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1. Introduction

Recently, Chu [1], using the telescoping method, obtained the following double series
expressions of ζ(2) = ∑∞

n=1
1

n2 and the Catalan constant G = ∑∞
n=0

(−1)n

(2n+1)2 :

ζ(2)
λ2 =

∞

∑
i,j=1

(λi− 1)!(j− 1)!
(λi + j)!

,

8G =
∞

∑
i,j=1

(i− 1)!(j− 1)!(
1
2

)
i+j

,

where λ ∈ N and the rising factorial (x)n = Γ(x + n)/Γ(x). With the works mentioned
above as a source of inspiration, we derived two general double series formulas that
encapsulate the Riemann zeta values ζ(s), the Catalan constant G, log(2), π and several
other significant mathematical constants. We highlight some identities as examples (see
Equations (20), (22), (24) and (25) in Section 3.2).

log(2)
2

=
∞

∑
i,j=1

(2i− 2)!(2j− 2)!(i + j− 1)!
(i− 1)!(j− 1)!(2i + 2j− 1)!

,

4 log(2)− ζ(2) =
∞

∑
i,j=1

4(2i− 2)!(2j− 2)!(i + j− 1)!
i!(j− 1)!(2i + 2j− 1)!

,

G =
∞

∑
i,j=1

(λi+j
j )

(2λi+2j
2j )

2λi(−1)i−1

(2i− 1)2(2j− 1)
,

√
3

18
π =

∞

∑
i,j

(i + j)!i!(2j)!
(2i + 2j)!j!(2j− 1)

.

Throughout this paper, we assume that 0 < q < 1. For complex numbers, x, α defined
the q-shifted factorial by [2]

(x; q)∞:=
∞

∏
i=0

(1− xqi), (x; q)α:=
(x; q)∞

(xqα; q)∞
,

where the principal value of qα is taken. For z ∈ C, we introduce the notation
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[z]q:=
1− qz

1− q
.

Jackson defined the q-Gamma function Γq(x) by

Γq(x):=
(q; q)∞

(qx; q)∞
(1− q)1−x.

Thus, we can write
(1− q)x−1Γq(x) = (q; q)x−1.

The q-Gamma function satisfies the fundamental functional relation

Γq(x + 1) = [x]qΓq(x). (1)

The Gaussian polynomial is the q-analogue of the binomial coefficient. It is defined by[
α
β

]
q
:=

Γq(α + 1)
Γq(β + 1)Γq(α− β + 1)

=
(qα−β+1; q)β

(q; q)β
. (2)

It is known that q-analogue is a powerful tool that generalizes mathematical expres-
sions by replacing variables with q-deformed ones. One important example of q-analogue is
the Gaussian polynomial, which is a q-analogue of the binomial coefficient. The q-binomial
coefficient has found applications in many areas, including q-series, combinatorics and alge-
braic geometry. In algebraic geometry, there exists a close relationship between q-binomial
coefficients and Grassmannians.

There have been many recent developments in the study of q-analogue. For example,
q-deformed conformal field theory has been studied in [3,4], q-hypergeometric series have
been studied in [5] and q-analogue of the Riemann zeta function has been studied in [6,7].
Other recent works on q-analogue can be found in [2,8].

In this paper, we begin with the base of the method of telescoping sums to provide the
following two main q-analogue formulas:

Theorem 1. Let fq(z) be a q-function of z and m, n, k be any positive integers. Then,

m

∑
i=1

k

∑
j=1

fq(i)qj[ni]q

[j]q

[
ni + j

j

]
q

=
m

∑
i=1

fq(i)
(

1− (q; q)k

(qni+1; q)k

)
, (3)

m

∑
i=1

k

∑
j=1

[
ni + j

j

]
q2[

2ni + 2j
2j

]
q

·
[2ni]q fq(i)q2j−1

[2j− 1]q
=

m

∑
i=1

fq(i)
(

1− (q; q2)k

(q2ni+1; q2)k

)
. (4)

Let f (i) = limq→1− fq(i) exist and the series ∑ f (i) converge. In the above formulas, as
k and m tend towards infinity and q approaches 1−, the resulting equations can be written
as follows (see Corollary 2 in Section 2.2 and Corollary 3 in Section 3.2).

∞

∑
i,j=1

ni f (i)

j(ni+j
j )

=
∞

∑
i=1

f (i),

∞

∑
i,j=1

(ni+j
j )

(2ni+2j
2j )

· 2ni f (i)
2j− 1

=
∞

∑
i=1

f (i).

Hence, we successfully reduce double series to single series, enabling us to quickly
obtain results when computing such double series. Consequently, we can derive numerous
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elegant representations of classical constants in the form of double series. We list three
formulas as examples (see Equations (10) and (11) in Section 2.3 and Equation (27) in
Section 3.2).

7
4

ζ(3) =
∞

∑
i,j=1

Oi

ij(i+j
j )

,

7ζ(3)− 2πG =
∞

∑
i,j=1

O2i

ij(i+j
j )

,

π2

48
=

∞

∑
i,j=1

(2i+j
j )

(4i+2j
2j )
· Oi
(2i + 1)(2j− 1)

,

where On = ∑n
k=1

1
2k−1 .

2. The First q-Formula in Theorem 1

Firstly, we utilize the q-Gamma function to create our lemma that we will employ,
primarily relying on the telescoping method.

2.1. Basic Lemma

For any two complex numbers x, y, we define a sequence Qj(x, y) by

Qj(x, y):=
Γq(x + j)
Γq(y + j)

. (5)

This sequence clearly converges and we write the limit as Q∞, i.e.,

Q∞:= lim
j→∞

Qj(x, y) = (1− q)y−x.

It is a basic calculation that we have

Qm

Q0
=

(qx; q)m

(qy; q)m
, and

Q∞

Q0
= lim

m→∞

Qm

Q0
= (qx; q)y−x. (6)

Lemma 1. For any two distinct complex numbers x, y, and a positive integer k, we have

k

∑
j=1

qx+j−1 Γq(x + j− 1)
Γq(y + j)

=
Γq(x)

[y− x]qΓq(y)

(
1− (qx; q)k

(qy; q)k

)
.

Proof. Since

Qj−1(x, y)−Qj(x, y) =
Γq(x + j− 1)
Γq(y + j− 1)

−
Γq(x + j)
Γq(y + j)

=
Γq(x + j− 1)

Γq(y + j)

(
[y + j− 1]q − [x + j− 1]q

)
=

Γq(x + j− 1)
Γq(y + j)

qx+j−1[y− x]q,

we have
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k

∑
j=1

qx+j−1 Γq(x + j− 1)
Γq(y + j)

=
1

[y− x]q

k

∑
j=1

Qj−1(x, y)−Qj(x, y)

=
Q0 −Qk
[y− x]q

=
Q0

[y− x]q

(
1− Qk

Q0

)
.

By using Equations (5) and (6), we can establish the formula we want to prove.

When k tends to infinity, by imposing the condition <(y) > <(x) on the summation
mentioned above, we arrive at the subsequent outcome.

Corollary 1. For any two complex numbers x, y with <(y) > <(x), we have

∞

∑
j=1

qx+j−1 Γq(x + j− 1)
Γq(y + j)

=
Γq(x)

[y− x]qΓq(y)

(
1− (qx; q)y−x

)
.

2.2. The Proof of the First q-Formula

Moving forward, we will utilize Lemma 1 to deduce our first double q-summation
formula, Equation (3).

We rewrite the following sum as

m

∑
i=1

k

∑
j=1

fq(i)qj[ni]q

[j]q

[
ni + j

j

]
q

=
m

∑
i=1

fq(i)[ni]q
k

∑
j=1

qj

[j]p

[
ni + j

j

]
q

.

The inner sum can be simplified

k

∑
j=1

qj

[j]p

[
ni + j

j

]
q

=
k

∑
j=1

qjΓq(ni + 1)Γq(j + 1)
[j]pΓq(ni + j + 1)

=
k

∑
j=1

qjΓq(ni + 1)Γq(j)
Γq(ni + j + 1)

.

We apply x = 1 and y = ni + 1 in Lemma 1 and we have

k

∑
j=1

qjΓq(j)
Γq(ni + j + 1)

=
1

[ni]qΓq(ni + 1)

(
1− (q; q)k

(qni+1; q)k

)
.

Therefore, the inner sum becomes

1
[ni]q

(
1− (q; q)k

(qni+1; q)k

)
.

We substitute this result into our original double sums, and then we obtain our
desired result.

If we let k→ ∞ and m→ ∞ in Equation (3), then we have

∞

∑
i,j=1

fq(i)qj[ni]q

[j]q

[
ni + j

j

]
q

=
∞

∑
i=1

fq(i)(1− (q; q)ni), (7)

if both the series on the left and right sides of the equation converge.
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Corollary 2. Let f (i) = limq→1− fq(i) exist and the series ∑ f (i) converge. Then, for any positive
integer n, we have

∞

∑
i,j=1

ni f (i)

j(ni+j
j )

=
∞

∑
i=1

f (i). (8)

2.3. Examples of the First Formula

We provide some applications. Let f (i) = 1/i2 and n = λ in Equation (8). Then,

ζ(2) =
∞

∑
i=1

1
i2

=
∞

∑
i,j=1

λ

ij(λi+j
j )

.

This equation appeared in [1], Theorem 4. Based on some well-known results ([9],
Equations (15) and (19)):

∞

∑
k=1

ψ( 1
2 ± k)− ψ( 1

2 )

k2 =
7
2

ζ(3),
∞

∑
k=1

(−1)k

k2

(
ψ(

1
2
± k)− ψ(

1
2
)

)
= 2πG− 7

2
ζ(3).

We know that ψ( 1
2 ± k)− ψ( 1

2 ) = 2Ok. Thus, we have

∞

∑
i=1

Oi
i2

=
7
4

ζ(3),
∞

∑
i=1

O2i
i2

= 7ζ(3)− 2πG.

We list three more identities in the following.

2ζ(3) =
∞

∑
i=1

Hi
i2

=
∞

∑
i,j=1

nHi

ij(ni+j
j )

, (9)

7
4

ζ(3) =
∞

∑
i=1

Oi
i2

=
∞

∑
i,j=1

nOi

ij(ni+j
j )

, (10)

7ζ(3)− 2πG =
∞

∑
i=1

O2i
i2

=
∞

∑
i,j=1

nO2i

ij(ni+j
j )

, (11)

where Hn = ∑n
k=1

1
k is the harmonic number. Let n = 1 in Equation (9); this provides the

identity appearing in [1], Corollary 7:

2ζ(3) =
∞

∑
i,j=1

(i− 1)!(j− 1)!Hi
(i + j)!

.

Aside from the mentioned applications, we can also consider the case of finite sum-
mations. Simply by taking the q parameter close to 1− in Equation (3), we arrive at the
following formula.

m

∑
i=1

k

∑
j=1

ni f (i)

j(ni+j
j )

=
m

∑
i=1

f (i)

(
1− 1

(ni+k
k )

)
. (12)

Since ([10], Equation (5.9))

n

∑
k=0

(
r + k

k

)
=

(
r + n + 1

n

)
,

we let f (i) = (k+i
i ) and n = 1 in Equation (12). We obtain

m

∑
i=1

k

∑
j=1

i(k+i
i )

j(i+j
j )

=
m

∑
i=1

((
k + i

i

)
− 1
)
=

(
k + 1 + m

m

)
− 1−m. (13)
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The following result is easily obtained from [11], Proposition 1:

∞

∑
k=1

1

k2(k+n
k )

=
∞

∑
k=1

1
(k + n)2 .

Taking m→ ∞ with n = 1 in Equation (12) and f (i) = 1/i2, we have

∞

∑
i=1

k

∑
j=1

1

ij(i+j
j )

=
∞

∑
i=1

(
1
i2
− 1

i2(i+k
k )

)

=
∞

∑
i=1

1
i2
− 1

(i + k)2 = H(2)
k , (14)

where H(2)
n = ∑n

k=1
1
k2 .

3. The Second q-Formula in Theorem 1
3.1. The Proof of the Second Formula

Let A be the left-hand side of Equation (4)

A :=
m

∑
i=1

k

∑
j=1

[
ni + j

j

]
q2[

2ni + 2j
2j

]
q

·
[2ni]q fq(i)q2j−1

[2j− 1]q
.

Rewrite A by using Equation (2):

A =
m

∑
i=1

k

∑
j=1

Γq2(ni + j + 1)Γq(2j + 1)Γq(2ni + 1)[2ni]qq2j−1hq(i)

Γq(2ni + 2j + 1)Γq2(j + 1)Γq2(ni + 1)[2j− 1]q
.

By using Equation (1), we simplify the factor

Γq2(ni + j + 1)Γq(2j + 1)Γq(2ni + 1)

Γq(2ni + 2j + 1)Γq2(j + 1)Γq2(ni + 1)

as the following

Γq2(ni + j)Γq(2j)Γq(2ni)

Γq(2ni + 2j)Γq2(j)Γq2(ni)
·
[ni + j]q2 [2j]q[2ni]q
[2ni + 2j]q[j]q2 [ni]q2

=
Γq2(ni + j)Γq(2j)Γq(2ni)

Γq(2ni + 2j)Γq2(j)Γq2(ni)
· [2]q.

Therefore, A becomes

A =
m

∑
i=1

k

∑
j=1

Γq2(ni + j)Γq(2j)Γq(2ni)[2ni]qq2j−1(q + 1)hq(i)

Γq(2ni + 2j)Γq2(j)Γq2(ni)[2j− 1]q

=
m

∑
i=1

Γq(2ni)[2ni]q(1 + q)hq(i)
Γq2(ni)

k

∑
j=1

Γq2(ni + j)Γq(2j− 1)q2j−1

Γq(2ni + 2j)Γq2(j)
.

Let Bk be the above inner sum, that is,

Bk :=
k

∑
j=1

Γq2(ni + j)Γq(2j− 1)q2j−1

Γq(2ni + 2j)Γq2(j)
.
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A q-analogue of Legendre duplication formula for the Gamma function [2] is

Γq(2x)Γq2

(1
2

)
= Γq2(x)Γq2

(
x +

1
2

)
(1 + q)2x−1. (15)

We set x = j− 1
2 and x = ni + j, respectively, and then we obtain

Γq(2j− 1)
Γq2(j)

=
Γq2(j− 1

2 )

Γq2( 1
2 )

(1 + q)2j−2 (16)

and
Γq2(ni + j)

Γq(2ni + 2j)
=

Γq2( 1
2 )

Γq2(ni + j + 1
2 )

(1 + q)1−2ni−2j. (17)

Substituting Equations (16) and (17) into Bk, we have

Bk =
k

∑
j=1

Γq2(j− 1
2 )q

2j−1

Γq2(ni + j + 1
2 )(1 + q)2ni+1

.

We let x = 1
2 , y = ni + 1

2 and replace q with q2 in Lemma 1; we can rewrite Bk
as follows.

Bk =
Γq2( 1

2 )

[ni]q2 Γq2(ni + 1
2 )(1 + q)2ni+1

(
1− (q; q2)k

(q2ni+1; q2)k

)
.

Thus,

A =
m

∑
i=1

Γq(2ni)[2ni]qhq(i)
Γq2(ni)(1 + q)2ni

Γq2( 1
2 )

[ni]q2 Γq2(ni + 1
2 )

(
1− (q; q2)k

(q2ni+1; q2)k

)
.

We use Equation (15) again with x = ni; therefore,

Γq(2ni)Γq2( 1
2 )

Γq2(ni)Γq2(ni + 1
2 )

= (1 + q)2ni−1.

Substituting this result into the representation of A, we have

A =
m

∑
i=1

[2ni]qhq(i)
(1 + q)[ni]q2

(
1− (q; q2)k

(q2ni+1; q2)k

)
=

m

∑
i=1

hq(i)
(

1− (q; q2)k

(q2ni+1; q2)k

)
.

Hence, we have obtained the expected equation and conclude the proof.
If we let k→ ∞ and m→ ∞ in Equation (4), then we have

∞

∑
i,j=1

[
ni + j

j

]
q2[

2ni + 2j
2j

]
q

[2ni]qhq(i)q2j−1

[2j− 1]q
=

∞

∑
i=1

hq(i)
(

1− (q; q2)ni

)
(18)

if both the series on the left and right sides of the equation converge.

Corollary 3. Let h(i) = limq→1− hq(i) exist and the series ∑ h(i) converge. Then, for any positive
integer n, we have

∞

∑
i,j=1

(ni+j
j )

(2ni+2j
2j )

· 2ni h(i)
2j− 1

=
∞

∑
i=1

h(i). (19)
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3.2. Examples of the Second Formula

We provide some applications. Let n = 1 and h(i) = 1
(2i)(2i−1) in Equation (19) and we

obtain a symmetric double series:

log(2)
2

=
∞

∑
i=1

1
(4i)(2i− 1)

=
∞

∑
i,j=1

(2i− 2)!(2j− 2)!(i + j− 1)!
(i− 1)!(j− 1)!(2i + 2j− 1)!

. (20)

Moreover, let n = 1 and h(i) = 1
is(2i−1) in Equation (19), where s ∈ N. Since the partial

fraction decomposition is

1
is(2i− 1)

=
2s−1

i(2i− 1)
−

s

∑
k=2

2s−k

ik ,

we have

2s log(2)−
s

∑
k=2

2s−kζ(k) =
∞

∑
i,j=1

(i+j
j )

(2i+2j
2j )

2 i1−s

(2i− 1)(2j− 1)
. (21)

The following are the formulas with s = 2, 3:

4 log(2)− ζ(2) =
∞

∑
i,j=1

4(2i− 2)!(2j− 2)!(i + j− 1)!
i!(j− 1)!(2i + 2j− 1)!

, (22)

8 log(2)− 2ζ(2)− ζ(3) =
∞

∑
i,j=1

4(2i− 2)!(2j− 2)!(i + j− 1)!
i · i!(j− 1)!(2i + 2j− 1)!

. (23)

Building upon the known series expansions for G and π, we can formulate a double
series expansion that specifically represents these constants. For example, we use the power
seies expansion

2x arcsin x√
1− x2

=
∞

∑
n=1

4nn!n!
(2n)!n

x2n.

Setting x = 1/2 in the above series, we have

π

3
√

3
=

∞

∑
n=1

n!n!
n(2n)!

.

Thus, if we let h(i) = i!i!
i(2i)! and n = 1 in Equation (19), then

√
3π

18
=

∞

∑
i,j=1

(i + j)!i!(2j)!
(2i + 2j)!j!(2j− 1)

. (24)

Also, if we let h(i) = (−1)i−1

(2i−1)2 in Equation (19), we obtain a double series representation
for the Catalan constant G:

G =
∞

∑
i,j=1

(ni+j
j )

(2ni+2j
2j )

2(−1)i−1ni
(2i− 1)2(2j− 1)

. (25)

Aliev and Dil [12] proved that

ζ(2)
4

=
∞

∑
k=1

Ok
2k(2k + 1)

.
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Using Equation (19) with h(i) = Oi
2i(2i+1) , we have

π2

24
=

∞

∑
i,j=1

(ni+j
j )

(2ni+2j
2j )

· nOi
(2i + 1)(2j− 1)

. (26)

Indeed, we can derive
∞

∑
n=1

On

(2n)(2n− 1)
=

π2

12

using the method outlined in [13]. Moreover, by substituting h(i) = Oi
(2i)(2i−1) and n = 1

into Equation (19), we obtain the following equation, which exhibits enhanced symmetry:

π2

12
=

∞

∑
i,j=1

(i+j
j )

(2i+2j
2j )
· Oi
(2i− 1)(2j− 1)

. (27)

Lastly, we would like to emphasize that, by taking the q parameter towards 1− in
Equation (4), we obtain a concise summation formula that can be applied

m

∑
i=1

k

∑
j=1

(ni+j
j )

(2ni+2j
2j )

· 2nih(i)
2j− 1

=
m

∑
i=1

h(i)

(
1− 1

(2ni+k
k )

)
. (28)

4. Conclusions

In this paper, our focus is on demonstrating the effective application of the "telescop-
ing method" in handling summation expressions of q-series (ref. Equations (3) and (4)).
Specifically, we are primarily concerned with the summation of finite series (ref.
Equations (12), (13) and (28)) or infinite series (ref. Equations (8) and (19)) that involve
coefficients represented by binomial coefficients.

Utilizing the telescoping method, we derived two general double series formulas that
encompass notable mathematical constants, including the Riemann zeta values ζ(s) (ref.
Equations (9), (10) and (21)–(23)), the Catalan constant G (ref. Equations (11) and (25)),
log(2) (ref. Equations (20) and (21)), π (ref. Equations (11) and (24)) and various other
significant mathematical constants (ref. Equations (26) and (27)).

Interestingly, there are still many intriguing double series worth exploring, such as the
work by Aliev and Dil [12]:

∑
n,m≥1

Hn+m

nm(n + m)
= 6ζ(4),

or the double series for π established by Wei [8], initially conjectured by Guo and Lian [14]:

π

12
=

∞

∑
k=1

(6k + 1)
( 1

2 )
3
k

k!34k

k

∑
j=1

1
(2j− 1)2 −

1
16j2

.

These equations, among others, present intriguing topics worthy of investigation. Of
course, since they were derived using different approaches, it would be fascinating to
obtain similar equations using the telescoping method.
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