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Abstract: In this research, using the Poisson-type Miller-Ross distribution, we introduce new sub-
classes Sakaguchi type of star functions with respect to symmetric and conjugate points and discusses
their characteristic properties and coefficient estimates. Furthermore, we proved that the class is
closed by an integral transformation. In addition, we pointed out some new subclasses and listed
their geometric properties according to specializing in parameters that are new and no longer studied
in conjunction with a Miller-Ross Poisson distribution.
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1. Introduction and Definitions

In recent years, the distribution of random variables has attracted excessive interest.
Probability density functions perform an essential role in statistics and the concept of
probability, particularly for distributions. There are numerous forms of distribution from
situations of real existence, together with the binomial distribution, Poisson distribution
and hypergeometric distribution. In the theory of geometric functions, simple distribution,
along with Pascal, Poisson, logarithmic, binomial, beta negative binomial has been partially
studied from a theoretical point of view (see [1–4]) and two parameters of the Mittag–
Leffler-type probability distribution (see [5–8]).

Miller and Ross [9] proposed the special characteristic as the basis of the solution of
fractional order initial value problem, that is known as the Miller-Ross functions (MRF)
described as

Eν,℘(ξ) = ξνe℘ξΥ∗(ν,℘ξ), (ν,℘, ξ ∈ C, with <(ν) > 0, <(℘) > 0)

where Υ∗ is incomplete gamma function ([9], p. 314). Using the properties of the incomplete
gamma function, the Miller-Ross function (MRF) can easily be written as

Eν,℘(ξ) := ξν
∞

∑
k=0

(℘ξ)k

Γ(k + ν + 1)
, ν,℘, ξ ∈ C, with <(ν) > 0, <(℘) > 0 (1)

which can be stated as
Eν,℘(ξ) ≡ ξνE1,1+ν(℘ξ)
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where in right hand side member E1,1+ν(℘ξ) is the Mittag-Leffler function (MLF) of two pa-
rameter [10]. Some of special values of the MRF can be given as follows:

Eν,℘(0) = 0, <(ν) > 0

E0,℘(ξ) = e℘ξ ,

E0,1(ξ) = eξ

E1,1(ξ) = eξ − 1.

Miller-Ross and Mittag-Leffler function and eigen-functions, which play an imperative
role in fractional calculus. These functions are the main tool in solving non-integer differ-
ential equations. Recently, Srivastava et al. [5] presented a study on Poisson distributions
based on two parameters Mittag-Leffler type function Poisson distribution and the resulting
moments, the moment generating function. Motivated by results on connections between
various subclasses of analytic univalent functions using special functions and distribution
series. This became the beginning of studies on several classes of analytical functions
using the Miller-Ross Poisson distribution [11–14]. Lately Eker and Ece [11], normalized
Eν,℘ and for ℘ > 0 with ν > 2℘ − 1 they presented MRF is univalent and starlike in
D 1

2
= {ξ ∈ C : |ξ| < 1

2}. Further established if ν > (2 +
√

2)℘− 1 then normalized MRF is
univalent and convex in D 1

2
(see [9]). The probability mass function of the Miller Ross-type

Poisson distribution is given by

Pν,℘(`, n) :=
(`℘)n `ν

Eν,℘(`)Γ(ν + n + 1)
, n = 0, 1, 2, 3, · · · (2)

where ν > −1,℘ > 0 and Eν,℘ is MRF given in Equation (1). Miller-Ross-type Poisson
distribution is given by

M`
ν,℘(ξ) = ξ +

∞

∑
k=2

(`℘)k−1 `ν

Eν,℘(`)Γ(ν + k)
ξk, ξ ∈ D (3)

where
D := {ξ ∈ C : |ξ| < 1},

the unit disc.

Subclasses of Holomorphic (Analytic) FunctionH:

LetH represents the class of all holomorphic (analytic) functions in D is given by

f (ξ) = ξ +
∞

∑
k=2

akξk, ξ ∈ D. (4)

If g ∈ H is assuemed as

g(ξ) = ξ +
∞

∑
k=2

bkξk, ξ ∈ D, (5)

then, the convolution (or Hadamard) product of f and g is given by

f (ξ) ∗ g(ξ) = ( f ∗ g)(ξ) := ξ +
∞

∑
k=2

akbkξk, ξ ∈ D. (6)

Let Ω be the family of functions Schwarz function given by

Ω = {v ∈ H : w(0) = 0 and |v(z)| < 1, ξ ∈ D}.
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If F1, F2 ∈ H, we say that F1 is subordinate to F2, written as F1 ≺ F2 or F1(ξ) ≺ F2(ξ) if
there exists v ∈ Ω, such that F1(ξ) = F2(v(ξ)), ξ ∈ D. Moreover, if F2 is univalent in D,
then equivalently(see [15,16]), we have

F1(ξ) ≺ F2(ξ)⇔ F1(0) = F2(0) and F1(D) ⊂ F2(D). (7)

Definition 1. Let w ∈ Ω and for arbitrary fixed numbers M and N (−1 ≤ N < M ≤ 1),
denote the family by P [M,N ] consisting functions of the form

p(ξ) = 1 + b1ξ + b2ξ2 + · · · (8)

is analytic in D and then

p(ξ) ≺ 1 +Mξ

1 +N ξ
or p(ξ) =

1 +Mw(ξ)

1 +Nw(ξ)
, ξ ∈ D (9)

holds.

Note that
1 +Mξ

1 +N ξ
conformably maps D onto a disc symmetric with respect to the real

axis, centered at 1−MN
1−N 2 (N 6= ±1) with radius M−N1−N 2 (N 6= ±1).

Janowski [17] defined a subclass of starlike functions as:

S∗(M,N ) =

{
f ∈ H :

ξ f
′
(ξ)

f (ξ)
≺ 1 +Mξ

1 +N ξ
(−1 ≤ N <M≤ 1; ξ ∈ D)

}
(10)

and convex functions as

K(M,N ) =

{
f ∈ H :

(ξ f
′
(ξ))′

f ′(ξ)
≺ 1 +Mξ

1 +N ξ
(−1 ≤ N <M≤ 1; ξ ∈ D)

}
. (11)

For example, taking p(ξ) ≺ 1+Mξ
1+N ξ whereM ∈ C;−1 ≤ N ≤ 0 andM 6= N , we

get the classes S∗(M,N ) and K(M,N ) respectively. These classes with the restriction
−1 ≤ N ≤ M ≤ 1 are popularly named as Janowski starlike and Janowski convex
functions, respectively. By fixingM = 1− 2ε and N = −1, where 0 ≤ ε ≤ 1, we obtain
the classes S∗(M,N ) = S∗(ε) and K(M,N ) = K(ε) of the starlike functions of order ε
and convex functions of order ε, respectively. In particular, S∗(0) = S∗ and K(0) = K are
the class of starlike functions and of convex functions in the open unit disk D, respectively.
Nasr and Aouf [18] defined a class of starlike functions of complex order as below:

S(h̄) =
{

f ∈ H : <
{

1 +
1
h̄

(
ξ f ′(ξ)

f (ξ)
− 1
)}

> 0; h̄ ∈ C∗ = C\{0}, ξ ∈ D
}

.

Sakaguchi [19] gave a new direction of study by introducing a class functions starlike
with respect to symmetric points, as

S∗s =

{
f ∈ H : <

( 2ξ f ′(ξ)
f (ξ)− f (−ξ)

)
> 0, ξ ∈ D

}
.

and starlike functions with regard to conjugate the points given by

S∗c =

{
f ∈ H : <

( 2ξ f
′
(ξ)

f (ξ) + f (ξ)

)
> 0, ξ ∈ D

}
.

Apparently a class of univalent functions, star-shaped with respect to symmetric
points include classes of convex functions and odd functions starlike due to origin (see [19]).
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Lately, many authors [20–22] study some new subclasses of Sakaguchi-type functions
defined by using the concept of Janowski functions. Goel and Mehrok [20] introduced a
subclass of S?s as

S?s (M,N ),=

{
f ∈ H :

2z f
′
(ξ)

f (ξ)− f (−ξ)
≺ 1 +Mξ

1 +N ξ
; −1 ≤ N <M≤ 1, ξ ∈ D

}
.

In addition, for −1 ≤ N <M≤ 1, h̄ ∈ C∗, ξ ∈ D. new subclasses of S?s are defined
as below

S∗s (h̄,M,N ) =
{

f ∈ H : 1 +
1
h̄

( 2ξ f
′
(ξ)

f (ξ)− f (−ξ)
− 1
)
≺ 1 +Mξ

1 +N ξ
; ξ ∈ D

}
, (12)

and,

Cs(h̄,M,N ) =
{

f ∈ H : 1 +
1
h̄

(
2(ξ f ′(ξ))′

( f (ξ)− f (−ξ))
′ − 1

)
≺ 1 +Mξ

1 +N ξ
; ξ ∈ D

}
. (13)

By fixing h̄ = 1 the above classes yields the definition given in Aouf et al. [21].
The above classes S∗s (h̄,M,N ) and C∗s (h̄,M,N ) have been generalized by Arif et al. [22]
based on Sălăgean Operator [23] and its properties have been discussed extensively. Many
interesting subfamilies of S associated with circular domain have been studied in the
literature from different perspectives closely related to S?s (see [24–29] and references
here). Inspired by aforementioned works, by using the convolution product as specified in
Equation (6), we consider the linear operator

Q`
ν,℘ : H → H

as below:

Q`
ν,℘ f (ξ) = f (ξ) ∗M`

ν,℘(ξ)

= ξ +
∞

∑
k=2

Θkakξk, (14)

where

Θk = Θk(`,℘, ν) =
(`℘)k−1 `ν

Eν,℘(`)Γ(ν + k)
. (15)

Inspired by the study on S∗s and S∗C by Sakaguchi [19] and recent studies in [20–22], in
this article using the Miller-Ross poisson distribution [5,11–14], we define two new classes
SS`ν,℘(h̄,M,N ) and SC`ν,℘(h̄,M,N ) as given in Definition 2, over the Janowski domain.
We investigated its characteristic properties and also determined the bounds for |a2n| and
|a2n+1| for f in these newly defined classes. We further discussed the closure property

under the integral transformation given by F(ξ) = 2
ξ

ξ∫
0

f (t)dt for functions in these classes.

Now we define a new subclasses of Sakaguchi type starlike functions with respect
to symmetric and conjugate symmetric points associated with the Miller-Ross poisson
distribution operator Q`

ν,℘.

Definition 2. For −1 ≤M ≤ N ≤ 1, h̄ ∈ C∗, let f ∈ H is said to be in the class
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(1) SS`ν,℘(h̄,M,N ) if and only if

1 +
1
h̄

 2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
− 1

 ≺ 1 +Mξ

1 +N ξ
, (16)

and
(2) SC`ν,℘(h̄,M,N ) if and only if

1 +
1
h̄

 2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ) +Q`

ν,℘ f (ξ)
− 1

 ≺ 1 +Mξ

1 +N ξ
. (17)

We note that f (ξ) = f (ξ), the SC`ν,℘(h̄,M,N ) = ST `
ν,℘(h̄,M,N ). By fixing h̄ = 1,we

have following new classes:

Example 1. For −1 ≤M ≤ N ≤ 1, let f ∈ H is said to be in the class

(1) SS`ν,℘(M,N ) if and only if

2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
≺ 1 +Mξ

1 +N ξ
,

and
(2) SC`ν,℘(M,N ) if and only if

2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ) +Q`

ν,℘ f (ξ)
≺ 1 +Mξ

1 +N ξ
.

We note that f (ξ) = f (ξ), the SC`ν,℘(M,N ) = ST `
ν,℘(M,N ). Note that the functions

f (ξ) =
ξ∫

0

(1−Mt)
(1− Nt)(1 + t2)

dt and f (ξ) =
ξ∫

0

(1 + Mt)
(1 + Nt)(1− t2)

dt

which gives distortion bounds and extreme points of the function class studied for different
perspective (details see [30]).

To prove our results, we will need the following lemmas.

Lemma 1 ([20], Lemma 2). If p(ξ) = 1 + p1ξ + p2ξ2 + · · · ∈ P [M,N ], then

|pn| ≤ M−N .

Lemma 2 ([20], Lemma 2). If R be analytic and S starlike functions in D with R(0) = S(0) = 0.
then

|R′(ξ)/S′(ξ)− 1|
|M−N (R′(ξ)/S′(ξ))| < 1, − 1 ≤M ≤ N ≤ 1.

implies
|R(ξ)/S(ξ)− 1|

|M−N (R(ξ)/S(ξ))| < 1, (ξ ∈ D).
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2. Properties of the Subclass SS`
ν,℘(h̄,M,N )

Unless otherwise specified, we let −1 ≤ N ≤ M ≤ 1, h̄ ∈ C∗, and the powers are
understood as principle values. Throughout this work, we use the notation

k−1

∏
i=1

A(i) = 1.

Theorem 1. Let f ∈ SS`ν,℘(h̄,M,N ), then the following condition

1 +
1
h̄

 ξ
(
Q`

ν,℘ψ(ξ)
)′

Q`
ν,℘ψ(ξ)

− 1

 ≺ 1 +Mξ

1 +N ξ
, (18)

is satisfied for ψ, the odd function given by

ψ(z) :=
f (ξ)− f (−ξ)

2
. (19)

Proof. If f ∈ SS`ν,℘(h̄,M,N ), then there exists h ∈ P [M,N ], such that

h(ξ) = 1 +
1
h̄

 2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
− 1

. (20)

It follows that

h̄(h(ξ)− 1) =
2ξ(Q`

ν,℘ f (ξ))
′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
− 1,

h̄(h(−ξ)− 1) =
−2ξ(Q`

ν,℘ f (−ξ))
′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
− 1,

(21)

which implies that

h(ξ) + h(−ξ)

2
= 1 +

1
h̄

 ξ
(
Q`

ν,℘ψ(ξ)
)′

Q`
ν,℘ψ(ξ)

− 1

. (22)

On the other hand,

h(ξ) ≺ 1 +Mξ

1 +N ξ
,

and 1+Mz
1+N z is univalent, then by Equation (7), we have

h(ξ) + h(−ξ)

2
≺ 1 +Mξ

1 +N ξ
,

it yield Equation (18). Thus the proof is complete.

Theorem 2. Let f ∈ H and is in the class SS`ν,℘(h̄,M,N ), if and only if there exists
h ∈ P [M,N ] such that

(
Q`

ν,℘ f (ξ)
)′

= (h̄(h(ξ)− 1) + 1) exp

 h̄
2

ξ∫
0

h(t) + h(−t)− 2
t

dt

. (23)

Proof. From Theorem 1, we have
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h(ξ) = 1 +
1
h̄

 2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
− 1

 = 1 +
1
h̄

 ξ
(
Q`

ν,℘ψ(ξ)
)′

Q`
ν,℘ψ(ξ)

− 1

 ≺ 1 +Mξ

1 +N ξ
.

But Equation (22), it implies(
Q`

ν,℘ψ(ξ)
)′

Q`
ν,℘ψ(ξ)

=
1
ξ
+

h̄
2

(
h(ξ) + h(−ξ)− 2

ξ

)
.

The above equation yield,

Q`
ν,℘ψ(ξ) = ξ exp

 h̄
2

ξ∫
0

h(t) + h(−t)− 2
t

dt

. (24)

Since f ∈ SS`ν,℘(h̄,M,N ), then from Equation (20) we obtain

ξ
(
Q`

ν,℘ f (ξ)
)′

= (h̄(h(ξ)− 1) + 1)Q`
ν,℘ψ(ξ).

Using Equation (24) and above equation, we get Equation (23). This completes the proof.

The foremost idea of the study on coefficient problems in several classes of H is to
investigate the coefficients of functions in the hypothesized class using the coefficients
of consistent functions with a positive real part. Thus, the coefficient functional can be
predicted in advance using inequalities known for the P class. In the following theorem,
we present estimates for f in the classes given in the Definition 2.

Theorem 3. If f ∈ SS`ν,℘(h̄,M,N ), then for all n ≥ 1,

|a2n| ≤
|h̄|(M−N )

2nn!|Θ2n|

n−1

∏
k=1

(|h̄|(M−N ) + 2k), (25)

and

|a2n+1| ≤
|h̄|(M−N )

2nn!|Θ2n+1|

n−1

∏
k=1

(|h̄|(M−N ) + 2k) (26)

where Θk; ∀ k ≥ 2 as in Equation (15).

Proof. Since f ∈ SS`ν,℘(h̄,M,N ), Definition 2 yields

1 +
1
h̄

 2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
− 1

 =
1 +Mw(ξ)

1 +Nw(ξ)
. (27)

Assuming that

h(ξ) = 1 +
∞

∑
k=1

ckξk =
1 +Mw(ξ)

1 +Nw(ξ)
. (28)

In view of Equations (27) and (28), we get

2ξ
(
Q`

ν,℘ f (ξ)
)′

=
(
Q`

ν,℘ f (ξ)−Q`
ν,℘ f (−ξ)

)(
1 + h̄

∞

∑
k=1

ckξk

)
.

It follows from Equation (14) that
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ξ + 2Θ2a2ξ2 + 3Θ3a3ξ3 + 4Θ4a4ξ4 + · · ·+ 2nΘ2na2nξ2n

+ (2n + 1)Θ2n+1a2n+1ξ2n+1 + · · ·

=
(

z + Θ3a3ξ3 + Θ5a5ξ5 + · · ·+ Θ2n−1a2n−1ξ2n−1 + Θ2n+1a2n+1ξ2n+1 + · · ·
)

×
(

1 + h̄c1ξ + h̄c2ξ2 + · · ·
)

.

Equating the coefficients of like powers of ξ, we obtain

2Θ2a2 = h̄c1 (29)

2Θ3a3 = h̄c2, (30)

4Θ4a4 = h̄c3 + h̄c1Θ3a3, (31)

4Θ5a5 = h̄c4 + h̄c2Θ3a3, (32)

2nΘ2na2n = h̄c2n−1 + h̄c2n−3Θ3a3 + h̄c2n−5Θ5a5 + . . . . . . + h̄c1Θ2n−1a2n−1, (33)

2nΘ2n+1a2n+1 = h̄c2n + h̄c2n−2Θ3a3 + h̄c2n−4Θ5a5 + . . . . . . + h̄c2Θ2n−1a2n−1. (34)

We prove Equations (25) and (26) using mathematical induction.
Using Lemma 1, Equations (29)–(32) respectively, we get

|a2| ≤
|h̄|

2|Θ2|
(M−N ),

|a3| ≤
|h̄|

2|Θ3|
(M−N ),

|a4| ≤
|h̄|(M−N )

8|Θ4|
(2 + |h̄|(M−N )),

|a5| ≤
|h̄|(M−N )

8|Θ5|
(2 + |h̄|(M−N )).

It trails that Equations (25) and (26) hold for n = 1, 2. Equation (33) in concurrence with
Lemma 1 yields

|a2n| ≤
|h̄|(M−N )

2n|Θ2n|

(
1 +

n−1

∑
r=1
|Θ2r+1||a2r+1|

)
.

Subsequently, we assume that Equations (25) and (26) hold for 3, 4, . . . , n− 1. Accordingly
the above inequality yields

|a2n| ≤
|h̄|(M−N )

2n|Θ2n|

(
1 +

n−1

∑
r=1

|h̄|(M−N )

2rr!

r−1

∏
k=1

(|h̄|(M−N ) + 2k)

)
. (35)

To complete the proof it is appropriate to show that

|h̄|(M−N )
2m|Θ2m |

(
1 +

m−1
∑

r=1

|h̄|(M−N )
2rr!

r−1
∏

k=1
(|h̄|(M−N ) + 2k)

)

= |h̄|(M−N )
2mm!|Θ2m |

m−1
∏

k=1
(|h̄|(M−N ) + 2k), m = 3, 4, · · · n.

(36)

It easy to perceive that Equation (36) is valid for m = 3.
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Now, presume that Equation (36) is true for 4, · · · , m − 1, then right hand side of
Equation (35) is

|h̄|(M−N )

2m|Θ2m|

(
1 +

m−1

∑
r=1

|h̄|(M−N )

2rr!

r−1

∏
k=1

(|h̄|(M−N ) + 2k)

)

=
|h̄|(M−N )

2m|Θ2m|

(
1 +

m−2

∑
r=1

|h̄|(M−N )

2rr!

r−1

∏
k=1

(|h̄|(M−N ) + 2k)

+
|h̄|(M−N )

2m−1(m− 1)!

m−2

∏
k=1

(|h̄|(M−N ) + 2k)

)
,

=
(m− 1)|Θ2m−2|

m|Θ2m|

(
|h̄|(M−N )

2m−1(m− 1)!|Θ2m−2|

m−2

∏
k=1

(|h̄|(M−N ) + 2k)

+
|h̄|(M−N )

2m|Θ2m|
|h̄|(M−N )

2m−1(m− 1)!

m−2

∏
k=1

(|h̄|(M−N ) + 2k)

)
,

=
(m− 1)|h̄|(M−N )

2m−1m!|Θ2m|

m−2

∏
k=1

(|h̄|(M−N ) + 2k)

+
|h̄|(M−N )

2|Θ2m|
|h̄|(M−N )

2m−1m!

m−2

∏
k=1

(|h̄|(M−N ) + 2k),

=
|h̄|(M−N )

2m−1m!|Θ2m|

m−2

∏
k=1

(|h̄|(M−N ) + 2k)
(
(m− 1) +

|h̄|(M−N )

2

)
,

=
|h̄|(M−N )

2m−1m!|Θ2m|

m−2

∏
k=1

(|h̄|(M−N ) + 2k)
(
|h̄|(M−N ) + 2(m− 1)

2

)
,

=
|h̄|(M−N )

2mm!|Θ2m|

m−1

∏
k=1

(|h̄|(M−N ) + 2k.

That is, Equation (36) is holds for m = n. From Equations (35) and (36) we get Equation (25).
Correspondingly we can prove Equation (26). This concludes the proof of Theorem 3.

Theorem 4. If f ∈ SS`ν,℘(h̄,M,N ), then F ∈ SS`ν,℘(h̄,M,N ), where

F(ξ) =
2
ξ

ξ∫
0

f (t)dt. (37)

Proof. From Equation (37) it easy to see that

1 + 1
h̄

 2ξ
(
Q`

ν,℘F(ξ)
)′

Q`
ν,℘F(ξ)−Q`

ν,℘F(−ξ)
− 1



=

2ξQ`
ν,℘ f (ξ) + (h̄− 3)

ξ∫
0
Q`

ν,℘ f (t)dt + (h̄− 1)
ξ∫

0
Q`

ν,℘ f (−t)dt

h̄

(
ξ∫

0
Q`

ν,℘ f (t)dt+
ξ∫

0
Q`

ν,℘ f (−t)dt

) = R
S .
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Therefore,

ξS′(ξ)
S(ξ)

=
ξQ`

ν,℘ f (ξ)− ξQ`
ν,℘ f (−ξ)

ξ∫
0
Q`

ν,℘ f (t)dt+
ξ∫

0
Q`

ν,℘ f (−t)dt

=
1
2

(
2ξG′(ξ)

G(ξ)− G(−ξ)
+

2(−ξ)G′(−ξ)

G(−ξ)− G(ξ)

)
, (38)

where G(ξ) =
ξ∫

0
Q`

ν,℘ f (t)dt. Since f ∈ SS`ν,℘(h̄,M,N ), it follows that

1 +
1
h̄

[
2ξG′′(ξ)

G′(ξ)− G′(−ξ)
− 1
]
≺ 1 +Mξ

1 +N ξ
,

and G(ξ) ∈ C∗s (h̄,M,N ) ⊂ S∗s (h̄,M,N ) ⊂ S∗s . From Equation (38), it follows that S(ξ) is
starlike function. In addition to

R′(ξ)
S′(ξ)

= 1 +
1
h̄

 2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ)−Q`

ν,℘ f (−ξ)
− 1

.

Thus
R′(ξ)
S′(ξ)

=
1 +Mw(ξ)

1 +Nw(ξ)
,

it follows that ∣∣∣∣(R′(ξ)
S′(ξ)

− 1
)∣∣∣∣ < ∣∣∣∣M−N(R′(ξ)

S′(ξ)

)∣∣∣∣.
From Lemma 2, we have ∣∣∣∣(R(ξ)

S(ξ)
− 1
)∣∣∣∣ < ∣∣∣∣M−N(R(ξ)

S(ξ)

)∣∣∣∣,
and this implies that F ∈ SS`ν,℘(h̄,M,N ).

3. The Subclass of C`
ν,℘(h̄,M,N )

Theorem 5. Let f ∈ SC`ν,℘(h̄,M,N ), then for all n ≥ 1,

|a2n| ≤
|h̄|(M−N )

(2n− 1)!|Θ2n|

2n−2

∏
k=1

(|h̄|(M−N ) + k), (39)

and

|a2n+1| ≤
|h̄|(M−N )

2n!|Θ2n+1|

2n−1

∏
k=1

(|h̄|(M−N ) + k). (40)

where Θk; ∀ k ≥ 2 are given by Equation (15).

Proof. Since f ∈ SC`ν,℘(h̄,M,N ), Definition 2 of 2, yields

1 +
1
h̄

 2ξ
(
Q`

ν,℘ f (ξ)
)′

Q`
ν,℘ f (ξ) +Q`

ν,℘ f (ξ)
− 1

 =
1 +Mw(ξ)

1 +Nw(ξ)
. (41)
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Assuming that

h(ξ) = 1 +
∞

∑
k=1

ckξk =
1 +Mw(ξ)

1 +Nw(ξ)
. (42)

From Equations (41) and (42), we obtain

2ξ
(
Q`

ν,℘ f (ξ)
)′

=
(
Q`

ν,℘ f (ξ) +Q`
ν,℘ f (ξ)

)(
1 + h̄

∞

∑
k=1

ckξk

)
.

It follows from Equation (14) that

ξ + 2aΘ2ξ2 + 3Θ3a3ξ3 + 4Θ4a4ξ4 + · · · . + 2nΘ2na2nξ2n

+ (2n + 1)Θ2n+1a2n+1ξ2n+1 + · · ·
= (ξ + Θ2a2ξ2 + Θ3a3ξ3 + Θ4a4ξ4 + · · ·+ Θ2na2nξ2n + Θ2n+1a2n+1ξ2n+1 + · · · )
×

(
1 + h̄c1ξ + h̄c2ξ2 + · · ·

)
.

Equating like powers of ξ, we obtain

Θ2a2 = h̄c1, (43)

2Θ3a3 = h̄c2 + h̄c1Θ2a2, (44)

3Θ4a4 = h̄c3 + h̄c2Θ2a2 + h̄c1Θ3a3, (45)

4Θ5a5 = h̄c4 + h̄c3Θ2a2 + h̄c2Θ3a3 + h̄c1Θ4a4, (46)

(2n− 1)Θ2na2n = h̄c2n−1 + h̄c2n−2Θ2a2 + . . . . . . + h̄c2Θ2n−2a2n−2 + h̄c1Θ2n−1a2n−1, (47)

2nΘ2n+1a2n+1 = h̄c2n + h̄c2n−1Θ2a2 + . . . . . . + h̄c2Θ2n−1a2n−1 + h̄c1Θ2na2n. (48)

Applying Lemma 1, to Equations (43)–(46) respectively, we get

|a2| ≤
|h̄|
|Θ2|

(M−N ),

|a3| ≤
|h̄|(M−N )

2|Θ3|
(1 + |h̄|(M−N )),

|a4| ≤
|h̄|(M−N )

2.3|Θ4|
(1 + |h̄|(M−N ))(2 + |h̄|(M−N ))

and

|a5| ≤
|h̄|(M−N )

2.3.4|Θ5|
(1 + |h̄|(M−N ))(2 + |h̄|(M−N ))(3 + |h̄|(M−N )).

It tails that Equations (39) and (40) hold for n = 1, 2. Equation (47) in conjunction with
Lemma 1 yields

|a2n| ≤
|h̄|(M−N )

(2n− 1)|Θ2n|

(
1 +

n−1

∑
r=1
|Θ2r||a2r|+

n−1

∑
r=1
|Θ2r+1||a2r+1|

)
. (49)

Subsequently, we accept that Equations (39) and (40) hold for 3, 4, . . . ., n− 1. Thus inequality
Equation (49) yields

c|a2n| ≤
|h̄|(M−N )

(2n− 1)|Θ2n|

(
1 +

n−1

∑
r=1

|h̄|(M−N )

(2r− 1)!

2r−2

∏
i=1

(i + |h̄|(M−N ))

+
n−1

∑
r=1

|h̄|(M−N )

(2r)!

2r−1

∏
i=1

(i + |h̄|(M−N ))

)
.

(50)
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In order to complete the proof it is enough to prove that

|h̄|(M−N )

(2m− 1)|Θ2m|

(
1 +

m−1

∑
r=1

|h̄|(M−N )

(2r− 1)!

2r−2

∏
i=1

(i + |h̄|(M−N ))

+
m−1

∑
r=1

|h̄|(M−N )

(2r)!

2r−1

∏
i=1

(i + |h̄|(M−N ))

)

=
|h̄|(M−N )

(2m− 1)!|Θ2m|

2m−2

∏
i=1

(i + |h̄|(M−N )).

(51)

For m = 3 we readily show Equation (51) is valid. Now, assume that Equation (51) is true
for 4, · · · , m− 1. Then Equation (50) is computed as below

|h̄|(M−N )

(2m− 1)|Θ2m|
(1 +

m−1

∑
r=1

|h̄|(M−N )

(2r− 1)!

2r−2

∏
i=1

(|h̄|(M−N ) + i)

+
m−1

∑
r=1

|h̄|(M−N )

2r!

2r−1

∏
i=1

(|h̄|(M−N ) + i)

=
(2m− 3)|Θ2m−2|
(2m− 1)|Θ2m|

[
|h̄|(M−N )

(2m− 3)|Θ2m−2|
(1 +

m−2

∑
r=1

|h̄|(M−N )

(2r− 1)!

2r−2

∏
i=1

(|h̄|(M−N ) + i)

+
m−2

∑
r=1

|h̄|(M−N )

(2r)!

2r−1

∏
i=1

(|h̄|(M−N ) + i))

]

+
|h̄|(M−N )

(2m− 1)|Θ2m|

(
|h̄|(M−N )

(2m− 3)!

2m−4

∏
i=1

(|h̄|(M−N ) + i)

)

+
|h̄|(M−N )

(2m− 1)|Θ2m|

(
|h̄|(M−N )

(2m− 2)!

2m−3

∏
i=1

(|h̄|(M−N ) + i)

)
,

=
(2m− 3)|Θ2m−2|
(2m− 1)|Θ2m|

(
|h̄|(M−N )

(2m− 3)!|Θ2m−2|

2m−4

∏
i=1

(|h̄|(M−N ) + i)

)

+
|h̄|(M−N )

(2m− 1)|Θ2m|

(
|h̄|(M−N )

(2m− 3)!

2m−4

∏
i=1

(|h̄|(M−N ) + i)

)

+
|h̄|(M−N )

(2m− 1)|Θ2m|

(
|h̄|(M−N )

(2m− 2)!

2m−3

∏
i=1

(|h̄|(M−N ) + i)

)
,

=
1

(2m− 1)|Θ2m|
|h̄|(M−N )

(2m− 3)!

2m−4

∏
i=1

(|h̄|(M−N ) + i))(|h̄|(M−N ) + (2m− 3)

+
|h̄|(M−N )

|Θ2m|

(
|h̄|(M−N )

(2m− 1)!

2m−3

∏
i=1

(|h̄|(M−N ) + i)

)
,

=

(
|h̄|(M−N )

(2m− 1)!|Θ2m|

2m−3

∏
i=1

(|h̄|(M−N ) + i)

)
(|h̄|(M−N ) + 2m− 2),

=
|h̄|(M−N )

(2m− 1)!|Θ2m|

2m−2

∏
i=1

(|h̄|(M−N ) + i).

That is, Equation (51) is holds for m = n. From Equations (50) and (51) we get Equation (39).
On lines similar to above, we can prove Equation (40). Thus the proof is complete.

4. Conclusions

The interaction of geometry and analysis is a key ingredient in the study of complex
function theory. This speedy development is strongly related to the relationship between
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the geometric behavior and the analytical structure. In the current study, we got acquainted
with a new one star functions with respect to symmetric points and symmetric of conjugate
points that are related to the of the Miller-Ross type Poisson distribution function in the
Janowski domain. We studied certain characteristic properties, coefficient bindings and
closure properties in the integral transformation. Furthermore, by setting h̄ = 1, we can
derive results for the function class given in the Example 1. Further one can extend the
study by defining some new subclasses of Sakaguchi-type functions involving Miller-
Ross type Poisson distribution function, by using the concept of Janowski functions in
conic regions and investigate various interesting properties such as sufficiency criteria,
coefficient estimates and distortion result in addition logarithmic coefficient [27,31], Fekete-
Szegö inequalities [24,29,32] and coefficients of inverse functions can be obtained. As an
application,of subordination concept one can provide an explicit construction for the
complex potential (the complex velocity) and the stream function of two-dimensional
fluid flow problems over a circular cylinder using both vortex and source/sink. Further
determine the fluid flow produced by a single source and construct a univalent function
so that the image of a source is also a source for a given complex potential (see [33]).
This method can be applied to other important classes of functions such as meromorphic,
bi -univalent, and harmonic functions and many interesting aspects of this work have
been studied, such as corresponding appropriate formulas, coefficient bounds, distortion
theorems, closure theorems, and the endpoint theorem (see [34]).
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