method (ITACG) is
very important.

In this paper, a CKF-MPSP guidance method with impact time and angle constraints
for a stationary target is proposed considering modeling errors. A baseline guidance
method with impact time and angle constraints is designed based on the MPSP algorithm.
The modeling errors are estimated by the CKF and compensate the baseline guidance
method to eliminate their effects. The main contributions of this paper are shown below.

(1) An ITACG is designed for a stationary target based on the MPSP algorithm, which
can simultaneously achieve impact time and angle constraints. This guidance method
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considers the missile’s dynamic model instead of a constant-velocity model. Therefore,
the proposed method is more suitable for practical missiles.

(2) The proposed guidance method takes the desired time as a terminal condition for
static planning. Time-to-go information is not required during the guidance process,
which avoids the influence of time-to-go estimation errors on time control accuracy.

(3) A CKF-based modeling error compensation scheme is proposed to solve the problem
of the MPSP algorithm being unable to be used for error conditions. This improvement
enhances the feasibility of the guidance method in practical applications since the
modeling error is inevitable.

It is worth noting that, although the CKF-MPSP guidance method is proposed in the
scenario of a missile attacking a stationary target on the ground, in this paper, it can also
be used for position control, such as aircraft landing. Furthermore, by predicting and
introducing the target’s motion model, the CKF-MPSP method can be used for moving-
target interception. However, these applications are not the focus of this paper and require
further research in the future.

This article is organized as follows. Section 2 provides a literature review of existing
achievements in related research fields. Section 3 formulates the problem researched in
this paper. Section 4 proposes the CKF-MPSP guidance method to implement time- and
angle-constrained guidance. Simulation results are given in Section 5. Section 6 gives
the conclusion.

2. Literature Review

Many scholars have conducted much research on ITACG problems. The mainstream
methods can be divided into non-predictive guidance and predictive guidance methods.

The guidance laws that utilize the current relative motion information between missiles
and targets are called non-predictive guidance. These kinds of methods only adopt the
relative motion model instead of the actual model of the missile, making the design of such
methods relatively simple. The existing non-predictive guidance methods basically follow
two design paradigms.

The first design paradigm is to design guidance laws both in the line-of-sight (LOS) and
normal LOS direction for time control and angle constraints, respectively. These kinds of
methods are widely used in cooperative guidance scenarios. Zhang [2] proposed an ITACG
with finite time convergence. Yu [1], Chen [3], and Lin [4] proposed fixed-time ITACGs
based on the sliding mode theory. Ma [5] designed a disturbance-observer-based ITACG
to enable the interception of maneuvering targets. Wang [6] proposed a decoupled three-
dimensional sliding mode guidance law achieving simultaneous arrival at the target for
multiple missiles with angle constraints. Jing [7] proposed a predefined-time convergence
ITACG method for a multi-missile cooperative guidance scenario. Because of the design
paradigm, the methods presented in Refs. [1–7] all need a control force both in the LOS
and normal LOS direction for time control and angle constraints, respectively. However,
most existing missiles are thrust-free and controlled by aerodynamic force in the terminal
guidance period. In reality, missiles cannot provide the guidance command in the LOS
direction, limiting the practical application of such guidance methods.

The second design paradigm is to design guidance laws only in the normal direction
of LOS/velocity, which is more practical but more challenging compared to the above
methods. Chen [8] simplified missile dynamics under a small heading error approximation
and derived an optimal guidance law with impact time and angle constraints against a
stationary target. Kim [9] introduced a polynomial guidance method considering impact
time and angle constraints. Zhao [10] designed the trajectory as a function with two unde-
termined parameters and adjusted them to control the impact time and angle. Kang [11]
derived a look-angle shaping scheme for ITACG. Hou [12,13] proposed a time-to-go esti-
mation scheme for terminal sliding mode guidance with an impact angle constraint and
further designed a nonsingular terminal sliding mode guidance law considering impact
time and angle simultaneously. Chen [14] designed a two-stage guidance that satisfies
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time and angle constraints through a proper guidance-switching strategy. Zhang [15]
proposed an ITACG by introducing an impact time feedback control term based on biased
PN. Yan [16] proposed a computational geometry guidance against stationary targets,
satisfying the constraints by iterating parameters of the geometry curve. Majumder [17]
proposed a sliding-mode-control-based nonlinear guidance scheme for controlling both
impact angle and impact time simultaneously. Liu [18] designed an adaptive sliding mode
ITACG method, increasing its adaptability and robustness. Wang [19] designed a two-stage
guidance method, achieving ITACG through reasonable switching between two guidance
rules. In Refs. [8–19], the guidance methods rely on time-to-go or range-to-go estimation.
However, the estimation is difficult because of the uncontrollable varying velocity. To
simplify the design process, the missile’s velocity is assumed as constant, which may cause
significant time estimation errors, especially when the trajectory is winding due to impact
angle constraints. Thus, the guidance effect is not satisfactory in reality. Overall, there are
difficulties in the practical application of the non-predictive ITACG methods in missiles
because of the model mismatch.

Unlike non-predictive guidance, the predictive guidance methods predict the terminal
states using a real model, which can avoid the model mismatch and thus can derive a better
guidance performance. As one of the predictive guidance methods, the MPSP-based guid-
ance methods have received widespread attention in recent years. The MPSP algorithm was
first introduced in Ref [20]. Combining the philosophy of approximate dynamic program-
ming and model predictive control, the MPSP algorithm obtains the terminal estimation
of the output vector by integral prediction. Then, it efficiently solves the optimization
problem by turning the dynamic programming problem into a static one. It has been
applied in guidance problems due to its ability to deal with varying velocities. The existing
MPSP-based guidance methods are mainly focused on the angle constraint only. Oza [21]
designed an angle-constrained guidance method for an air-to-ground missile and verified
the feasibility of MPSP guidance. Maity [22] further introduced the static Lagrange multi-
plier in MPSP guidance, improving the computational efficiency. Refs. [23–27] improved
the computational efficiency of the MPSP algorithm through further improvements and
designed angle-constrained guidance methods, respectively. Refs. [21–27] verified that the
MPSP algorithm is feasible for solving guidance problems online. However, during integral
prediction, modeling errors will cause the accumulation of estimation errors, affecting
the algorithm’s performance and stability. Although the receding horizon strategy can
correct some previous errors, it cannot eliminate the influence of modeling errors. Thus, the
MPSP algorithm is highly dependent on the model’s accuracy. To the best of the authors’
knowledge, no paper has studied MPSP guidance in the presence of modeling errors so far.

Through the analysis of the ITACG method literature, we can draw the
following conclusions:

(1) Compared to non-predictive guidance, predictive guidance may present better perfor-
mance for unpowered missile reality applications.

(2) As one of the predictive guidance methods, MPSP-based guidance can avoid the
model mismatch and thus can derive a better guidance performance, which has been
verified in Refs. [21–27].

(3) The existing MPSP-based guidance methods are mainly focused on the angle con-
straint only. The MPSP-based ITACG methods still need further research.

(4) As an inevitable but significant factor affecting the MPSP algorithm, the modeling
errors have not been considered so far.

Based on the above analysis, this paper focuses on the ITACG problems for unpowered
missiles in the presence of modeling errors, trying to fill existing research gaps.

3. Problem Description

A 3-D terminal guidance scenario of a missile attacking a stationary ground target is
considered in this paper, as shown in Figure 1. M is the missile whose position is (x0, y0, z0).
T is a stationary ground target whose position is (xt, yt, zt). The missile is supposed to
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arrive at the target point with the desired impact path angle θ f , impact azimuth angle ψv f ,
and impact time t f .
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The dynamic model of the missile with an unknown modeling error is written as

.
X = f(X, U, d) =



V cos θ cos ψv
V sin θ
−V cos θ sin ψv
−D(α, β)− g sin θ + dx
L(α)−g cos θ

V + dy

− Z(β)
V cos θ + dz


, (1)

where X = [x, y, z, V, θ, ψv]
T is the state vector. x, y, and z are 3-D position coordinates of the

missile. V, θ, and ψv are the missile’s velocity, path angle, and azimuth angle, respectively.
The angle of attack (AOA) α and the side slip angle (SSA) β compose the control vector
U = [α, β]T. The drag acceleration D, lift acceleration L, and lateral acceleration Z are
written as 

D = Cx(α, β)qSre f /m
L = Cy(α)qSre f /m
Z = Cz(β)qSre f /m

. (2)

In Equation (2), aerodynamic coefficients Cx, Cy, and Cz are related to AOA and SSA.

q is dynamic pressure, Sref is reference area, m is the missile’s mass. d =
[
dx, dy, dz

]T is
the unknown modeling error, which may be caused by unmodeled dynamics, uncertain
parameters, external disturbances, etc.

Selecting the output vector as Y =
[

x y z θ ψv
]T, the purpose of our guidance

method is to determine proper control commands U, making sure Y→ Yd when t→ t f ,

where Yd =
[

xt yt zt θ f ψv f
]T.

4. CKF-MPSP Terminal Guidance Method

A CKF-MPSP guidance method is proposed and applied in the terminal guidance
scenario to achieve offset-free control in the presence of modeling errors. The CKF-MPSP
method comprises three parts: nominal MPSP guidance, CKF modeling error estimation,
and one-step modeling-error compensation. The nominal MPSP guidance generates a
baseline guidance command ignoring modeling errors. The CKF modeling error estimation
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generates the guessed modeling error, and the one-step modeling-error compensation
introduces an error compensation term in the baseline guidance command to maintain
precision and stability.

The schematic of the CKF-MPSP guidance method is shown in Figure 2. The nom-
inal MPSP guidance method is firstly used to obtain the nominal control command Un
according to initial states X0 and a guess value of control command U0. Then, regarding
the disturbance as an initial guess value d̂0, the one-step modeling-error compensation
method is utilized to eliminate the modeling error’s influence and generate the control
command U, which is substituted into the dynamic model to update the states X. The CKF
algorithm is utilized to generate the estimation of the states and the modeling error, which
are denoted as X̂ and d̂, according to the measurement ŷ of the global navigation satellite
system (GNSS). X̂, d̂, and U are used as initial values to calculate the control vector in the
next guidance period. Repeating the process until hit, the ITACG is achieved.
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4.1. Nominal MPSP Guidance

Ignoring the unknown modeling error, the MPSP method [20] is used to generate the
baseline control commands. The nominal dynamic model is represented as

.
X = f(X, U) =



V cos θ cos ψv
V sin θ
−V cos θ sin ψv
−D− g sin θ
L−g cos θ

V
− Z

V cos θ


. (3)

Discretizing Equation (3), the discretized dynamic model can be described as{
Xk+1 = Fk(Xk, Uk) = Xk + hfk(Xk, Uk)
Yk = CXk

, (4)

where k = 1, 2, 3, · · · , N represents the time grids and h is the simulation step. The output
matrix C is shown as

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

. (5)

After settling the desired terminal time N and the desired terminal output Yd =[
xt yt zt θ f ψv f

]T, the prediction output vector YN can be obtained through Runge–



Mathematics 2023, 11, 2990 6 of 15

Kutta integration using initial states and previous control commands. Then, the updated
control commands can be obtained according to the deviation between YN and Yd.

Denote the terminal output deviation as ∆YN = YN − Yd. Expanding ∆YN at Yd and
ignoring the high-order terms, we can obtain

∆YN ∼= dYN =

(
∂YN
∂XN

)
dXN . (6)

According to Equation (4), we can determine ∂YN/∂XN = C, and the following
formula holds.

dXk+1 =

(
∂Fk
∂Xk

)
dXk +

(
∂Fk
∂Uk

)
dUk, (7)

where dXk and dUk are the change in state and control at the k-th step, respectively.
The partial derivative of Fk with respect to Xk and Uk are shown as below:

∂Fk
∂Xk

= I6×6 + h ∂fk
∂Xk

= I6×6 + h



0 0 0 cos θ cos ψv −V sin θ cos ψv −V cos θ sin ψv
0 0 0 sin θ V cos θ 0
0 0 0 − cos θ sin ψv V sin θ sin ψv −V cos θ cos ψv
0 0 0 0 −g cos θ 0
0 0 0 − L−g cos θ

V2
g sin θ

V 0
0 0 0 Z

V2 cos θ
− Z sin θ

V cos2 θ
0


, (8)

∂Fk
∂Uk

= h
∂fk
∂Uk

= h



0 0
0 0
0 0

−Cα
x qSre f
m

−Cβ
x qSre f
m

Cα
y qSre f
mV 0

0 − Cβ
z qSre f

mV cos θ


, (9)

where Cα
x is the partial derivative of the drag coefficient with respect to AOA, Cα

y is the

derivative of the lift coefficient with respect to AOA, Cβ
x is the partial derivative of the

drag coefficient with respect to SSA, and Cβ
z is the derivative of the lateral coefficient with

respect to SSA. They can be obtained from the aerodynamic data.
Substituting Equation (7) into Equation (6), we can obtain

dYN =

(
∂YN
∂XN

)[(
∂FN−1

∂XN−1

)
dXN−1 +

(
∂FN−1

∂UN−1

)
dUN−1

]
. (10)

In Equation (10), dXN−1 can be expressed as

dXN−1 =

(
∂FN−2

∂XN−2

)
dXN−2 +

(
∂FN−2

∂UN−2

)
dUN−2 (11)

And dXN−2 can be further expressed by dXN−3 and dUN−3. Repeating the above
process until dX1 and dU1, it is clear that Equation (10) can be rewritten as

dYN = AdX1 + B1dU1 + B2dU2 + · · ·+ BN−1dUN−1, (12)

where
A , ∂YN

∂XN

∂FN−1
∂XN−1

∂FN−2
∂XN−2

· · · ∂F1
∂X1{

Bk ,
∂YN
∂XN

∂FN−1
∂XN−1

∂FN−2
∂XN−2

· · · ∂Fk+1
∂Xk+1

∂Fk
∂Uk

, k = 1, 2, · · · , N − 2

Bk ,
∂YN
∂XN

∂FN−1
∂UN−1

, k = N − 1

. (13)
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Since the initial states are with no errors (dX1 = 0), the final output error is only
decided by control commands as

dYN =
N−1

∑
k=1

BkdUk. (14)

The purpose of guidance is to find a series of control commands Uk = U0
k − dUk

(k = 1, 2, · · · , N) to make dYN → 0 , where U0
k is the previous control history solution. It

is worth noting that Equation (14) has 2× (N − 1) unknowns and 5 equations. Usually,
2× (N − 1) > 5; thus, the solutions are not unique. To maximize guidance performance,
set the following energy-optimal performance index and aim to minimize it.

J =
1
2

N−1

∑
k=1

(
U0

k − dUk

)T
Rk

(
U0

k − dUk

)
, (15)

where Rk is a positive definite weight coefficient matrix.
Equations (14) and (15) constitute a static optimization problem, whose solution at

every time step k = 1, 2, · · · , N, according to static optimization theory, is

U∗k = U0
k − dUk = R−1

k BT
k A−1

λ (dYN − bλ), (16)

where Aλ , −
N−1
∑

k=1
BkR−1

k BT
k ,bλ ,

N−1
∑

k=1
BkU0

k .

4.2. Modeling Error Estimation Based on CKF

The MPSP guidance method highly relies on modeling accuracy because of the integral
prediction. However, the realistic model inevitably has unknown modeling errors or
external disturbances. It has been pointed out in the literature [28] that, in the presence of
model mismatch, the MPSP method cannot realize the desired terminal states. Estimating
and compensating for modeling errors are common ways to achieve offset-free terminal
state control. This section uses the CKF algorithm to estimate states and modeling errors
simultaneously for subsequent compensation.

To estimate the modeling errors, consider them as constants and extend them to states.
The dynamic model (1) can be rewritten as

.
X

E
= fE

(
XE
)
=



V cos θ cos ψv
V sin θ
−V cos θ sin ψv
−D− g sin θ + dx
L−g cos θ

V + dy
− Z

V cos θ + dz
0
0
0


+ w, (17)

where XE =
[
x, y, z, V, θ, ψv, dx, dy, dz

]T is the expansion state vector, w is Gaussian-distributed
process noise, and E

[
wwT] = Q.

During flight, GNSS measures the missile’s motion in real time. So, the measurement
equations can be denoted as

ŷE = XE + v, (18)

where v is Gaussian-distributed measurement noise and E
[
vvT] = R. ŷE =[

x̂, ŷ, ẑ, V̂, θ̂, ψ̂v, d̂x, d̂y, d̂z

]T
is the expansion output vector.
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Discretizing Equations (17) and (18), we can obtain the nonlinear filter model:{
XE

k = FE
(
XE

k−1
)
+ wk−1

YE
k = XE

k + vk−1
, (19)

where FE
(
XE

k−1
)
= XE

k−1 + hfE
(
XE

k−1
)
.

The CKF algorithm consists of two procedures: Time Update and Measurement
Update [29]. Combined with the filter model, the CKF algorithm process is shown below.

4.2.1. Time Update

Assume at time k that the posterior probability density function p
(

XE
k−1

∣∣yk−1
)
=

N
(

X̂E
k−1, Pk−1

)
is known. Denote the Cholesky factorization of the error covariance Pk−1

as Sk−1.
Pk−1 = Sk−1ST

k−1. (20)

Calculate the cubature points χ
(i)
k−1 based on the third-degree cubature rule:

χ
(i)
k−1 = X̂E

k−1 + Sk−1ξ i, i = 1, 2, · · · , 2n, (21)

where n is the dimension of states. ξ i =
√

n[1]i is the basic cubature point set. The point set
[1] is defined as

[1] =




1
0
...
0


n×1

,


0
1
...
0

, · · · ,


0
0
...
1

,


−1
0
...
0

,


0
−1

...
0

, · · · ,


0
0
...
−1


︸ ︷︷ ︸

2n

, (22)

and [1]i represents the i-th column vector in [1].
Calculate the one-step prediction at time k and its error covariance:

χ
∗(i)
k|k−1 = FE

(
χ
(i)
k−1

)
, (23)

X̂E
k|k−1 =

1
2n

2n

∑
i=1

χ
∗(i)
k|k−1, (24)

Pk|k−1 =
1

2n

2n

∑
i=1

[
χ
∗(i)
k|k−1 − X̂E

k|k−1

][
χ
∗(i)
k|k−1 − X̂E

k|k−1

]T

+ Qk−1. (25)

4.2.2. Measurement Update

Calculate the cubature points for Measurement Update, and then calculate
measurement prediction:

Pk|k−1 = Sk|k−1ST
k|k−1, (26)

χ
(i)
k|k−1 = X̂E

k|k−1 + Sk|k−1ξ i, i = 1, 2, · · · , 2n, (27)

ŷE
k|k−1 =

1
2n

2n

∑
i=1

χ
(i)
k|k−1. (28)
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Calculate the innovation covariance matrix Pxy and the cross-covariance matrix Pyy:

Pxy =
1

2n

2n

∑
i=1

[
χ
(i)
k|k−1 − X̂E

k|k−1

][
χ
(i)
k|k−1 − ŷE

k|k−1

]T

, (29)

Pyy =
1

2n

2n

∑
i=1

[
χ
(i)
k|k−1 − ŷE

k|k−1

][
χ
(i)
k|k−1 − ŷE

k|k−1

]T
+ Rk. (30)

Calculate the Kalman gain:
Kk = PxyP−1

yy . (31)

Estimate the updated state and the corresponding error covariance:

X̂E
k = X̂E

k|k−1 + Kk

(
yE

k − ŷE
k|k−1

)
, (32)

Pk = Pk|k−1 −KkPyyKT
k . (33)

4.3. One-Step Modeling-Error Compensation

After estimating the modeling errors, compensate for the effect of modeling errors on
the system by attaching an additional control term ∆Uk to the MPSP optimal command

U∗k at time k. Denoting the estimation modeling error vector as d̂k =
[
d̂xk, d̂yk, d̂zk

]T
, the

disturbed system model can be described as{
X̃k+1 = X̃k + hfk

(
X̃k, Ũk, d̂k

)
Ỹk+1 = CX̃k+1

. (34)

At time k, denote Yk+1 as the output vector obtained by a one-step calculation with cur-
rent state Xk and the MPSP control command U∗k . The objective of modeling-error compen-
sation is to generate a modified control command Ũk = U∗k + ∆Uk making Ỹk+1 → Yk+1 .

Denote the output error as

∆Yk+1 = Ỹk+1 − Yk+1. (35)

Substituting Equations (4) and (34) into (35) and because of X̃k = Xk, we can obtain

∆Yk+1 = hC
[
fk
(
Xk, U∗k + ∆Uk, d̂k

)
− fk(Xk, U∗k )

]
. (36)

Expanding fk

(
Xk, U∗k + ∆Uk, d̂k

)
and ignoring high-order terms, we can obtain

fk
(
Xk, U∗k + ∆Uk, d̂k

) ∼= fk(Xk, U∗k ) +
∂fk
∂Uk

∆Uk +
∂fk
∂dk

d̂k. (37)

Substituting Equation (37) into (36), we can obtain

∆Yk+1 = hC
[

∂fk
∂Uk

∆Uk +
∂fk
∂dk

d̂k

]
. (38)

The compensation term is desired to make the output error zero. According to Equa-
tion (38), we can obtain the desired additional control term as

∆Uk = −
(

C
∂fk
∂Uk

)−1(
C

∂fk
∂dk

d̂k

)
. (39)
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The modified control command at time k is

Ũk = U∗k + ∆Uk. (40)

4.4. CKF-MPSP Terminal Guidance Process

Considering the above, the CKF-MPSP guidance process is summarized below (Algorithm 1).

Algorithm 1: CKF-MPSP Terminal Guidance Scheme.

INPUT: current time k, desired terminal time N, desired terminal output Yd, current states Xk, guessed control command[
U0

k , U0
k+1, · · · , U0

N−1

]
, estimated modeling error d̂k, CKF initial values X̂E

k−1, P̂k−1.
1: while current time k is no larger than N, do
2: while terminal output deviation ∆YN is larger than tolerance value ε, do
3: predict the terminal output vector YN through Runge-Kutta integration with the nominal dynamic model (4), the current

states Xk and the guessed control command
[
U0

k , U0
k+1, · · · , U0

N−1

]
.

4: calculate terminal output deviation ∆YN = YN − Yd.

5: calculate matrices
[
Bk, Bk+1, · · · , BN−1

]
according to Equation (13).

6: calculate the optimal control command
[
U∗k , U∗k+1, · · · , U∗N−1

]
according to Equation (16).

7: take
[
U∗k+1, · · · , U∗N−1

]
as the new guessed control command.

8: end while.
9: calculate the one-step output Ỹk+1 with the disturbed system model (34) in presence of the estimated modeling error d̂k
10: calculate the modified control command Ũk at time k, according to Equations (39) and (40).
11: substitute Ũk into the realistic dynamic model (1) and obtain the updated state Xk+1.
12: estimate the filter state X̂E

k , error covariance P̂k, and modeling error d̂k+1, using CKF algorithm (20)~(33).
13: time update, k = k + 1.
14: end while

Remark 1. The MPSP guidance method takes the desired impact time as the terminal time N of
static planning. The target’s position and impact angles are regarded as desired terminal output Yd.
Making the terminal output deviation ∆YN no larger than tolerance value ε by iterating U∗, the
impact time and angle constraints can be satisfied simultaneously.

Remark 2. The MPSP guidance method relies on initial guessed control commands[
U0

k , U0
k+1, · · · , U0

N−1
]
. The guessed control commands are quickly generated through some simple

guidance laws in common. In this paper, the traditional PN guidance law is used to obtain the
initial guessed control commands. Usually, the impact time of PN, represented by the symbol
NP, is different from the desired time N. For the MPSP algorithm, NP must be no less than N,
so the outputs at time N can be predicted. In this paper, a protection mechanism is introduced to
make sure the MPSP algorithm normally runs even if NP is less than N: Let U0

k = U0
NP−1, for

NP − 1 < k ≤ N − 1.

5. Simulations and Results

In this section, several numerical simulations are carried out to evaluate the perfor-
mance of the proposed terminal guidance method in the presence of modeling errors. A
three-dimensional guidance scenario of a missile attacking a stationary target is constructed.
The initial simulation conditions are listed below (Table 1):

Table 1. Simulation initial conditions.

Parameters Values

Missile’s initial velocity V 200 m/s
Missile’s initial path angle θ 0◦

Missile’s initial azimuth angle ψv 0◦

Missile’s initial position (x, y, z) (0 m, 4000 m, 0 m)
Target’s position (xt, yt, zt) (5000 m, 0 m, 1000 m)
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Besides achieving precision arrival, the impact time and impact angles are also re-
quired. The desired impact time is settled as 35 s, and the desired terminal path angle
and azimuth angle are settled as −80◦ and −50◦, respectively. The dynamic model-
ing errors in Equation (1) are settled as dx = −0.4 sin(t/400) cos(t/400), dy = 1, and
dz = 2.5 cos(πt/200). The measurement errors from the GNSS system are assumed to be
normally distributed. The position error, velocity error, and acceleration error are settled to
be 10 m (3σ), 1 m/s (3σ), and 0.1 m/s2 (3σ), respectively.

For the MPSP algorithm, the guessed control commands
[
U0

k , U0
k+1, · · · , U0

N−1
]

are
needed. The traditional PN [30] is used to produce the initial values of

[
U0

k , U0
k+1, · · · , U0

N−1
]

in this paper, and the navigation ratio is settled as 6. In addition, a comparison with the
MPSP guidance method presented in [21] is provided to validate the superiority of the
method. The end condition for PN simulation is that the missile reaches the target. And
the end conditions for the other two simulations are that the simulation times reach the
desired impact time, which is 35 s on this occasion. For MPSP and CKF-MPSP methods,
the tolerance value vector is settled as ε = [1m, 1m, 1m, 0.1◦, 0.1◦]T. The simulation results
are shown below.

To evaluate the guidance accuracy, some crucial parameters of the three methods
shown in Figure 3 are provided in Tables 2 and 3, which include the terminal miss distance,
terminal velocity, terminal path angle, terminal azimuth angle, and impact time.
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Figure 3. Comparative simulation results of three methods: (a) three-dimensional trajectory;
(b) missile velocity profiles; (c) path angle profiles; (d) azimuth angle profiles; (e) angle-of-attack
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Table 2. Simulation results of PN method.

Method Miss Distance (m) Velocity (m/s) Path Angle (◦) Azimuth Angle (◦) Impact Time (s)

PN 0.26 242.56 −46.42 −15.23 30.5

Table 3. Simulation results of MPSP and CKF-MPSP methods at the desired impact time (35 s).

Method Miss Distance (m) Velocity (m/s) Path Angle (◦) Azimuth Angle (◦)

MPSP 289.73 161.18 −90.24 218.31
CKF-MPSP 0.29 249.90 −79.99 −50.00

It is obvious that the CKF-MPSP method has good accuracy for miss distance while
strictly constraining the terminal path angle, azimuth angle, and impact time. The PN
method leads to the minimum miss distance. However, it cannot consider impact time and
angle constraints. Because of the dynamic modeling errors, the MPSP method cannot find a
feasible solution, which leads to a significant guidance error. Affected by modeling errors,
the MPSP method’s velocity is lower than the CKF-MPSP’s at every identical moment,
which is also the main reason for the MPSP method not reaching the destination. The
CKF-MPSP method estimates the modeling errors with high accuracy. Referring to Figure 4,
the estimation error of modeling errors is no larger than 0.04 m/s2. The influence of
modeling errors can be reduced by compensating for the nominal command acceleration.
The simulation results illustrate the effectiveness and superiority of the CKF-MPSP method
in the presence of modeling errors.
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Figure 4. CKF estimation results: (a) CKF estimation of modeling errors and (b) estimation error of
modeling errors.

Based on the above simulation, the influence of atmospheric density deviation, aero-
dynamic parameter deviation, and the random variation in the dynamic modeling errors
are further considered. The deviations are assumed to be normally distributed, and their
values are 10% (3σ). The results of 200 Monte Carlo simulations are as follows.

The key indexes in Figure 5 is summarized in Table 4. According to Table 4, the
miss distances are no larger than 5.56 m and the average impact angle errors are 0.055◦

and 0.077◦, respectively. The missile maintains high guidance accuracy in the presence
of disturbances. The simulation results illustrate that the proposed guidance method has
strong robustness.
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Table 4. Monte Carlo simulation results.

Method Miss Distance (m) Velocity (m/s) Path Angle (◦) Azimuth Angle (◦)

Average 1.21 248.92 −79.95 −49.93
Maximum value 5.56 250.11 −79.21 −48.49
Minimum value 0.03 240.40 −80.12 −50.26
Standard error 0.95 1.84 0.16 0.34

6. Conclusions

ITACG is a vital field for missiles because it can improve destructive effects and hit
weak parts of time-sensitive targets, and make it possible for multiple missiles to attack a
target simultaneously. Studying ITACG can effectively enhance the combat effectiveness
of missiles.

In this paper, an ITACG is proposed based on the MPSP algorithm. By taking the
desired impact time and angles as terminal conditions, the guidance method can satisfy
these constraints simultaneously. Furthermore, to eliminate the influence of modeling
errors on prediction, the CKF algorithm is used for error estimation, and a compensation
scheme is designed. The proposed guidance method considers the missile’s dynamic model
instead of a constant-velocity model. Meanwhile, the modeling errors are estimated and
compensated. Thus, this method is more practically significant. A terminal guidance
scenario is settled, and the PN method, MPSP method, and CKF-MPSP method are used for
simulation in the presence of modeling errors. According to the simulation results, the CKF-
MPSP method can achieve impact time and angle constraint guidance, and maintain high
accuracy within the influence of modeling errors. Furthermore, the Monte Carlo simulation
is conducted, considering the influence of atmospheric density deviations, aerodynamic
parameter deviations, and random variations in the dynamic modeling errors. According
to the simulation results, the miss distances are no larger than 5.56 m, and the average
impact angle errors are 0.055◦ and 0.077◦, respectively. The missile maintains high guidance
accuracy in the presence of disturbances. Comprehensively, the simulation results illustrate
that the proposed CKF-MPSP guidance method has high precision and strong robustness.

It should be acknowledged that this article still has some limitations. The research of
this paper is mainly focused on the ITACG against stationary targets. For moving targets, it
is also necessary to introduce their motion models into the guidance method. However,
the accurate estimation of the moving targets’ motion is still a difficult problem, because of
insufficient target information and potential maneuvering. Motion model estimation and
MPSP-based guidance for moving targets remain to be researched in the future.
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