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Abstract: In this paper, estimations of the parameter and acceleration factor of the Burr–Hatke
exponential distribution in partially accelerated life tests under progressively type II censoring
are investigated. By using typical maximum likelihood methods and the Bayesian method, point
estimations of the distribution parameter and the acceleration factor are obtained. Based on the
asymptotic normality and Delta method, approximate confidence intervals are established using
the Fisher information matrix. The confidence intervals of the percentile bootstrap method are also
evaluated. Comprehensive simulation tests are conducted to evaluate the estimations effects. A real
dataset is studied by constructing a Burr–Hatke exponential model and analyzing the practicality
and utility of parameter estimation.
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1. Introduction

Life testing is an important approach to analyzing and evaluating the lifetime of a
product which implicates the durability of the product. Life testing holds a significant
position in reliability testing. The purpose of the life test can be generally categorized into
three types:

(1) To find the life distribution of the product; (2) To obtain the statistical characteristics
of the product’s life distribution; (3) To study the failure mechanism of the product.

The life test reveals the characteristics of the lifetime and failure mechanism of the
product, which can be applied to make further reliability predictions and to improve the
quality of the product. Therefore, life testing is crucial in modern industrial research.

According to the applied stress level, life tests can be classified into normal stress life
tests and accelerated life stress tests. Normal stress life tests, namely, the traditional life
test, collect data on the failure of the experimental object under normal conditions of use.
For many reasons, such as the automation in the modern industry, the life span of products
grows longer and it is hard to observe a sufficient number of product failures in a short
period. Researchers accelerate the failure of the test object by changing the experimental
conditions. Some common techniques include increasing the voltage and increasing the
applied pressure.

The accelerated life stress test can be subdivided into a partially accelerated life test
(PALT) and a fully accelerated life test (FALT). The difference between the two tests is
whether all products are under increased stress. In a FALT, all products are under increased
stress, which is also called the accelerated condition. During an accelerated life test, the
experimenter would gather more failed units compared with the normal stress condition in
a given amount of time. The researcher can extrapolate the lifetime characteristics of the
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product under normal stress from the lifetime and failure information of failed units under
increased stress. To achieve this, it is necessary to find an index that reflects the magnitude
of acceleration, called the acceleration factor, and then further build a physical model to
describe the relationship between the acceleration factor and product life. Since the value
of the acceleration factor is immeasurable and the life-stress model is not readily available
in most cases, the partially accelerated life test (PALT) has a broader application than the
fully accelerated life test (FALT). In PALT, experimental units were treated either under
normal use stress conditions or accelerated stress conditions. Ref. [1] divided the common
life stress models into two categories: the step stress (SS) model and the constant stress (CS)
model. In the CS life test, the units stay under a stabilized stress level, while in the SS life
test, the pressure applied to the units increases step by step until the units break down.

The life test has two subcategories, one is called constant stress partial accelerated life
test (CSPALT) and the other is called stepped stress partial accelerated life test (SSPALT).
CSPALT and SSPALT are by far the most frequently used experimental methods in life
testing. In CSPALT, units are always at normal use stress levels or fixed increased stress
levels. This means that the stress level to which the sample is subjected does not change
from the beginning of the test to the end of the test. Many studies on CSPALT have been
conducted by scholars in recent years. Ref. [2] designed CSPALTs to estimate the parameters
of the Burr XII distribution with multiple sets of type I and type II censored data. Ref. [3]
assessed the superiority of estimates for CSPALTs using type I and type II censored data
following Weibull distribution.

Censoring is a situation where an event occurs that is not observed or is not observable
to the extent that the survival time cannot be accurately recorded. Censoring often needs to
be factored into life tests. Right censoring usually occurs when a product survives longer
than the observation time and is a frequent occurrence in lifespan tests. There are many
different censoring schemes, and when the observation start time is the same, there are
two types of censoring depending on the observation end time. For type I censoring, the
observations of the remaining experimental subjects are uniformly cut off at a fixed time
point, excluding the products that have failed. Type II censoring is that the observations are
terminated when a predetermined amount of failure of the products is observed, and the
percentage of censoring can be assumed to be predetermined. Due to the high reliability
and long life of modern industrial products, a new censoring scheme, progressively type
II censoring, is proposed. Consider a life test containing n units and a predetermined
censoring ratio S =

(
Sj1, Sj2, . . . , Sjmj

)
. When the first product fails, S1 units are randomly

selected from the residual n− 1 units and the observation on them is terminated; when
the second product fails, S2 units are randomly selected from the remaining n− 2− S1
units and the observation on them is terminated; and when the i product fails, Si units are
randomly selected from the residual n− i− S1 − S2 − . . .− Si−1 units and the observation
on them is terminated. This censoring scheme can improve the efficiency of the experiment
and reduce the cost, which can be seen in the case of [4,5].

The exponential distribution is often used to establish models about life due to its
memory-less property. Assume that X is an exponentially distributed random variable;
then, the cumulative distribution function (CDF) and probability density function (PDF) are

f (x) = λe−λx, λ > 0, x > 0 (1)

F(x) = 1− e−λx, λ > 0, x > 0 (2)

For the reliability analysis, the hazard rate function (HRF) describes the law of failure
time and reflects the intensity of the probability of an individual’s instantaneous death at a
point in time. The corresponding survival function (SF) represents the probability of an
individual surviving. The HRF and SF are important tools for studying accelerated life tests
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and censored data. The expressions of the HRF and the SF of the exponential distribution
are given by

h(x) = λ, λ > 0, x > 0 (3)

s(x) = e−λx, λ > 0, x > 0. (4)

The HRF of the exponential distribution is a constant value function with the value λ.
Scholars have worked on mining other distributions as expanded extensions of the

exponential distribution that can serve as models for simulating lifetimes. Ref. [6] gener-
alized an exponentiated exponential distribution to develop a transmuted exponentiated
exponential distribution. Ref. [7] introduced the Burr–Hatke–G family to simulate lifetimes.

The Burr–Hatke–G distribution family was constructed on the basis of the Burr–Hatke
differential equation, which is given by

dF
dx

= g(x, F)F(1− F) (5)

F(x) is a CDF of a continous random variable X, while g(x, F) is any non-negative
function. The Burr–Hatke–G family has attracted a lot of attention from scholars, such
as [8,9]. Inspired by them, the authors of [10] proposed and analyzed a new lifetime
distribution with one parameter, called the Burr–Hatke exponential (BHE) distribution, as
an extension of the exponential distribution. Consider X as a random variable obeying
Burr–Hatke exponential distribution. The cumulative distribution function, and probability
density function, survival function, and hazard rate function of X can be formulated,
respectively, as

F1(x) = 1− e−λx

1 + λx
, λ > 0, x > 0 (6)

f1(x) = λe−λx 2 + λx

(1 + λx)2 , λ > 0, x > 0 (7)

S1(x) =
e−λx

1 + λx
, λ > 0, x > 0 (8)

H1(x) = λ
2 + λx
1 + λx

, λ > 0, x > 0 (9)

The following Figures 1–4 present the different images of CDF (6), PDF (7), SF (8), and
HRF (9) when the parameter λ takes different values.
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Figure 1. CDF of BHE.
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Figure 2. PDF of BHE.
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Figure 4. HRF of BHE.

The Burr–Hatke exponential distribution has good properties. Firstly, the moments of
BHE are discussed. The first-order moment, mathematical expectation, and second-order
moment are calculated as follows:

E(X) = µ =
−(εe)

λ
(10)
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E
(

X2
)
=

2(εe + 1)
λ2 (11)

where

ε =
∫ −1

−∞
et/tdt (12)

The variance (13) in BHE is easy to obtain.

Var(X) =
εe(2 + εe) + 2

λ2 (13)

Secondly, consider the asymptotics of BHE distribution. Let a = inf{x|F(x) > 0},
when x → a, the CDF, PDF, and HRF of BHE show the following convergence:

Fλ(x) ∼ 1− (−λx) (14)

fλ(x) ∼ λe−λx (15)

hλ(x) ∼ e−λx (16)

when x → ∞, the asymptotics shows

[1− Fλ(x)] ∼ e−λx

λx
(17)

fλ(x) ∼ λ(1− λx)e−λx

(λx)2 (18)

hλ(x) ∼ λ(1− λx)
λx

(19)

Notably, the HRF of BHE is a decreasing function, which can be seen in (9). The
descending function describes the probability of breakdown reducing over time, which
means improvement exists during the living time. Ref. [10] takes the opinion that it
describes a situation where the probability of early death is high, and as time passes, the
factors that could have caused the death initially reduce or disappear. In other words,
there is some improvement in the sample that survives the initial period. Therefore, it may
serve as a valuable model when analyzing data from reliability tests or medical fields that
follow the decreasing pattern of HRF. Recently, much research on BHE has been conducted.
Ref. [10] used the classical likelihood and Bayesian method to estimate a BHE model’s
parameter, based on data under hybrid censoring, and confirmed that the BHE model
fits both datasets well relative to other distributions. Ref. [11] estimated the BHE model
parameter using the maximum likelihood method and considered BHE as an appropriate
model for the right-skewed data. Ref. [12] considered a Burr–Hatke exponential distribution
for a model of software development cost and analyzed the model by applying software
failure time data. Ref. [9] using two real datasets illustrated that the BHE models fitted best
compared with other models simulating lifetime empirically. Ref. [13] concluded that the
BHE model is suitable in the field of software reliability analysis. Ref. [14] introduced the
discrete BHE distribution and investigated its statistical properties insightfully.

In summary, this study of the Burr–Hatke exponential distribution has significant
implications in practice. Studies of the Burr–Hatke exponential distribution on both ac-
celerated life testing and under type II censoring are missing. The parameter of the BHE
distribution under CSPALT with progressive type II censoring is estimated in this article.
The maximum likelihood estimates (MLEs) and their approximate confidence intervals
(ACIs) of the parameter and accelerated factor have been concluded. Interval estimates
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based on the Bootstrap method and point estimates calculated using the Bayesian method
are also given.

The study in this paper fills the gap of BHE distribution in CSPALT, extends CSPALT
to more applicable situations in life tests, and provides a new model for life test samples
with reduced hazard rate functions.

This paper is organized as follows. In Section 2, the notation of the censored schemes
and CSPALT is explained. In Section 3, the procedures to obtain maximum likelihood
estimates and the Fisher information matrix are shown. The approximate confidence
intervals using the delta method are built up. In Section 4, Boot-p confidence intervals
based on Bootstrap methods are discussed. In Section 5, Bayesian point estimates are
presented, using the Metropolis–Hasting algorithm for sampling. In Section 6, a Monte
Carlo simulation study is performed to compare the implementation of the results of
different estimates. In Section 7, a real dataset of oil breakdown times is analyzed to
investigate the estimations of the parameters. In Section 8, the structure of the article is
summarized and an outlook on the future work is provided.

2. Model Description

As a basis for subsequent estimation, the experimental approach to CSPALT under
progressive type II censoring and the underlying assumptions about the model are as
follows (Figure 5):

Assume that the total amount of samples is n. To build up a CSPALT test, randomly
select an n1 sample as test group 1, which is under normal stress, and the residual n2,
as group 2, is under the accelerated condition. Take progressively type II censoring into
consideration, and set a sample size of

(
nj, mj

)
, where j = 1, 2 for each test group; then, mj

is the observed number of failures for each test group. The prefixed censoring scheme is
(Sj1, Sj2, . . . , Sjmj), which means that when the ith failure is observed, remove randomly
selected Sji samples from the testing group.

Then, the observation is given by
(

Xj1, Xj2, . . . , Xjmj

)
, j = 1, 2.

Figure 5. CSPALT process.
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Several key assumptions are made as follows:

(1) The lifetime of units in test group 1, under normal stress, follows a Burr–Hatke
exponential distribution with CDF in (6), PDF in (7), SF in (8), and HRF in (9).

(2) The HRF of units in test group 2, under the accelerated condition is given by H2(x) =
βH1(x), and β is the acceleration factor that satisfies β > 1.

Considering the above assumptions together, the HRF, SF, CDF, and PDF of the sample
lifetime under accelerated stress conditions can be deduced with the following results.

H2(x) = βλ
2 + λx
1 + λx

(20)

S2(x) = (
e−λx

1 + λx
)

β

(21)

F2(x) = 1− (
e−λx

1 + λx
)

β

(22)

f2(x) = βλe−βλx 2 + λx

(1 + λx)β+1 (23)

The joint PDF of the observation
(

Xj1, Xj2, . . . , Xjmj

)
, j = 1, 2 is the following.

L(x) =
2

∏
j=1

Aj

{ mj

∏
i=1

f j
(

xji
)[

1− Fj
(
xji
)]Sji

}
(24)

where

Aj = nj
(
nj − 1− Sj1

)(
nj − 2− Sj1 − Sj2

)
. . . (nj −mj −

mj−1

∑
k=1

Sjk). (25)

3. Classical Inference
3.1. Maximum Likelihood Estimation

From the logarithm of the above joint density, neglecting the constant term and
substituting the CDFs and PDFs, the log-likelihood function is defined to be

l(β, λ) = m log λ + m2 log β−
m1

∑
i=1

λ(S1i + 1)x1i +
m1

∑
i=1

[log (2 + λx1i)− (S1i + 2) log (1 + λx1i)]

−
m2

∑
i=1

βλ(S2i + 1)x2i +
m2

∑
i=1

[log (2 + λx2i)− (βS2i + 1 + β) log (1 + λx2i)] (26)

where m = m1 + m2.
The MLEs of β and λ can be obtained by finding the partial derivatives of the log-

likelihood function for β and λ.
For a fixed λ, the MLE of β is as follows:

β̂(λ) =
m2

∑m2
i=1 λS2ix2i + ∑m2

i=1 S2i log (1 + λx2i)
(27)

For a fixed β, the MLE of λ can be derived from the following equation:
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m1

∑
i=1

(S1i + 1)x1i +
m2

∑
i=1

(
β̂S2i + 1

)
x2i −

m1

∑
i=1

[
x1i

2 + λx1i
− (S1i + 2)x1i

1 + λx1i

]

−
m2

∑
i=1

[
x2i

2 + λx2i
−
(

β̂S2i + 2
)
x2i

1 + λx2i

]
=

m
λ

(28)

Proposition 1. The solution of the equation about λ exists when and only when m1 > 0, m2 > 0.

To prove the existence of the solution of this equation, consider Function (29).

G(λ) =
m1

∑
i=1

(S1i + 1)x1i +
m2

∑
i=1

(
β̂S2i + 1

)
x2i −

m1

∑
i=1

[
x1i

2 + λx1i
− (S1i + 2)x1i

1 + λx1i

]

−
m2

∑
i=1

[
x2i

2 + λx2i
−
(

β̂S2i + 2
)
x2i

1 + λx2i

]
− m

λ
(29)

Consider first the continuity of G(λ). Taking the derivative of G(λ) with respect to λ,
we have

G′(λ) =
m1

∑
i=1

[
x1i

2

(2 + λx1i)
2 −

(S1i + 2)x1i
2

(1 + λx1i)
2

]
+

m2

∑
i=1

[
x2i

2

(2 + λx2i)
2 −

(
β̂S2i + 2

)
x2i

2

(1 + λx2i)
2

]
+

m
λ2 (30)

It can be concluded that G(λ) is continuous when λ > 0. Furthermore, observe the
endpoint values of G(λ).

As λ→ 0, we have

G(λ)→
m1

∑
i=1

(S1i + 1)x1i +
m2

∑
i=1

(
β̂S2i + 1

)
x2i +

m1

∑
i=1

(
3
2
+ S1i

)
x1i +

m2

∑
i=1

(
3
2
+ β̂S2i

)
x2i −

m
λ

= −∞ (31)

As λ→ ∞, we have

G(λ)→
m1

∑
i=1

(S1i + 1)x1i +
m2

∑
i=1

(
β̂S2i + 1

)
x2i > 0 (32)

where G(λ) is positive and negative at λ→ 0 and λ→ ∞, respectively. From the mid-value
theorem, it can be seen that there exists λ > 0 such that G(λ) = 0 has a root. The existence
of the estimate of λ is proved.

3.2. Approximate Confidence Interval Estimation

Theorem 1. Suppose that x1, . . . , xn are independent identically distributed samples from fθ(x)
and θ̂ is the MLE of θ. Then,

θ̂ ∼ N(θ,
I−1(θ)

n
) (33)

where I(θ) is the Fisher information matrix of θ.

Then, λ̂ and β̂ have the following asymptotic normal distribution.

λ̂ ∼ N
(
λ, var

(
λ̂
))

(34)

β̂ ∼ N
(

β, var
(

β̂
))

(35)
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The approximate confidence intervals (ACIs) of the parameters can then be constructed,
while a sufficiently large sample size is necessary.

The second-order partial derivatives of the maximum likelihood function are calcu-
lated and all partial second derivatives are obtained as follows.

∂2l
∂β2 = −m2

β2 (36)

∂2l
∂β∂λ

=
∂2l

∂λ∂β
= −

m2

∑
i=1

(S2i + 1)x2i
2 + λx2i
1 + λx2i

(37)

∂2l
∂λ2 = − m

λ2 +
m1

∑
i=1

[
−x1i

2

(2 + λx1i)
2 +

(S1i + 2)x1i
2

(1 + λx1i)
2

]
+

m2

∑
i=1

[
−x2i

2

(2 + λx2i)
2 +

(βS2i + 1 + β)x2i
2

(1 + λx2i)
2

]
(38)

The variance–covariance matrix can be obtained from the Fisher information matrix,
and their relationship equation is presented below.

I(θ)−1 = −

 ∂2l
∂β2

∂2l
∂β∂λ

∂2l
∂λ∂β

∂2l
∂λ2

−1

=

(
var
(

β̂
)

cov
(

β̂, λ̂
)

cov
(
λ̂, β̂

)
var
(
λ̂
) ) (39)

Substituting the partial derivatives (36)–(38) into (39), the variances of λ̂ and β̂ are
easily obtained.

Via the central limit theorem and the law of large numbers, the approximate 100(1− τ)%
confidence interval for parameter β, λ is specified as

β̂± Z τ
2

√
var
(

β̂
)

(40)

λ̂± Z τ
2

√
var
(
λ̂
)

(41)

Z τ
2

is the τ
2 quantile of the standard normal distribution.

Noting that the lower bound of the interval may be less than 0, the delta method
proposed by [15] is adopted to construct more objective ACIs.

Proposition 2. When a variable β̂ obeys the normal distribution, its function g
(

β̂
)

obtained after
the derivative transformation still obeys the normal distribution.

To ensure the non-negativity of the lower bound of ACI, let

g(β) = log(β) (42)

It can be assumed that g
(

β̂
)

obeys normal distribution according to the proposition (2).
The expectation and variance in the new normal distribution can be derived by subjecting
g to a Taylor expansion (43) on β̂.

g(β̂) ≈ g(β) + g′(β)(β̂− β) (43)

Substituting the functional expression of g into (43), we have the following:

log β̂ ∼ Z

(
β,

var
(

β̂
)

β2

)
(44)
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The 100(1− τ)% ACI for function g(β̂) is presented as

log β̂± Z τ
2

√
var
(

β̂
)

β2 (45)

The new 100(1− τ)% ACI for parameter β is given by

(β̂e
−Z τ

2

√
var(β̂)

β2 , β̂e
Z τ

2

√
var(β̂)

β2 ) (46)

Similarly, a more precise 100(1− τ)% ACI for λ can be calculated, with the expres-
sion following.

(λ̂e
−Z τ

2

√
var(λ̂)

λ2 , λ̂e
Z τ

2

√
var(λ̂)

λ2 ) (47)

4. Bootstrap Confidence Intervals

The ACI is accurate only if the number of samples is large enough. When the number
of samples is comparatively small, the accuracy of ACI may be lower and the bootstrap
confidence interval (BCI) may have better results. Ref. [16] proposed a percentile bootstrap
confidence interval (PBCI). To achieve both methods under progressively type II censoring,
a simulation algorithm is needed. Ref. [4] proposed a simulation algorithm for generating a
progressively type II censored sample from any continuous distribution. According to the
type II censored generation algorithm, the specific steps to acquire the PBCI of parameters
are as follows (Algorithm 1).

Algorithm 1: Percentile bootstrap confidence interval
1. A set of sample data from the experiment is the original experimental data. The MLEs
λ̂, β̂ of λ, β are obtained by building the maximum likelihood function from the original
experimental data.
2. Generate the progressively type II censored sample based on the MLEs λ̂, β̂ obtained
in step (1).
3. Establish the likelihood function concerning the progressively type II censored sample
generated in step (2), calculate the MLEs λ̂1, β̂1 of λ, β.
4. Duplicate step (2) and step (3) up to B times to get

(
λ̂1, λ̂2, . . . , λ̂B

)
,
(

β̂1, β̂2, . . . , β̂B
)
.

5. Arrange the estimates of the parameters in step (4) in ascending order, we have(
λ̂(1), λ̂(2), . . . , λ̂(B)

)
,
(

β̂(1), β̂(2), . . . , β̂(B)

)
.

For arbitrary 0 < τ < 1, bilateral 100(1− τ)% percentile bootstrap confidence intervals
for parameter λ and β can be composed in the following form.(

λ̂[ Bτ
2 ]

, λ̂[B(1− τ
2 )]

)
(48)

and (
β̂[ Bτ

2 ]
, β̂[B(1− τ

2 )]

)
(49)

where
[

Bτ
2

]
represents the maximum integer less than Bτ

2 ; similarly,
[
B
(
1− τ

2
)]

represents

the maximum integer less than B
(
1− τ

2
)
.

5. Bayesian Estimation

Bayesian estimation is another important parameter estimation method. Unlike classi-
cal estimation, Bayesian estimation takes into account the randomness of the parameters,
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treating them as random variables rather than constants. The distribution of the parameters
is used as prior information to make further statistical inferences more precise. In this
section, point estimates based on the Bayesian theory and the highest posterior density
credible intervals are obtained.

5.1. Bayesian Point Estimation

Firstly, consider the prior distribution of λ and β. Due to the flexibility of the gamma
distribution, we consider the gamma distribution as the prior distribution of the parameter
lambda, i.e., λ ∼ Gamma(a1, b1). The hyperparameters a1, b1 are known positive constants.
Considering the intuitiveness and accuracy of Bayesian estimation, we assume that lambda
and beta are independent random variables, each following a distribution possessing the
following density function:

g(λ) = λa1−1e−b1λ, λ > 0 (50)

g(β) = β−1, β > 1 (51)

The joint density function of λ and β is as follows:

g(λ, β) =
λa1−1e−b1λ

β
(52)

The joint prior density function is thus obtained:

λm+a1−1βm2−1e−b1λ × e−λ ∑
m1
i=1 (S1i+1)x1i

m1

∏
i=1

(2 + λx1i)

(1 + λx1i)
(S1i+2)

×e−λβ ∑
m2
i=1 (S2i+1)x2i

m2

∏
i=1

(2 + λx2i)

(1 + λx2i)
(βS2i+S2i+1)

(53)

Putting forward the term associated with λ, the conditional posterior distribution is
obtained as follows:

λm+a1−1e−b1λe−λ ∑
m1
i=1 (S1i+1)x1i

m1

∏
i=1

(2 + λx1i)

(1 + λx1i)
(S1i+2)

e−λβ ∑
m2
i=1 (S2i+1)x2i

m2

∏
i=1

(2 + λx2i)

(1 + λx2i)
(βS2i+S2i+1)

(54)

The conditional posterior distribution is obtained by taking the term related to β,
as follows:

βm2−1e−β(λ ∑
m2
i=1 (S2i+1)x2i+∑

m2
i=1 (S2i+1) log(1+λx2i)) (55)

It can be found that the posterior distribution of β is a gamma distribution with
parameters m2 and λ ∑m2

i=1 (S2i + 1)x2i + (S2i + 1)∑m2
i=1 log(1 + λx2i), so the samples of

beta can be generated directly using the gamma distribution. The posterior distribution
of λ is not a common distribution, and after a quick visualization, the figure is found to
be similar to that of the normal distribution, so the sample of lambda is generated using
the Metropolis–Hastings (MH) algorithm. The samples of λ and β are generated using the
following Algorithm 2.
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Algorithm 2: Bayesian estimates of λ and β

1. Set the starting value of the parameter λ0.
2. Generate β ∼ Gamma

(
m2,

(
λ ∑m2

i=1 (S2i + 1)x2i + (S2i + 1)∑m2
i=1 log(2 + λx2i)

))
,

as β1.
3. Use N(λ0, σ2

1 ) as the trial cast density, where σ2
1 = 0.01, to generate a random

candidate sample λ, substitute into the joint prior density, compute the proportion of the
function value of the candidate sample to the function value of λ0 and denote as r, then
accept λ as the new sample λ1 with probability r.
4. Duplicate step (2) and step (3) up to M times to obtain λ1, λ2, . . . , λM, β1, β2, . . . , βM.

In the Bayesian parameter estimation, the squared error loss function is chosen as the
loss function.

The Bayesian estimations of λ and β are obtained as follows:

λ̂ =
∑M

i=N λi

M− N
(56)

β̂ =
∑M

i=N βi

M− N
(57)

while N is the annealing factor, aiming to eliminate the effect of inaccuracies at the begin-
ning of the iteration.

5.2. Highest Posterior Density Credible Interval

In the previous section for Bayesian point estimation, M − N samples of λ and β
were generated separately through posterior distributions, and by sorting these samples in
ascending order, we have

(
λ̂(1), λ̂(2), . . . , λ̂(M−N)

)
,
(

β̂(1), β̂(2), . . . , β̂(M−N)

)
. For arbitrary

0 < τ < 1, a bilateral 100(1− τ)% confidence interval for parameter λ, β can be composed
in the following form. (

λ̂[(M−N) τ
2 ]

, λ̂[(M−N)(1− τ
2 )]

)
(58)

and (
β̂[(M−N) τ

2 ]
, β̂[(M−N)(1− τ

2 )]

)
(59)

where
[
(M− N) τ

2
]

represents the maximum integer less than (M− N) τ
2 ; similarly, [(M− N)(

1− τ
2
)
] represents the maximum integer less than (M− N)

(
1− τ

2
)
.

Repeat the above steps N∗ times to obtain N∗ interval estimates with the form above,
from which the interval with the smallest length is selected as the highest posterior density
credible interval.

6. Simulation Study

In this section, Monte Carlo simulations were conducted to judge the performance of
the several methods mentioned above on parameter estimation.

Two sets of parameters are evaluated, as follows:

(1) (λ = 1, β = 2) with corresponding hyperparameters (a1 = 0.5, b1 = 0.5).
(2) (λ = 2.5, β = 3.4) with corresponding hyperparameters (a1 = 1, b1 = 0.4).

The value of the hyperparameter has a negligible effect on the results when the number
of tests is large enough, so the value that makes the mean of the prior distribution the same
as the original mean is chosen. Based on the theory part of the equation, the two sets of
parameters are estimated separately. For all the interval estimates, the significant level is
set at τ = 0.05.



Mathematics 2023, 11, 2939 13 of 21

To ensure the reliability of the test, six distinct sets of censoring schemes and sample
sizes are selected:

(1) nj = 15, mj = 10, Sj1 = 5, Sj2 = . . . = Sj5 = 0
(2) nj = 15, mj = 10, Sj1 = . . . = Sj4 = 0, Sj5 = 5
(3) nj = 30, mj = 20, Sj1 = 10, Sj2 = . . . = Sj10 = 0
(4) nj = 30, mj = 20, Sj1 = . . . = Sj9 = 0, Sj10 = 10
(5) nj = 60, mj = 40, Sj1 = 20, Sj2 = . . . = Sj40 = 0
(6) nj = 60, mj = 40, Sj1 = . . . = Sj39 = 0, Sj40 = 20

In the process of algorithm implementation, data following the BHE distribution under
progressively type II censoring need to be generated as samples. Progressively type II
censored data are generated via the following Algorithm 3 proposed by [4].

Algorithm 3: Progressively type II censored data
1. Generate m independent samples U1, U2, . . . , Um from Uni f orm(0, 1).
2. Set Yi = Ui

1/(i+Sm+Sm−1+...+Sm−i+1), where i = 1, 2, . . . , m. S = (S1, S2, . . . , Sm) is
the censored scheme.
3. Set Zi = 1−YmYm−1 . . . Ym−i+1, where i = 1, 2, . . . , m. Then Z1, Z2, . . . , Zm are the
progressively type II censored samples from Uni f orm(0, 1).
4. Calculate Xi = F−1(Zi), where i = 1, 2, . . . , m. F−1(•) is the inverse of the aimed
distribution function. Then X1, X2, . . . , Xm are the progressively type II censored samples
derived from the distribution with F(•).

Applying the expressions for the CDF under normal stress (6) and under accelerated
stress (22) to the above algorithm, progressively type II censored data under normal use
stress and accelerated stress conditions are produced. The complete experimental data of
the simulated CSPALT are available and used to compare the superiority and inferiority of
the parameter estimation methods.

The performance of the proposed methods for estimates of the BHE distribution based
on the CSPALT under progressively type II censoring is verified via Monte Carlo simulation
using the R-package. In the framework of classical maximum likelihood, the maximum
likelihood function is solved using the Newton–Raphson method, and the Hessian matrix
is used to obtain the maximum likelihood estimates. In the optimization process, the
beginning value of the parameters is a random selection. The matrix is inverted to obtain
the variance in the estimates and to construct asymptotic interval estimates by combining
asymptotic normality. The Bayesian estimators are obtained using the gamma prior of λ
and the non-informative prior of β. The MH algorithm and the Gibbs sampling are applied
due to the posterior distribution being difficult to obtain.

Using maximum likelihood and the Bayesian method, estimates of λ and β are ob-
tained in the form of point estimates. The interval estimates are calculated using the
maximum likelihood method and the bootstrap method. For each method of estimation,
5000 simulations were executed.

The criteria for judging the estimation effectiveness are as follows. For point estimation,
there are two evaluation criteria, as follows:

(1) Mean square error (MSE), calculated as

∑N
i=1
(
λ̂− λ

)2

N
(60)

∑N
i=1
(

β̂− β
)2

N
(61)
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(2) Average bias (AB), which is calculated as

∑N
i=1
∣∣λ̂− λ

∣∣
N

(62)

∑N
i=1
∣∣β̂− β

∣∣
N

(63)

For interval estimation, the judgment criteria are as follows:

(1) Coverage probability (CP), namely, the proportion of intervals containing the true
values of parameters to all intervals;

(2) Average length (AL), that is, the distance from the maximum value to the minimum
value of the interval.

The results of point and interval estimation are reported in the following tables.
To represent the coverage of the intervals more intuitively, the BCI and PBCI are

plotted separately as follows (Figures 6 and 7), and it can be seen that both BCI and PBCL
are good interval estimations.The red lines show the true values of the parameters.

Figure 6. Convergence of Bayesian estimation-λ.

Figure 7. Convergence of Bayesian estimation-β.

From Tables 1 and 2, it can be seen that as the sample size (n, m) increases, the
values of MSEs and ABs, the statistics reflecting the centrality of MLEs and BEs, decrease,
respectively. It can be assumed that the estimation has good consistency. The classical
MLE estimation outperforms the Bayesian estimation when the censored scheme is fixed.
For a fixed number of units (n, m), the estimates of the censored scheme [1], [3], [5] are
superior to the estimates of [2], [4], [6], namely, The censoring that happens following the
initial observed failure provides more precise estimates compared with the others, which is
consistent with the findings of [17].

From Tables 3 and 4, it can be seen that as the number of samples (n, m) increases, the
values of ALs of both ACIs and PBCIs decrease, respectively. The CPs of ACIs and PBCIs
increase slightly, showing a tendency to converge to 95%, the values of the confidence interval.
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Table 1. ABs and MSEs of unknown parameter and acceleration factor with (λ, β) = (1, 2).

MLE BE

CS λ β λ β

[1] 0.2683[0.1375] 0.7811[1.1713] 0.3725[0.2029] 0.8345[1.0440]
[2] 0.3155[0.1762] 0.8312[1.4896] 0.3498[0.1457] 1.2643[3.0430]
[3] 0.2117[0.0791] 0.5044[0.4055] 0.2525[0.0966] 0.5584[0.4499]
[4] 0.2043[0.0672] 0.5542[0.5871] 0.2259[0.0763] 0.6009[0.5706]
[5] 0.1473[0.0441] 0.4295[0.3270] 0.2242[0.0760] 0.4677[0.3278]
[6] 0.1662[0.0444] 0.4578[0.3512] 0.1814[0.0465] 0.4621[0.2914]

Table 2. ABs and MSEs of unknown parameter and acceleration factor with (λ, β) = (2.5, 3.4).

MLE BE

CS λ β λ β

[1] 0.7876[1.2247] 1.4158[4.2459] 1.8116[3.0753] 3.0276[8.3606]
[2] 0.7803[1.2886] 1.3835[3.8128] 1.7927[2.9894] 2.0089[7.3854]
[3] 0.5271[0.4971] 0.9560[1.6084] 1.7561[2.8364] 2.4469[5.5591]
[4] 0.5145[0.4817] 0.8967[1.4013] 1.9421[3.4317] 2.5794[6.1211]
[5] 0.4187[0.2997] 0.7512[0.9597] 1.8138[2.9991] 2.5852[6.1047]
[6] 0.3937[0.2780] 0.7817[1.0447] 1.5501[2.2273] 2.8741[3.7581]

Table 3. ALs and CPs of unknown parameter and acceleration factor with (λ, β) = (1, 2) with τ = 0.05.

ACI PBCI HPD

CS λ β λ β λ β

[1] 1.5016[0.9510] 4.1679[0.9289] 1.5638[0.9424] 4.5314[0.9778] [0.8190] [0.9308]
[2] 1.5119[0.9540] 4.0603[0.9469] 1.5180[0.9424] 4.6190[0.9700] [0.8712] [0.9462]
[3] 1.0087[0.9560] 2.6996[0.9409] 1.0461[0.9388] 2.8309[0.9438] [0.7658] [0.9016]
[4] 1.0045[0.9540] 2.6503[0.9159] 1.0363[0.9360] 2.8157[0.9601] [0.8710] [0.9414]
[5] 0.8256[0.9479] 2.1376[0.9459] 0.8438[0.9470] 2.2186[0.9522] [0.6284] [0.8434]
[6] 0.7990[0.9459] 2.1728[0.9520] 0.8364[0.9480] 2.2241[0.9462] [0.8368] [0.9218]

For the HPD confidence intervals, we only present the coverage probability.

Table 4. ALs and CPs of unknown parameter and acceleration factor with (λ, β) = (2.5, 3.4) with
τ = 0.05.

ACI PBCI

CS λ β λ β

[1] 1.5016[0.9510] 4.1679[0.9289] 4.0899[0.8560] 6.9612[0.8918]
[2] 1.5119[0.9540] 4.0603[0.9469] 3.9360[0.8588] 6.9319[0.8942]
[3] 1.0087[0.9560] 2.6996[0.9409] 2.7121[0.9272] 4.8121[0.9422]
[4] 1.0045[0.9540] 2.6503[0.9159] 2.6881[0.9220] 4.7897[0.9414]
[5] 0.8256[0.9479] 2.1376[0.9459] 2.1739[0.9418] 3.8547[0.9528]
[6] 0.7990[0.9459] 2.1728[0.9520] 2.1346[0.9528] 3.8671[0.9450]

In summary, both point estimates—the maximum likelihood estimate and the Bayesian
estimate—show excellent performance, indicating the stability of both methods. The results
of PBCI are poorer, and the estimation is also inefficient, requiring a long time to complete
the iterations. The performance of ACI is much better than that of PBCI.

7. Real Data Analysis

In this section, real-time CSPALT life data are analyzed to further elaborate the estima-
tion method described above. For additional clarification, we analyzed a real-time dataset
of the oil breakdown time of insulating liquids. The life of many industrial components
depends on the lifetime of electrical insulation. Accelerating conditions, such as turning up
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the voltage, can improve the efficiency of the life test. Ref. [1] studied accelerated tests based
on this background, applying different magnitudes of voltage to different experimental
groups for the tests. The data for the empirical analysis in this paper are derived from this
study. Ref. [17], using this dataset and applying progressively type II censoring, compared
the performance of several parameter estimations of Nadarajah–Haghighi distribution
under CSPALT.

In the empirical analysis, the sample at 30 kV was used as data under the constant
stress condition, and the sample at 32 kV was used as data under the accelerated stress
condition. The data are presented as follows Table 5.

Table 5. Real data set of oil breakdown times of insulating fluid under CSPALT recorded by [1].

Constant Stress Condition

194.902, 175.880, 144.120, 139.070, 47.300, 43.400, 22.660, 21.020, 20.460, 17.050, 7.740

Accelerated Stress Condition

215.10, 100.58, 89.29, 82.85, 53.24, 27.80, 15.93, 13.95, 9.88, 3.91, 2.75, 0.79, 0.69, 0.40 0.27

Before the estimation of parameters, the goodness-of-fit of the dataset to the BHE
distribution was verified. Firstly, the Kolmogorov–Smirnov test (KS test) was used to
measure the distance of the data from the distribution. The KS distance and p-value of data
under the constant stress condition were calculated to be 0.2167 and 0.6062, respectively,
and the KS distance and p-value of data under the accelerated stress condition were 0.2959
and 0.1167, respectively; at the significance level τ = 0.05, the dataset is considered suitable
for fitting with the BHE distribution. To visualize how precisely this dataset fits the BHE
distribution, a plot of the dataset‘s cumulative distribution with the CDF of BHE is shown
in Figures 8 and 9. The green line shows the CDF of BHE distribution. Quantile–quantile
plots (QQ plots) (Figures 10 and 11) were further plotted, and the results were obtained as
follows. The percentage–percentage plot (PP plot) (Figures 12 and 13) are also presented.
The conclusion is the same as the result of the KS test, that is, the model can be fitted using
the BHE distribution for this dataset.
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Figure 8. Constant stress condition.
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Figure 9. Accelerated stress condition.
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The circles are the quantiles of the real data, while the line shows the ideal fitted line.

Figure 10. Constant stress condition.

Considering the small sample size, a progressively type II censored scheme is selected
with a small amount of censoring. The censored data are obtained as follows Table 6:

Table 6. Censored data set of oil breakdown times of insulating fluid under CSPALT.

Constant Stress Condition (n1, m1) = (11, 10) S1 = (1, 0, . . . , 0)

7.74, 17.05, 20.46, 21.02, 43.40, 47.30, 139.07, 144.12, 175.88, 194.902

Accelerated Stress Condition (n2, m2) = (15, 14) S1 = (1, 0, . . . , 0)

0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 89.29, 100.58, 215.10
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The circles are the quantiles of the real data, while the line shows the ideal fitted line.

Figure 11. Accelerated stress condition.
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Figure 12. Constant stress condition.

Under this assumption, point and interval estimates of the acceleration factor and the
unknown parameter are obtained using the principles and algorithms in Sections 3–5. The
results of parameter estimation are shown in the following Table 7.

Table 7. Estimation of parameters of oil breakdown times of insulating fluid under CSPALT and
progressively type II censoring.

λ β

MLE 0.0077 1.9802
BE 0.0076 1.9955

ACI (0.0026,0.0127)[0.0101] (0.4142,3.5462)[3.1320]
PBCI (0.1980,3.3534)[3.1553] (1.0000,3.4717)[2.4717]
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The circles are the percentiles of the real data, while the line shows the ideal fitted line.

Figure 13. Accelerated stress condition.

In the Bayesian estimation, the parameter of the trial cast density normal distribu-
tion is chosen to be 0.001, and the hyperparameter of the gamma prior distribution is
(a1, b1) = (0.02, 1), which matches the sample characteristics. The following conclusions
can be obtained:

(1) The results of MLE and BE are similar, indicating that the BHE model is consistent
with the data.

(2) The ACI of parameters λ and β contains the results of MLE and BE, and the length of
the interval is small.

(3) The results of PBCI with λ illustrate the instability of PBCI, which is consistent with
the conclusions in the Simulation Study section.

8. Conclusions

In the setting of Burr–Hatke exponential distribution, this paper investigates the
process of parameter estimation for data from the partially accelerated life test (constant
stress) after progressively type II censoring. The hazard function for the accelerated
condition is derived from the fixed acceleration model, and the probability density function
and cumulative distribution function are further derived. The joint density function of the
data under constant stress condition and the data under accelerated stress condition are
obtained, and the m likelihood estimates are obtained via the optimization theory. The
approximate confidence intervals are constructed with the solution of the Fisher information
matrix, while using percentiles in the bootstrap method, the bootstrap confidence intervals
are obtained. The joint prior density was obtained by constructing the prior distribution
of the parameters. The posterior distributions of the parameters were observed and the
Bayesian point estimates were obtained using the Metropolis–Hastings algorithm. In
the simulation test, constant stress partially conforming to the Burr–Hatke exponential
distribution was generated from accelerated life test data and underwent progressively
type-II censoring. The comparison shows that both maximum likelihood estimates and
Bayesian estimates work well. It was also found that the approximate confidence interval
outperformed the percentile bootstrap confidence intervals. Illustrative examples also
confirm these conclusions. In future studies, more reasonable bootstrap confidence intervals
will be explored. Interval estimation using the Bayesian method may show good results. It
is also hoped that the parameter estimation can be extended to more distributions.
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Abbreviations
The following abbreviations are used in this manuscript:

PALT partially accelerated life test
FALT fully accelerated life test
SS step stress
CS constant stress
CSPALT constant stress partially accelerated life test
SSPALT step stress partially accelerated life test
BHE Burr–Hatke exponential
CDF cumulative distribution function
PDF probability density function
HRF hazard rate function
SF survival function
MLE maximum likelihood estimate
ACI approximate confidence interval
BE Bayesian estimate
CS censoring scheme
BCI bootstrap confidence interval
PBCI percentile bootstrap confidence interval
HPD highest posterior density
MSE mean square error
AB average bias
CP coverage probability
AL average length
KS Kolmogorov–Smirnov
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