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1. Introduction

Generalized convex optimization are very well-studied branches of mathematics.
There are many very meaningful and useful definitions of generalized convexities. Let X
be a normed space, and X+ a convex cone of X. K. Fan [1] introduced the definition of X+-
convexlike function. Jeyakumar [2] introduced the definition of X+-sub convexlike function
and defined X+-subconvexlike function in [3]. There are many research articles discussing
subconvexlike optimization problems, e.g., see [4–8]. In this paper, by using partial order
relations and the absorbing property of bounded convex sets in locally convex topological
spaces [9], we proved that the sub convexlikeness introduced in [2] and subconvexlikeness
in [3] are equivalent in locally convex topological spaces (including normed linear spaces).

Most papers in set-valued optimization studied the problem with inequality and
abstract constraints. In this paper, we consider the set-valued optimization problem with
not only inequality and abstract, but also equality constraints. The explicit statement of the
equality constraint is very convenient in various applications. For example, recently, math-
ematical programs with equilibrium constraints have received considerable attention from
the optimization community. The mathematical programs with equilibrium constraints are
a class of optimization problem with variational inequality constraints. By representing the
variational inequality as a generalized equation, e.g., [10–12], a mathematical program with
equilibrium constraints can be reformulated as an optimization problem with an equality
constraint. This paper works with a set-valued optimization problem with inequality,
equality as well as abstract constraints. By using the separation theorem for convex sets,
we extend or modify some results (theorems of alternatives, saddle-points theorems and
Lagrangian theorems) in [4,7,8,10,13–15] to vector optimization problems with weakened
convexities.

2. Preliminary

Let X be a real topological vector space; a subset X+ of X is said to be a convex cone if

αx1 + βx2 ∈ X+, ∀x1, x2 ∈ X+, ∀α, β ≥ 0.

We denoted by 0X the zero element in the topological space X and simply by 0 if there
is no confusion.

A convex cone X+ of X is called a pointed cone if X+ ∩ (−X+) = {0}.
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A real topological vector space X with a pointed cone is said to be an ordered topolog-
ical liner space. We denote intX+ the topological interior of X+. The partial order on X is
defined by

x1 ≺X+ x2, if x1 − x2 ∈ X+,

x1 ≺≺X+ x2, if x1 − x2 ∈ int X+.

Alternatively, if there is no confusion, they may just be denoted by

x1 ≺ x2, if x1 − x2 ∈ X+,

x1 ≺≺ x2, if x1 − x2 ∈ int X+.

If A, B ⊆ X, we denoted by

A ≺X+ B, if x ≺X+ y for ∀x ∈ A, ∀y ∈ B,

A ≺≺X+ B, if x ≺≺X+ y for ∀x ∈ A, ∀y ∈ B.

Alternatively,
A ≺ B, if x ≺ y for ∀x ∈ A, ∀y ∈ B,

A ≺≺ B, if x ≺≺ y for ∀x ∈ A, ∀y ∈ B.

A linear functional on X is a continuous linear function from X to R (1-dimensinal
Euclidean space). The set X* of all linear functionals on X is the dual space of X. The subset

X∗+ = {ξ ∈ X∗ : 〈x, ξ〉 ≥ 0, ∀x ∈ X+}.

of X∗ is said to be the dual cone of the cone X+, where 〈x, ξ〉 = ξ(x).
Suppose that X and Y are two real topological vector spaces. Let f : X→2Y be a

set-valued function, where 2Y denotes the power set of Y.
Let D be a nonempty subset of X. We set f (D) = ∪x∈D f (x) and

〈 f (x), η〉 = {〈y, η〉 : y ∈ f (x)},

〈 f (D), η〉 = ∪x∈D〈 f (x), η〉.

For x ∈ D, η ∈ Y∗, we wrote

〈 f (x), η〉 ≥ 0, if 〈y, η〉 ≥ 0, ∀y ∈ f (x),

〈 f (D), η〉 ≥ 0, if 〈 f (x), η〉 ≥ 0, ∀x ∈ D.

The following Definitions 1 and 2 can be found in [4].

Definition 1 (convex, bounded, and absorbing). A subset M of X is said to be convex, if
x1, x2 ∈ M and 0 < α < 1 implies αx1 + (1− α)x2 ∈ M; M is said to be balanced if x ∈ M and
|α|≤ 1 implies αx ∈ M; M is said to be absorbing if, for any given neighborhood U of 0, there exists
a positive scalar β, such that β−1M ⊆ U, where β−1M =

{
x ∈ X; x = β−1v; v ∈ M

}
.

Definition 2 (locally convex topological space). A topological vector space X is called a locally
convex topological space if any neighborhood of 0X contains a convex, balanced and absorbing
open set.
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From [9], p. 26 Theorem, p. 33 Definition 1, a normed linear space is a locally convex
topological space.

3. The Sub Convexlikeness

This section shows that the definitions of sub convexlikeness and subconvexlikeness
provided by Jeyakumar [2,3] are actually one.

A set-valued function f : X → 2Y is said to be Y+-convex on D if ∀x1, x2 ∈ D,
∀α ∈ [0, 1]; one has

α f
(

x1
)
+ (1− α) f

(
x2
)
≺Y+ f

(
α x1 + (1− α) x2

)
.

The following definition of convexlikeness was introduced by Ky Fan [1].
A set-valued function f : X → 2Y is said to be Y+-convexlike on D if ∀x1, x2 ∈ D,

∀α ∈ [0, 1], ∃x3 ∈ D such that

α f
(

x1
)
+ (1− α) f

(
x2
)
≺Y+ f

(
x3
)

.

Jeyakumar [9] introduced the following subconvexlikeness.

Definition 3 (subconvexlike). Let Y be a topological vector space and D ⊆ X be a nonempty set
and Y+ be a convex cone in Y. A set-valued map f: D → 2Y is said to be Y+-subconvexlike on D if
∃θ ∈ intY+, such that ∀x1, x2 ∈ D, ∀ε > 0, ∀α ∈ [0, 1], ∃x3 ∈ D holds

εθ + α f (x1) + (1− α) f (x2) ≺Y+ f (x3).

Lemma 1 is Lemma 2.3 in [14].

Lemma 1. Let Y be a topological vector space and D ⊆ X be a nonempty set and Y+ be a convex
cone in Y. A set-valued map f: D → 2Y is Y+-sub-convex-like on D if, and only if, ∀θ ∈ intY+,
∀x1, x2 ∈ D, ∀α ∈ [0, 1], ∃x3 ∈ D, such that

θ + α f (x1) + (1− α) f (x2) ≺Y+ f (x3).

A bounded function in a topological space can be defined as following Definition 4
(e.g., see Yosida [9]).

Definition 4 (bounded set-valued map). A subset M of a real topological vector space Y is said
to be a bounded subset if, for any given neighborhood U of 0, there exists a positive scalar β such
that β−1M ⊆ U, where β−1M =

{
y ∈ Y; y = β−1v; v ∈ M

}
. A set-valued map f: D → Y is

said to bounded map if f (Y) is a bounded subset of Y.

Jeyakumar [2] introduced the following sub convexlikeness.

Definition 5 (sub convexlike). Let Y be a topological vector space and D ⊆ X be a nonempty set.
A set-valued map f: D → 2Y is said to be Y+-sub convexlike on D if ∃bounded set-valued map u:
D → Y , ∀x1, x2 ∈ D, ∀ε > 0, ∀α ∈ [0, 1], ∃x3 ∈ D, such that

εu + α f (x1) + (1− α) f (x2) ≺Y+ f (x3).

Lemma 2. Let Y be a locally convex topological space and D ⊆ X be a nonempty set Y. A set-valued
map f: D → 2Y is Y+-sub-convex-like on D if, and only if, f (D) + intY+ is Y+-convex.
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Theorem 1. Let Y be a locally convex topological space, D ⊆ X a nonempty set, and Y+ a convex
cone in Y. A set-valued map f: D → 2Y is Y+-sub convexlike on D if, and only if, f (D) + intY+ is
Y+-convex.

Proof. The necessity.
Suppose that f is Y+-sub convexlike.
∀z1 = y1 + y1

0, z2 = y2 + y2
0 ∈ f (D) + intY+, ∃x1, x2 ∈ D, such that y1 ∈ f (x1),

y2 ∈ f (x2). Let
y0 = αy1

0 + (1− α)y2
0,

Then, y0 ∈ intY+. Therefore, ∃ neighborhood U of 0, such that y0
+ + U is a neighbor-

hood of y0
+ and

y0
+ + U ⊆ intY+.

By Definition 2, we may assume that U is convex, balanced and absorbing.
From the assumption of sub convexlikeness, i.e., ∃ bounded set-valued map u:x1, x2 ∈ D,

ε > 0, α ∈ [0, 1], ∃x3 ∈ D, such that

εu + α f (x1) + (1− α) f (x2) ⊆ f (x3) + Y+.

Therefore,
αz1 + (1− α)z2
= αy1 + (1− α)y2 + αy1

+ + (1− α)y2
+

⊆ f (x3)− εu + Y+ + y0
+

Since U is convex, balanced and absorbing, we may take ε > 0 to be small enough,
such that

−εu ⊆ U.

Therefore,
−εu + y0

+ ⊆ y0
+ + U ⊆ intY+.

Then,
αz1 + (1− α)z2
= αy1 + (1− α)y2 + αy1

+ + (1− α)y2
+

⊆ f (x3) + intY+

⊆ f (D) + intY+.

Hence, f (D) + intY+ is a Y+-convex set.
The sufficiency.
If f (D) + intY+ is Y+-convex, then, by Lemma 1, f is Y+-subconvexlike. It is clear that

Y+-subconvexlikeness implies Y+-sub convexlikeness. �

From Lemma 2 and Theorem 1, we obtained Theorem 2.

Theorem 2. Let Y be a locally convex topological space, D ⊆ X a nonempty set and Y+ a convex
cone in Y. A set-valued map f: D → 2Y is Y+-subconvexlike on D if, and only if, f is Y+-sub
convexlike on D.

4. Vector Saddle-Point Theorems

This section presents vector saddle-point theorems for set-valued optimization problems.
A set-valued map f : D → 2Y is said to be affine on D if ∀x1, x2 ∈ D, ∀β ∈ R; therefore,

β f (x1) + (1− β) f (x2) = f (βx1 + (1− β)x2.

We introduced the notion of sub affinelike functions, as follows.
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Definition 6 (sub affinelike). A set-valued map f: D → 2Y is said to be Y+-sub affinelike on D if
∀x1, x2 ∈ D, ∀α ∈ (0, 1), ∃ v ∈ intY+, ∃x3 ∈ D; therefore,

v + α f (x1) + (1− α) f (x2) = f (x3).

Theorem 3. Let X, Y, Z and W be real topological vector spaces, D ⊆ X. Y+, Z+ and W+ are pointed con-
vex cones of Y, Z and W, respectively. Assume that the functions f : D → Y, g : D → Z, h : D →W
satisfy:

(a) f and g are sub convexlike maps on D, i.e., ∀u1 ∈ intY+, ∀u2 ∈ intZ+, ∀α ∈ (0, 1), ∀x1, x2 ∈ D,
∃x′, x′′ ∈ D, such that

u1 + α f
(
x1)+ (1− α) f

(
x2) ≺ f (x′),

u2 + αg
(
x1)+ (1− α)g

(
x2) ≺ g(x′′ );

(b) h is a sub affinelike map on D, i.e., ∀α ∈ (0, 1), ∀x1, x2 ∈ D, ∃x′′′ ∈ D, v ∈ intW+ such that

v + αh
(

x1
)
+ (1− α)h

(
x2
)
= h(x′′′ );

(c) int h(D) 6= ∅;

(i) and (ii) denote the system:

(i) ∃x ∈ D, s.t., f (x) ≺≺ 0, g(x) ≺ 0, h(x) = 0;
(ii) ∃(ξ, η, ζ) ∈ (Y∗+ × Z∗+ ×W∗)\{(0Y, 0Z, 0W)} such that

ξ( f (x)) + η(g(x)) + ς(h(x)) ≥ 0, ∀x ∈ D.

If (i) has no solutions, then (ii) has solutions.
Moreover, if (ii) has a solution (ξ, η, ς) with ξ 6= 0Y∗ , then (i) has no solutions.

Proof. ∀w1, w2 ∈
⋃

t>0 th(D) + intW+, ∀α ∈ (0, 1), ∃x1, x2 ∈ D, ∃b1, b2 ∈ intW+, ∃t1, t2 > 0,
such that

αw1 + (1− α)w2
= αt1h(x1) + (1− α)t2h(x2) + αb1 + (1− α)b2

= (αt1 + (1− α)t2)
[

αt1
αt1+(1−α)t2

h(x1) +
(1−α)t2

αt1+(1−α)t2
h(x2)

]
+ αb1 + (1− α)b2.

By the assumption (b), ∃x3 ∈ D, ∃v ∈ intW+, ∀ε > 0, such that

αt1

αt1 + (1− α)t2
h(x1) +

(1− α)t2

αt1 + (1− α)t2
h(x2) = h(x3)− εv.

Since v ∈ intZ+, ∃ neighborhood U of 0 in W for which V = αb1 + (1− α)b2 + U is a
neighborhood of αb1 + (1− α)b2.

By Definition 2, we may take ε > 0 to be small enough, such that

−ε(αt1 + (1− α)t2)v ⊆ U.

Then,
αb1 + (1− α)b2 − ε(αt1 + (1− α)t2)v ⊆ V ⊆ intW+.
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Therefore,

αw1 + (1− α)w2
⊆ αt1h(x1) + (1− α)t2h(x2) + αb1 + (1− α)b2

= (αt1 + (1− α)t2)
[

αt1
αt1+(1−α)t2

h(x1) +
(1−α)t2

αt1+(1−α)t2
h(x2)

]
+ αb1 + (1− α)b2

= (αt1 + (1− α)t2)h(x3) + αb1 + (1− α)b2 − ε(αt1 + (1− α)t2)v
⊆ ∪t>0th(D) + intW+.

So,
⋃

t>0 th(D) + intY+, is a convex set.
Similarly,

⋃
t>0 t f (D) + intY+, and

⋃
t>0 tg(D) + intZ+ are also convex. Therefore, the

set

C =

(⋃
t>0

t f (D) + intY+

)
×
(⋃

t>0
tg(D)+intZ+

)
×
(⋃

t>0
th(D) + intW+

)

is convex.
From assumption (c), intC 6= ∅. We also have (0Y, 0Z, 0W) /∈ B since (i) has no solution.

Therefore, according to the separation theorem of convex sets of topological vector space,
∃ nonzero vector (ξ, η, ς) ∈ Y∗ × Z∗ ×W∗, such that

ξ
(

t1 f (x) + y0
)
+ η

(
gt2(x) + z0

)
+ ς
(

t3h(x) + w0
)
≥ 0,

for ∀t1, t2, t3 > 0, ∀x ∈ D, ∀y0 ∈ intY+, ∀z0 ∈ intZ+, ∀w0 ∈ B.
Since intY+, intZ+ are convex cones, and B is a linear space, we obtained

ξ
(

t1 f (x) + λ1y0
)
+ η

(
t2g(x) + λ2z0

)
+ ς
(

t3h(x) + λ3w0
)
≥ 0

∀x ∈ D, ∀y0 ∈ intY+, ∀z0 ∈ intZ+, ∀w0 ∈ B, ∀λi > 0, (i = 1, 2, 3), ∀ti > 0, (i = 1, 2, 3).

Let λi → 0 (i = 2, 3), ti → 0 (i = 1, 2, 3) ; therefore,

ξ(y0) ≥ 0, ∀y0 ∈ intY+.

Therefore, ξ(y) ≥ 0, ∀y ∈ Y+. Hence, ξ ∈ Y∗+. Similarly, η ∈ intZ+, ς ∈ intW+.
Thus,

(ξ, η, ς) ∈ Y∗+ × Z∗+ ×W∗.

Therefore,
ξ( f (x)) + η(g(x)) + ς(h(x)) ≥ 0, x ∈ D,

which means that (ii) has solutions.
On the other hand, suppose that (ii) has a solution (ξ, η, ς) with ξ 6= 0Y∗+ , i.e.,

ξ( f (x)) + η(g(x)) + ς(h(x)) ≥ 0, x ∈ D.

We are going to prove that (i) has no solution.
Otherwise, if (i) has a solution x̃ ∈ D, then f (x̃) ≺≺ 0, g(x̃) ≤ 0, h(x̃) = 0. Hence,

one would have
ξ( f (x̃)) + η(g(x̃)) + ς(h(x̃)) < 0,

which is a contradiction. The proof is completed. �

We considered the following optimization problem with set-valued maps:

(VP) Y+-min f (x)
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s.t. gi(x) ∩ (−Zi+) 6= 0, i = 1, 2, · · · , m,

0 ∈ hj(x), j = 1, 2, · · · , n,

x ∈ D,

where f : X → 2Y , gi : X → 2Zi , hj : X → 2Wj are set-valued maps, Zi+ is a closed convex
cone in Zi and D is a nonempty subset of X.

Definition 7 (weakly efficient solution). A point x ∈ F is said to be a weakly efficient solution of
(VP) if there exists no x ∈ D satisfying f (x) �� f (x), where

F := {x ∈ D : g(x) ≺ 0, h(x) = 0}.

Let
P min[A, Y+] = {y ∈ A : (y− A) ∩ intY+ = ∅},

P max[A, Y+] = {y ∈ A : (A− y) ∩ intY+ = ∅}.

In the sequel, B(W, Y) denotes the set of all continuous linear mappings T from W to Y; B+(Z, Y)
denotes the set of all non-negative and continuous linear mappings S from Z to Y, where non-negative
mapping S means that S(z) ∈ Y+, ∀z ∈ Z, write

L
(

x, S, T
)
= f (x) + S(g(x)) + T(h(x)).

Definition 8 (vector saddle-point).
(

x, S, T
)
∈ X× B+(Z, Y)× B(W, Y) is said to be a vector

saddle-point of L
(

x, S, T
)

if

L
(
x, S, T

)
∈ P min[L

(
X, S, T

)
, Y+] ∩ P max[L

(
x, B+(Z, Y), B(W, Y)

)
, Y+].

where
P max[L(x, B+(Z, Y), B(W, Y)) , Y+]
= {µ : µ = P max[L(x, S, T), Y+], (S, T) ∈ B+(Z, Y)× B(W, Y)}.

Theorem 4.
(

x, S, T
)
∈ X × B+(Z, Y)× B(W, Y) is a vector saddle-point of L

(
x, S, T

)
if and

only if ∃y ∈ f (x), z ∈ g(x), such that

(i) y ∈ P min[L
(
X, S, T

)
, Y+];

(ii) g(x) ⊂ −Z+, h(x) = {0};
(iii)

(
f (x)− y− S(z)

)
∩ intY+ = ∅.

Proof. The sufficiency. Suppose that the conditions (i)–(iii) are satisfied. Note that
−g(x) ⊆ Z+, h(x) = {0} implies

−S(g(x)) ⊆ Y+, T(h(x)) = {0}, ∀(S, T) ∈ B+(Z, Y)× B(W, Y),

and the condition (i) states that{
y−

[
f (X) + S(g(X)) + T(h(X))

]}
∩ intY+ = ∅,

So, Y+ + intY+ ⊆ Y+ and −S(z) ∈ Y+ imply{
y + S(z) + T(w)−

[
f (X) + S(g(X)) + T(h(X))

]}
∩ intY+ = ∅.
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Hence,
y + S(z) + T(w) ∈ Pmin[L

(
X, S, T

)
, Y+].

On the other hand, since ( f (x)− [y + S(z)]) ∩ intY+ = ∅, from intY+ + Y+ ⊆ intY+,
we conclude that{⋃

(S,T)∈B+(Z,Y)×B(W,Y)
[ f (x) + S(g(x)) + T(h(x))

]
−
[
y + S(z) + T(w)

]
} ∩ intY+ = ∅.

Hence,
y + S(z) + T(w) ∈ Pmax[L

(
x, B+(Z, Y), B(W, Y)

)
, Y+]

Consequently,

L
(

x, S, T
)
∩ Pmin[L

(
X, S, T

)
, Y+] ∩ Pmax[L

(
x, B+(Z, Y), B(W, Y)

)
, Y+] 6= ∅.

Therefore,
(

x, S, T
)
∈ X× B+(Z, Y)× B(W, Y) is a vector saddle-point of L

(
x, S, T

)
.

The necessity. Assume that
(
x, S, T

)
∈ X × B+(Z, Y)× B(W, Y) is a vector saddle-

point of L
(
x, S, T

)
. From Definition 8, one has

L
(

x, S, T
)
∩ Pmin[L

(
X, S, T

)
, Y+]∩Pmax[L

(
x, B+(Z, Y)× B(W, Y)

)
, Y+] 6= ∅.

So, ∃y ∈ f (x), z ∈ g(x), w ∈ h(x), i.e.,

y + S(z) + T(w) ∈ L
(

x, S, T
)
= f (x) + S(g(x)) + T(h(x)),

such that

{ f (x) + S(g(x)) + T(h(x))− [y + S(z) + T(w)]} ∩ intY+ = ∅,
∀(S, T) ∈ B+(Z, Y)× B(W, Y),

and (
y + S(z) + T(w)−

[
f (X) + S(g(X)) + T(h(X))

])
∩ intY+ = ∅.

Taking T = T we obtained

S(z)− S(z) /∈ intY+, ∀z ∈ g(x), ∀S ∈ B+(Z, Y).

We aim to show that −z ∈ Z+.
Otherwise, since 0 ∈ −Z+, if −z /∈ Z+, we would have −z 6= 0,
Because Z+ is a closed convex set, by the separate theorem ∃η ∈ Z∗\{0},

η(tz+) > η(−z), ∀z ∈ Z+, ∀t > 0.

i.e.,

η(z+) >
1
t

η(−z), ∀z ∈ Z+, ∀t > 0.

Let t→ ∞ ; we obtained η(z+) ≥ 0, ∀z ∈ Z+, which means that η ∈ Z∗+\{0}. Mean-
while, 0 ∈ Z+ yields η(z) > 0. Given z̃ ∈ intZ+ and let

S(z) =
η(z)
η(z)

z̃ + S(z).

Then, S ∈ B+(Z, Y) and

(z)− S(z) = z̃ ∈ intY+.

This is a contradiction. Therefore,

−z ∈ Z+.
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At this point, we aim to prove that −g(x) ⊆ Z+.
Otherwise, if −g(x) 6⊂ Z+, then ∃z0 ∈ g(x), such that 0 6= −z0 /∈ Z+. Similar to the

above ∃η0 ∈ Z∗\{0}, such that η0 ∈ Z∗+\{0}, η0(z0) > 0. Given z̃ ∈ intZ+ and let

S0(z) =
η0(z)
η0(z0)

z̃.

Then, S0 ∈ B+(Z, Y) and S0(z0) = z̃ ∈ intY+. We proved that −z ∈ Z+, so
−S(z) ∈ Y+. Therefore,

S0(z0)− S(z) ∈ intY+ + Y+ ⊆ intY+.

Again, a contradiction.
Therefore, −g(x) ⊆ Z+. Similarly, one has −h(x) ⊆W+. From (Lemma 2), we obtain[

T(h(x))− T(w)
]
∩ intY+ = ∅.

Hence,
T(w)− T(w) /∈ intY+, ∀T ∈ B(W, Y).

Similarly, we obtained

T(w)− T(w) /∈ intY+, ∀w ∈ h(x), ∀T ∈ B(W, Y).

If w 6= 0, since −h(x) ⊆W+ and W+ is a pointed cone, we have w /∈W+. Because Y+

is a closed convex set, by the separation theorem ∃ς ∈W∗, such that

ς(w) < ς(w), ∀w ∈W+.

So, ς(w) 6= 0 since 0 ∈W+. Taking y0 ∈ intY+ and defining T0 ∈ B+(W, Y) by

T0(w) =
ς(w)

ς(w)
y0 + T(w).

Then,
T0(w)− T(w) = y0 ∈ intY+,

A contradiction. Therefore,w = 0. Thus,

0 ∈ h(x).

At this point, we aim to prove h(x) = {0}.
Otherwise, if w0 ∈ h(x) : w0 6= 0, then ∃ς0 ∈W∗, such that ς0(w) < ς0(w0), ∀w ∈W+.

So, ς0(w0) 6= 0. Given y0 ∈ intY+ and defining T0 ∈ B(W, Y), by

T0(w) =
ς0(w)

ς0(w0)
y0.

Then, T0(w0) = y0 ∈ intY+. This contradiction implies that we must have

h(x) = {0}.

We conclude that
y ∈ P min[L

(
X, S, T

)
, Y+],

and (
f (x)− y− S(z)

)
∩ intY+ = ∅.
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We proved that, if
(

x, S, T
)
∈ X × B+(Z, Y) × B(W, Y) is a vector saddle-point of

L
(

x, S, T
)
, then the conditions (i)–(iii) hold. �

Theorem 5. If
(

x, S, T
)
∈ X× B+(Z, Y)× B(W, Y) is a vector saddle-point of L

(
x, S, T

)
, and

if 0 ∈ S(g(x)), then x is a weak efficient solution of (VP).

Proof. Assume that
(
x, S, T

)
∈ D × B+(Z, Y) × B(W, Y) is a vector saddle-point of

L
(

x, S, T
)
; from Theorem 2, we have

−S(g(x)) ⊆ Y+, h(x) = {0}.

So, x ∈ D (the feasible solution of (VP). ∃y ∈ f (x), such that y ∈ Pmin[L
(
X, S, T

)
, Y+],

i.e., (
y−

[
f (X) + S(g(X)) + T(h(X)]

)
∩ intY+ = ∅.

Thus, (
y−

[
f (D) + S(g(x)) + T(h(x)]

)
∩ intY+ = ∅.

Since 0 ∈ S(g(x)), one has

(y− f (D)) ∩ intY+ = ∅.

Therefore, x is a weakly efficient solution of (VP). �

5. Vector Lagrangian Theorems

Definition 9 (vector Lagrangian map). The vector Lagrangian map L : X× B+(Z,Y)× B(W,Y)→ 2Y

of (VP) is defined by the set-valued map

L(x, S, T) = f (x) + S(g(x)) + T(h(x)).

Given (S, T) ∈ B+(Z, Y)× B(W, Y), we considered the minimization problem induced by (VP):

(VPST) Y+ −minL(x, S, T),
s.t., x ∈ D.

Definition 10 (slater constrained qualification (SC)). Let x ∈ F. We consider that (VP) satisfies
the Slater Constrained Qualification at x if the following conditions hold:

(1) ∃x ∈ D, s.t. hj(x) = 0, gi(x) ≺≺ 0;
(2) 0 ∈ inthj(D) for all j.

According the following Theorem 6, (VPST) can also be considered as a dual problem
of (VP).

Theorem 6. Let x ∈ D. Assume that f (x)− f (x), g(x), h(x) satisfies the generalized convexity
condition (a), the generalized affineness condition (b) as well as the inner point condition (c), and
(VP) satisfies the Slater Constrained Qualification (SC). Then, x ∈ D is a weakly efficient solution
of (VP) if, and only if, ∃(S, T) ∈ B+(Z, Y) × B(W, Y), such that x ∈ D is a weakly efficient
solution of (VPST).

Proof. Assume ∃(S, T) ∈ B+(Z, Y) × B(W, Y), such that x ∈ D is a weakly efficient
solution of (VPST). Then, there exist y ∈ f (x), z ∈ g(x), w ∈ h(x), such that

(y + S(z) + T(w)− [ f (D) + S(g(D)) + T(h(D))]) ∩ intY+ = ∅,
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If (y− f (D)) ∩ intY+ 6= ∅, then ∃y ∈ f (D), such that y− y ∈ intY+, i.e.,

(y + S(z) + T(w)− [y + S(z) + T(w)]) ∈ intY+.

This means that

(y + S(z) + T(w)− [ f (D) + S(g(D)) + T(h(D))]) ∩ intY+ 6= ∅,

which is a contradiction.
Therefore,

(y− f (D)) ∩ intY+ = ∅.

Hence, x ∈ D is a weakly efficient solution of (VP).
Conversely, suppose that x ∈ D is a weakly efficient solution of (VP). So, ∃y ∈ f (x),

such that there is not any x ∈ D for which f (x)− y ∈ −intY+. That is to say, there is not
any x ∈ X, such that

f (x)− y ∈ −intY+, g(x) ∈ −Z+, 0W ∈ h(x).

By Theorem 3, ∃(ξ, η, ς) ∈ Y∗+ × Z∗+ ×W∗\{(0Y∗ , 0Z∗ , 0W∗)}, such that

ξ( f (x)− y) + η(g(x)) + ς(h(x)) ≥ 0, ∀x ∈ D.

Since y ∈ f (x) and 0W ∈ h(x), taking x = x in (1), we obtained

η(g(x)) ≥ 0.

However, x ∈ D and η ∈ Z∗+ imply that ∃z ∈ g(x) ∩ (−Z+), for which

η(z) ≤ 0.

Hence, η(z) = 0, which means

0 ∈ η(g(x))

Since x ∈ D implies 0W ∈ h(x) and g(x) ∩ (−Z+) 6= ∅ implies ∃z ∈ g(x) ∩ (−Z+),
such that η(z) ≤ 0, we have

ξ( f (x)− y) ≥ 0, ∀x ∈ D.

Because the Slater Constraint Qualification is satisfied, similar to the proof of Theorem
4, we have ξ 6= 0Y∗ . So, we may take y0 ∈ intY+, such that

ξ(y0) = 1.

Define the operator S : Z → Y and T : W → Y by

S(z) = η(z)y0, T(w) = ς(w)y0.

It is easy to see that

S ∈ B+(Z, Y), S(Z+) = η(Z+)y0 ⊆ Y+,
T ∈ B(W, Y).

Therefore
S(g(x)) = η(g(x))y0 ∈ 0 ·Y+ = 0Y.
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Since x ∈ D, we have 0W ∈ h(x). Hence,

0Y ∈ T(h(x)).

Therefore,
y ∈ f (x) ⊆ f (x) + S(g(x)) + T(h(x)).

And then
ξ[ f (x) + S(g(x)) + T(h(x))]
= ξ( f (x)) + η((g(x))ξ(y0) + ς(h(x))ξ(y0)
= ξ( f (x)) + η(g(x)) + ς(h(x))
≥ ξ(y), ∀x ∈ D.

i.e.,
ξ[ f (x)− y) + S(g(x)) + T(h(x))] ≥ 0, ∀x ∈ D.

Taking F(x) = f (x) + S(g(x)) + T(h(x)), G(x) = {0Z} and H(x) = {0W} and apply-
ing Theorem 4 to the functions F(x)− y, G(x), H(x), we have

(y− [ f (D) + S(g(D)) + T(h(D))] ∩ intY+ = ∅,

as well as
y ∈ F(x) = f (x) + S(g(x)) + T(h(x)),

since 0Y ∈ S(g(x)), 0Y ∈ T(h(x)).
Consequently, x ∈ D is a weakly efficient solution of (VPST).
We complete the proof. �

Definition 11 (NNAMCQ). Let x ∈ F. We say that (VP) satisfies the No Nonzero Abnormal Mul-
tiplier Constraint Qualification (NNAMCQ) at x, if there is no nonzero vector
(η, ς) ∈ Πm

i=1Z∗i ×Πn
j=1W∗j satisfying the system

min
x∈D∩U(x)

[
m
∑

i=1
ηigi(x) +

n
∑

j=1
ς jhj(x)

]
= 0

m
∑

i=1
ηigi(x) = 0,

where U(x) is some neighborhood of x.

Similar to the proof of Theorem 6, we obtained Theorem 7.

Theorem 7. Let x ∈ D. Assume that f (x)− f (x), g(x), h(x) satisfies the generalized convexity condition
(a), the generalized affineness condition (b), as well as the inner point condition (c). If x is a weakly efficient
solution of (VP), then ∃ vector Lagrangian multiplier (S, T) ∈ B+(Z,Y)× B(W,Y), such that x ∈ D
is a weakly efficient solution of (VPST). Inversely, if (NNAMCQ) holds at x ∈ D, and if ∃ vector
Lagrangian multiplier (S, T) ∈ B+(Z, Y)× B(W, Y), such that x is a weakly efficient solution of
(VPST), then x is a weakly efficient solution of (VP).

6. Conclusions

Jeyakumar [2] introduced the following definition of sub convexlike functions for
single-valued functions.

Let Y be a topological vector space and D ⊆ X be a nonempty set. A set-valued map
f : D → 2Y is said to be Y+-sub convexlike on D if ∃ bounded set-valued map u: D → Y ,
∀x1, x2 ∈ D, ∀ε > 0, ∀α ∈ [0, 1], ∃x3 ∈ D, such that

εu + α f (x1) + (1− α) f (x2) ≺Y+ f (x3),

where the partial order is induced by a convex cone Y+ of Y.
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Jeyakumar [3] introduced the following subconvexlikeness.
A set-valued map f : D → 2Y is said to be Y+-subconvexlike on D if ∃θ ∈ intY+, such

that ∀x1, x2 ∈ D, ∀ε > 0, ∀α ∈ [0, 1], ∃x3 ∈ D holds

εθ + α f (x1) + (1− α) f (x2) ≺Y+ f (x3).

In this paper, we proved that the above two generalized convexities are equivalent in
locally convex topological spaces. Since Banach spaces are locally convex topological spaces
(n-dimensional Euclidean spaces are Banach spaces), we proved that the two definitions
of generalized convexities are the same. Then, we solved set-valued vector optimization
problems and obtained vector saddle-point theorems and some vector Lagrangian theorems.
Our optimization problems have inequality, equality as well as an abstract constraint. Our
inequality constraints are generalized convex maps and the generalized convexities are
defined by partial order relations.

A set-valued map f : D → 2Y is said to be affine on D if ∀x1, x2 ∈ D, ∀β ∈ R; there
holds

β f (x1) + (1− β) f (x2) = f (βx1 + (1− β)x2.

We defined the following sub affinelike maps in order to weaken the condition of the
“equality constraints” for optimization problems.

A set-valued map f : D → 2Y is said to be Y+-sub affinelike on D if ∀x1, x2 ∈ D,
∀α ∈ (0, 1), ∀v ∈ intW+, ∃x3 ∈ D; there holds

v + α f (x1) + (1− α) f (x2) = f (x3).

Then, we considered the following optimization problem with set-valued maps:

(VP) Y+-min f (x)

s.t. gi(x) ∩ (−Zi+) 6= ∅, i = 1, 2, · · · , m,

0 ∈ hj(x), j = 1, 2, · · · , n,

x ∈ D,

where f : X → 2Y and gi : X → 2Zi are sub convexlike and hj : X → 2Wj are sub affinelike.
For a single-valued situation, the above optimization problem (VP) may be written as

follows.
Y+-min f (x)

s.t. gi(x) ≺ 0, i = 1, 2, · · · , m,

hj(x) = 0, j = 1, 2, · · · , n,

x ∈ D.

We obtained vector saddle-point theorems and vector Lagrangian theorems for the
set-valued optimization problem (VP). Our Theorem 3 is a generalization of theorems of
alternatives in [2,3] and a modification of theorems of alternatives in [4,7,8,11,13]. Our
saddle-points theorems (Theorems 4 and 5) are generalizations of the saddle-point theorem
in [4,14] and modifications of saddle-point theorems in [14,16]. Our Lagrangian theorems
(Theorems 6 and 7) are generalizations of Lagrangian theorems in [14] and modifications of
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those in [10,15]. We can also extended the results in [12] according to our methods used in
this paper.
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