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Abstract: In this work, we propose a 3D dynamic optimization model that enables the design of
an underground mine ore pass system with uncertainties. Ore transportation costs and ore pass
development costs are quantified by triangular fuzzy numbers. Transportation costs are treated as
production costs, and they vary over the duration of mining operation, while development costs
of ore passes are treated as an investment, and they are treated as constant. The developed model
belongs to the class of fuzzy 0–1 linear programming models, where the fuzzy objective cost function
achieves a minimum value, with respect to given set of techno-dynamic constraints. Searching for
optimal value in the fuzzy environment is a hard task, and because of that, we developed a new
ranking function which transforms the fuzzy optimization model into a crisp one. A triangular
fuzzy number can be presented as a triangular graph G(V,E) composed of vertices and edges. The
x-coordinate of the Torricelli point of a triangular graph presents the crisp value of a triangular fuzzy
number. The use of this model lets us know the optimal number of ore passes, optimal location of ore
passes, and optimal dynamic ore transportation plan.

Keywords: ore pass; optimization; fuzzy linear programming; triangular graph; Torricelli point;
ranking function

MSC: 90C90

1. Introduction

An ore pass is a vertical or near-vertical opening through which ore falls under gravity
from upper levels to the lowest haulage level. In most cases, an ore pass system is associated
with sublevel mining methods. It arises from the fact that a sublevel mining method is
used when the dip of the ore deposit is steep (greater than about 55 degrees). A consistent
issue in the optimization of ore pass system is the regulation of the total number of ore
passes which connect a defined number of sublevels and the definition of ore pass locations
as well. The aim of this paper is to understand challenges associated with such complex
combinatorial problems and provide a tool for solving them. Generally, the ore passes
optimization problem belongs to the class of location–allocation problems. In nature, the
ore passes optimization problem is a 3D problem, because sublevels lie on distinct parallel
planes. The dynamic nature of the problem comes from the dynamic plan of mining, while
uncertainty is associated with the fluctuation in ore transportation costs and the costs of
ore pass development.

Many authors have investigated the ore pass system in the context of its dimension,
stability, shape or other structural design parameter. Maree [1] analyzed the possibility of
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developing five new ore pass systems which would improve the existed haulage system
and fulfill the planned production capacity. Also, Maree identified several critical design
parameters that influence on optimal ore pass system creation and recommended some
solutions to achieve the best practice function of an ore pass system. Hadjigeorgiou and
Stacey [2] proposed six design principles during the ore pass design process to avoid
stability problems and failures of an ore pass. They suggested the creation of a strategic
plan that includes numerous tactical operations and actions to prevent ore pass collapses
in order to provide ore pass longevity. Skawina et al. [3] studied the interrelationship and
interdependence between ore passes, equipment for LHD operations and production rates.
Fifteen scenarios for each of the three production areas have been simulated considering
different number of ore passes and LHD machines where the effect of the ore pass loss on
the LHD operations, such as production rate, is analyzed. Sredniawa et al. [4] presented
a process for the renovation of ore passes based on various factors that influence ore
pass longevity in Kiirunavaara Mine, in Sweden. Two production areas with a total of
eight ore passes have been analyzed, and the renovation plan has been estimated for each
ore pass providing a great support for mine planners to create highly reliable long-term
production plans. Adjiski et al. [5] used the discrete element method (DEM) to analyze
ore pass system configurations. A total of nine scenarios have been simulated considering
different geometric parameters of ore pass and material flow in order to recognize potential
damage zones and to minimize the hang-ups and wall degradation. Hadjigeorgiou et al. [6]
presented two case studies at Brunswick mine, in Canada, relating to an examination of the
influence of structural design parameters on ore pass systems. In the first case study, ore
pass system degradation is caused by the complex rock structure surrounding the ore pass,
while in the second case study, an ore pass system is exposed to the combined influence
of high-stress conditions prevailing in a monitored mining zone and the high-velocity of
material flow through the ore pass. Chen et al. [7] developed a new plugging technology
based on a composite bar combined casing with pre-stressed cables for a collapsed ore
pass. A detailed analysis and the effects of building up the applied plugging system for
a destroyed main ore pass is demonstrated in the case study of the Xingshan Iron Mine
in China. Esmaieli et al. [8] analyzed the stability of the ore pass at Brunswick mine in
Canada. The paper is based on analysis of the high stress and material flow as two critical
factors influencing the structural stability of the ore pass as well as its useful life. Gardner
and Fernandes [9] showed an analysis of the ore pass rehabilitation through the three
case studies from Impala Platinum Limited. They concluded that ore pass deterioration
is primarily caused by complex geological conditions and stress regime governing in the
ore deposit. Greberg et al. [10] evaluated the possible options of a haulage system in an
underground mine in Sweden as a case study. By using discrete event simulation, the
haul truck transportation system is analyzed as an alternative variant of ore pass for the
rock mass transportation at an underground sublevel caving mine method. Li et al. [11]
presented the optimization of an underground mine transportation system based on the
wolf colony algorithm. The paper demonstrated the transportation route of the mining
equipment and optimized the total tonnage of the mined ore from seven stopes to the
two ore passes. A similar study is represented by Hou et al. [12] in the underground gold
mine in Shandong Province, China. In this paper, transportation routes containing six
stopes and two ore passes are illustrated using a simulation model where the number of
loaders and trucks are optimized. Koivisto [13] provided an exhaustive analysis of the ore
pass design including longevity, inclination, dimension, support, material flow, ore pass
rehabilitation, etc., in Kittilä Mine as a case study. Also, Koivisto analyzed the problem of
ore pass location selection by simulating different scenarios of the optimal ore pass location,
in which Scenario 1 was accepted as the most economically sustainable solution.

Bearing in mind the importance of this problem, we developed an optimization model
to enable mining engineers to design the most efficient ore pass system. The mining
business is burdened by many uncertainties which are primary related to the investment
and production costs. To quantify these uncertainties, we apply the concept of fuzzy theory,
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i.e., the concept of triangular fuzzy numbers. The optimization model is composed of the
two components. The first component refers to the fuzzy cost objective function, which
should be minimized, while the second component refers to the set of techno-dynamic
constraints that must be met. According to the previously mentioned facts, our problem
can be classified as a fuzzy 0–1 linear programming model. To reduce the complexity
of the fuzzy environment, within linear programming, we transform the fuzzy objective
function into a crisp one. The transformation is based on the novel Torricelli–Simpson
ranking function. A prerequisite to apply the Torricelli–Simpson ranking function relates
to the normalization of the original triangular fuzzy number. It includes normalization
of the smallest, most promising, and largest values, respectively. Also, the value of the
membership function of the most promising value must be normalized. The normalized
triangular fuzzy number is now treated as a triangular graph, composed of vertices and
edges. The Torricelli point is a single point, which lies within a triangular graph, whose
total Euclidean distance from the normalized values, excluding the normalized most
promising value, is minimal. The Torricelli point represents an intersection of Simpson
lines, and its x-coordinate is a crisp value of the normalized triangular fuzzy number. The
crisp value of the original triangular fuzzy number is obtained via the inverse process
of normalization. The Torricelli–Simpson ranking function creates the crisp 0–1 linear
programming environment, and the ore passes optimization problem can be solved via
existing methods.

A comparison with some of the existing defuzzification methods has shown that the
novel method can create a crisp value of a triangular fuzzy number with a high level of
reliability. The stability analysis shows stable results regardless of whether the triangular
fuzzy number is symmetric or non-symmetric. Accordingly, the developed ranking function
is capable of being used in the creation of the crisp value of a triangular fuzzy number.

The Torricelli–Simpson ranking function is also capable of ranking symmetric triangu-
lar fuzzy numbers with equal modes and different spreads. Additional capability relates to
the ranking of symmetric triangular fuzzy numbers with equal modes but with different
membership functions.

The efficiency of the proposed ore pass system optimization model is evaluated on the
hypothetical ore deposit, where the sublevel method is applied as a means of underground
mining. To the best of the authors’ knowledge, this is the first optimization model for an
underground mine ore pass system. Because of that, we are unable to compare the existing
models and highlight their limitations. Currently, underground mine designers locate ore
passes primarily based on previous experience without the use of any support tools. The
hypothetical case study took into account all possible combinations between a finite set
of stopes and ore pass locations. Accordingly, the model is characterized by high level of
precision (accuracy).

The proposed methodology has several advantages which can be highlighted
as follows:

• Novel method of defuzzification of triangular fuzzy numbers;
• Ranking of the special types of triangular fuzzy numbers;
• Optimal number of ore passes from the finite set of potential ore pass locations;
• Optimal locations of ore passes from the finite set of potential ore pass locations;
• Optimal plan of ore transportation from stopes to ore passes;
• Provision of support to mining engineers in the process of designing underground mines.

Sensitivity analysis, which considers the changes in ore transportation costs, shows
the sensitivity of the developed model toward the direction of increasing the number of ore
passes as the costs rise.

The paper is organized as follows. Section 1 comprises the Introduction and a brief
literature review as well as the main objectives of the developed model. The transformation
of a triangular fuzzy number into a crisp (non-fuzzy) number via the Torricelli–Simpson
ranking function is extensively described in Section 2. An ore pass system optimization
model for sublevel mining is illustrated in Section 3, with special attention given to the
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fuzzy objective function of the developed model. Section 4 relates to a numerical example,
the obtained results of which are comprehensively described therein. A sensitivity analysis
of the model is presented in Section 5, while the concluding remarks and directions of
future research are discussed in Section 6.

2. From Fuzzy to Crisp Linear Programming Model via Torricelli–Simpson
Ranking Function

The classical 0–1 linear programming aims to minimize (maximize) an objective
function subject to a finite set of linear constraints, where variables take a value of 0 or 1.
The problem is formulated in the following way:

min f = cx,
s.t.Ax ≤ b,
x ∈ [0, 1].

(1)

where cT = (c1, c2, . . . , cn)
T ∈ Rn presents the cost (benefit) vector, x = (x1, x2, . . . , xn)

T ∈ Rn

is a vector of variables, b = (b1, b2, . . . , bn)
T ∈ Rm is a vector of right-hand-side constraint

coefficients, and A =
[
aij
]

m×n ∈ Rm×n is a matrix of left-hand-side constraint coefficients.
The presented formulation of 0–1 linear programming is one of the common methods

used to find out the best solution for different optimization problems, with assumptions
that all coefficients are crisp in nature. However, real-world problems are inaccurate and
implicit. Therefore, coefficient uncertainties must be considered, and a triangular fuzzy
number (TFN) is very suitable and useful for it. Triangular fuzzy numbers belong to fuzzy
theory, which defines the concept of membership function to express the uncertainty of
variables [14]. A membership function is defined by the degree of acceptance of a variable
as a member of the fuzzy set A; µ∼

A
(x) : X → [0, 1] .

Definition 1. A triangular fuzzy number
∼
A = (a, b, c) is defined as a triplet, where a, b and c are

the smallest, most promising, and largest values, respectively. The membership function of TFN has
the following conditions:

µ∼
A
(x) =


0, x ≤ a,
x−a
b−a , a ≤ x ≤ b,
c−x
c−b , b ≤ x ≤ c,
0, x ≥ c.

(2)

A plot of a common TFN is presented in Figure 1.
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So, a fuzzy 0–1 linear programming model is performed based upon Equation (1), and
is as follows:

min
∼
f =

∼
c x,

s.t.
∼
Ax ≤

∼
b ,

x ∈ [0, 1].

(3)

Further, a triangular fuzzy number can be presented as an artificial triplet (a, b, c) with
the following characteristics: 

a < 1,
b < 1,
c < 1.

(4)

A triangular fuzzy number with previously characteristics can be created by normalization.

Definition 2. A normalized triangular fuzzy number (NTFN) is defined as follows:

µ∼
AN

(x) =


0, x ≤ aN ,

x−aN
bN−aN

, aN ≤ x ≤ bN ,
cN−x

cN−bN
, bN ≤ x ≤ cN ,

0, x ≥ cN .

(5)

where aN , bN and cN are the smallest, most promising, and largest normalized values, respectively.
The membership function of TFN must also be transformed. The normalized values of a triplet
(a, b, c) and the transformed membership function are calculated in the following way:

∼
AN =


aN = a√

a2+b2+c2 , µ(aN) = 0,

bN = b√
a2+b2+c2 , µ(bN) = 1 + n+1

n ,

cN = c√
a2+b2+c2 , µ(cN) = 0.

(6)

where n is a triplet (n = 3). An example of normalization is presented in Figure 2.
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Normalization is a prerequisite for the application of the Torricelli–Simpson ranking
function (TSRF) in solving a fuzzy 0–1 linear problem. The concept of a ranking function is
closely related to the method of defuzzification of a TFN. A ranking function (RF) converts

a fuzzy problem into a crisp one, and it maps each TFN into the real line, RF = TFN
map→ R.

Different approaches of a RF exist. Yager proposed a ranking function which converts fuzzy
numbers over the unit interval [15]. Chen ranked fuzzy numbers by minimizing the set
and maximizing the set [16]. Wang applied an integral value to rank fuzzy numbers [17].
Adamo proposed the decision trees method as a ranking function for data expressed by
a common language whose semantic representations are fuzzy numbers [18]. González
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developed the general ranking function approach as a ranking process using a mean value
and an interval relation [19]. Chutia developed a ranking technique which uses the notion
of value and a multiple of an ambiguity inclusion–exclusion function [20]. Duta proposed
a sophisticated ranking method based on the concept of the exponential area of the fuzzy
numbers [21]. Zou et al. ranked fuzzy numbers via a two-dimensional Monte Carlo
simulation technique [22]. Wang and Mo introduced left and right deviation degree of
fuzzy numbers as measure of fuzziness, which is the global attribute of fuzzy numbers [23].
Pourabdollah et al. created a close-form formula for alpha-cut defuzzification that involves
both the membership function and its derivative [24]. Asady and Zendehnam defuzzified
fuzzy numbers using a minimizer of the distance between the two fuzzy numbers [25].

Consider NTFN, and denote triangle vertex as Vi (xi, µ(xi)), i = 1,2,3, where xi is a
value of fuzzy event and µ(xi) is a transformed membership function of event (see Figure 3).
The coordinates of the vertices are: V1 (aN,0), V2 (bN,1 + 1.333) and V3 (cN,0).
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Definition 3. NTFN is a graph G = (V, E), where V and E present a set of vertices and a set of
edges, respectively.

Each edge connects a pair of vertices. Another term for a graph defined in this way
is a network. In Figure 3, we have V = {V1, V2, V3} and E = {e1, e2, e3}. Edge e1 connects
vertices V1 and V2, edge e2 connects V1 and V3, and edge e3 connects V2 and V3.

The Euclidean Steiner tree problem looks for a network of minimal total length which
spans over a given set N composed of n points in the Euclidean plane. Brasil et al. [26]
described the Euclidean Steiner tree problem in the following way.

Definition 4. Find a geometric network T = (V, E) such that N ⊆ V and S = V\N is a set of
points known as Steiner points, and such that ∑e∈E|e| is minimal.

The origins of the Euclidean Steiner tree problem are closely related to the Fermat–Torricelli
problem, which can be thought of as the simplest non-trivial case of the Steiner problem
for n = 3. The problem is to find a single point in the plane whose total Euclidean distance
from three given points is minimal. The Italian physicist and mathematician Evangelista
Torricelli solved the problem in a geometric way. The method can be formulated as follows:

• Start by joining the three points in the plane to form a triangle;
• Construct three equilateral triangles, one on each edge of the original triangle;
• Construct three circles circumscribing each equilateral triangle.

The point at which all circles intersect is known as the Torricelli point (T). The Simpson
method works by drawing a Simpson line from each vertex of the equilateral triangles,
which do not belong to the original triangle, to the opposite vertex, which belongs to the
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original triangle. The Simpson lines also intersect at the Torricelli point. The obtained point
lies inside a triangle and has exactly three incident edges meeting at 120◦ degree angles.
Neither of these methods works properly if any of the angles of an original triangle are
larger than 120◦. This is the main reason we created NTFN. Through the normalization
of TFN, we avoid such a situation, and all angles of NTFN are smaller than 120◦. The
construction of the Torricelli point of NTFN, via both methods, is presented in Figure 4.
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Normalized coordinates of the Torricelli point are T (TN, µ(TN)). The algebraic method
for solving the Torricelli point problem, based on the geometric solution, is composed of
the following steps in succession:

Step 1. Calculate the coordinates of a vertex V4,
Step 2. Obtain an equation of Simpson line s3, which connects vertex V4 and vertex V3,
Step 3. Calculate the coordinates of a vertex V6,
Step 4. Obtain an equation of Simpson line s2, which connects vertex V6 and vertex V2,
Step 5. Find the intersection of the two Simpson lines, s3 and s2.

Step 1. Vertex V4 presents an intersection of lines l1 and l2 (see Figure 5). For simplicity,
we use standard notation for coordinates, x and y, although y = µ(x). A gradient (slope) of
a line l1 equals:  g1 = tan

(
60 + arctan

(
2.333
|bN−aN |

))
,

arctan
(

2.333
|bN−aN |

)
= 90, if aN = bN .

(7)

The equation of line l1, which has a gradient of g1 and passes through a vertex
V1(aN,0), is:

l1 : y = g1(x− aN) = tan
(

60 + arctan
(

2.333
|bN − aN |

))
(x− aN), (8)

A gradient of line l2 equals:g2 = tan
(

30− arctan
(
|bN−aN |

2.333

))
,

arctan
(
|bN−aN |

2.333

)
= 0, if aN = bN .

(9)
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The equation of line l2, which has a gradient of g2 and passes through a vertex V2 (bN,
2.333), is:

l2 : y = g2(x− bN) + 2.333 = tan
(

30− arctan
(
|bN − aN |

2.333

))
(x− bN) + 2.333, (10)

The coordinates of vertex V4 are as follows:

V4(x4, y4) = V4

(
g1aN − g2bN + 2.333

g1 − g2
, g1

(
g1aN − g2bN + 2.333

g1 − g2
− aN

))
, (11)

Step 2. The equation of the Simpson line s3, which passes through two vertices, V4
and V3, is as follows:

s3 : y =
−g1

(
g1aN−g2bN+2.333

g1−g2
− aN

)
cN − g1aN−g2bN+2.333

g1−g2

(
x− g1aN − g2bN + 2.333

g1 − g2

)
+ g1

(
g1aN − g2bN + 2.333

g1 − g2
− aN

)
, (12)

Step 3. Vertex V6 presents an intersection of lines l3 and l4 (see Figure 5). The gradients
of lines l3 and l4 are: g3 = tan(120) = −

√
3 and g4 = tan(60) =

√
3; so, the equations of

lines l3 and l4 are as follows:
l3 : y = −

√
3(x− aN), (13)

l4 : y =
√

3(x− cN), (14)

The coordinates of vertex V6 are as follows:

V6(x6, y6) = V6

(
aN + cN

2
,
√

3
(

aN − cN
2

))
, (15)

Step 4. The equation of the Simpson line s2, which passes through two vertices V6 and
V2, is as follows:

s2 : y =
2.333−

√
3
(

aN−cN
2

)
bN − aN+cN

2

(
x− aN + cN

2

)
+
√

3
(

aN − cN
2

)
; s2 : x = bN , i f bN − aN = cN − bN , (16)
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Step 5. As we mentioned, the intersection of Simpson lines creates the Torricelli point.
Let us introduce new notations to simplify searching for the coordinates of intersection:

s3 : y = ω3(x− ϕ3) + δ3, (17)

s2 : y = ω2(x− ϕ2) + δ2, (18)

Solving the system of Equations (17) and (18), we obtain the following x-coordinate of
the Torricelli point of NTFN as follows:

TN =
ω3 ϕ3 −ω2 ϕ2 + δ2 − δ3

ω3 −ω2
, (19)

where:

ω3 =
−g1

(
g1aN−g2bN+2.333

g1−g2
−aN

)
cN−

g1aN−g2bN+2.333
g1−g2

ϕ3 = g1aN−g2bN+2.333
g1−g2

δ3 = g1

(
g1aN−g2bN+2.333

g1−g2
− aN

)
, (20)

ω2 =
2.333−

√
3
(

aN−cN
2

)
bN−

aN+cN
2

ϕ2 = aN+cN
2 δ2 =

√
3
(

aN−cN
2

)
, (21)

The single number or crisp value of TFN based on the Torricelli–Simpson ranking
function (TSRF) is calculated as follows:

TSRF
(∼

A
)
= TN ·

√
a2 + b2 + c2, (22)

The additional benefits of the Torricelli–Simpson ranking function are presented in the
Appendix A section. The TSRF is capable of ranking triangular fuzzy numbers which have
the same mode but different symmetric spreads. It is also capable of ranking triangular
fuzzy numbers with different values of the membership function.

Let us consider the second part of Equation (16), s2 : x = bN , i f bN − aN = cN − bN .
Obviously, it is a symmetric TFN, and we used that to simplify the calculation of the
Torricelli–Simpson ranking function.

Simplification means searching for the intersection between line s2 and the x-axis only.

The intersection between Simpson line s2 : y =
2.333−

√
3
(

aN−cN
2

)
bN−

aN+cN
2

(
x− aN+cN

2

)
+
√

3
(

aN−cN
2

)
and x-axis is defined as follows:

SN =
A·B− C

A
, (23)

where:

A =
2.333−

√
3
(

aN−cN
2

)
bN − aN+cN

2

; B =
aN + cN

2
; C =

√
3
(

aN − cN
2

)
, (24)

Now, the crisp value of the TFN is calculated as follows and shown in Figure 6.

SRF
(∼

A
)
= SN ·

√
a2 + b2 + c2, (25)

To solve the problem defined by Equation (3), we transform it into an equivalent crisp
form, replacing the fuzzy objective function and fuzzy constraints with:

min f = deff
(∼

c
)

x,

s.t.deff
(∼

A
)

x ≤ deff
(∼

b
)

x ∈ [0, 1].

, (26)
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where abbreviation “deff” denotes the defuzzified value of TFN; and the Torricelli–Simpson

or Simpson ranking function is TSRF
(∼

A
)

or SRF
(∼

A
)

, respectively. The crisp problem is

now solved by using standard linear programming methods.
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3. Ore Passes Optimization Model for Sublevel Mining
3.1. Sublevel Mining

Sublevel mining is an underground mining method which is intended for the excava-
tion of deeply situated massive orebodies. The orebody is divided into vertical intervals
through horizontal openings called production drifts. So, a sublevel is a vertical section of
the orebody which is limited, with two production drifts on various neighboring levels.
A sublevel drift is driven along to the strike of an orebody, and it is in the footwall. The
main purpose of a sublevel drift is to connect production drifts and provide ore trans-
portation from stopes to ore passes, and it also performs the ventilation of stopes. Ore
passes are positioned along the strike of the ore body in the vicinity to the sublevel drift.
Several sublevels make up one mining horizon, and one main haulage drift is assigned
to each horizon. Mining activities start at the uppermost sublevel of the mining horizon
and proceed sequentially downward to the lowest sublevel of the mining horizon. The
main haulage level is directly located below the lowest sublevel. Hence, the mining front
advances toward the main haulage drift, while in each sublevel, the mining front advances
from hanging wall to the footwall, toward the sublevel drift. In each sublevel, the ore is
drilled in a fan-shaped pattern along the production drift at the constant horizontal dis-
tance, called the burden. Then, holes drilled into ore are filled with explosives for blasting.
Load haul dump equipment is used to transport blasted ore from stopes to the ore passes.
This sequence of activities is repeated in a cyclical way. From the bottom of each ore pass,
ore is transported along the main haulage level to the main conveyance system and further
to the surface [27–30].

3.2. The Model

An ore pass is a vertical or near-vertical opening, which is created during underground
mining operations, through which ore falls under gravity to the lowest designed level.
Before formulating the underground ore passes optimization problem, a number of things
are assumed, and these are:

• Access system to the ore body is designed;
• Mining method parameters are defined;
• Sublevel access system is designed;
• Mining plan is defined;
• Set of potential ore pass locations is finite;
• Circular-shaped ore pass with adequate cross-sectional dimensions (area) is adopted;
• Safe distance between two operating ore passes is defined.
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In the optimization problem of the ore pass system, we firstly form the objective
function. It describes the required problems by suitable equations. This is followed by
setting up a goal, which can be maximal or minimal, in the spirit of an objective function.
In finding the feasible solution, there are technical requirements (constraints) that must be
met, and the constraints are expressed by a set of equations. Ore pass system optimization
can be treated as a location–allocation problem. This is a strategic decision-making problem
concerning the selection of the best subset of ore passes from a set of potential locations and
the allocation of quantities of mined ore to the selected locations, over a defined period. An
inefficient solution to the problem can lead to a bottleneck in production and can severely
affect the mining business.

Suppose there is an ore pass which connects production sublevels and enables ore
to fall from each sublevel to the main haulage level. The following operations are closely
related to the ore pass system organization:

• Operation 1: blasted ore is transported from a stope to the dumping point by the
load–haul–dump vehicle (see Figure 7). The ore is hauled through the production drift.

• Operation 2: at the dumping point, ore is dumped into an ore pass and ends up at the
loading point, which is located at the bottom of an ore pass, near the haulage drift.

• Operation 3: at the loading point, ore is also loaded by a loader and hauled to the main
transportation system. The ore is hauled through the main haulage drift (see Figure 8).
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Figure 7. Load–haul–dump (LHD) vehicle in operation on sublevel; figure adopted from [31]
and transformed.
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Figure 8. Operations relating to an ore pass.

The concentration point is a point where the sublevel drift and stope production drift
cross each other, and where the entire quantity of ore from a stope is concentrated. Note
that this is an artificial point which is defined only for the purpose of optimization, and
the ore is not dumped at this point. It can be treated as a center of gravity of a stope. The
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section concentration point (SCP) is the center of gravity of a stope part, which should be
mined out according to a mining plan.

Graph theory is a capable concept which helps us to understand the ore passes
optimization problem by visualization. As the first step, we present the vertical cross-
section, longitudinal cross section and horizontal cross-section of an ore pass system in
Figures 9–11, respectively. Cross-sections contain the position of sublevels; possible mining
plan on sublevels; ore pass positions; location of concentration points and dumping and
loading points; positions of production and sublevel drifts; and position of the main haulage
drift. The unloading drift is a section of production drift between the concentration and
dumping point, while the LHD maneuver drift is a section of the loading drift. Usually, the
loading and main haulage drift intersect at a right angle.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 40 
 

 

 

Figure 9. Vertical cross section of an ore pass. 

 

Figure 10. Longitudinal cross section of ore pass system. 

t =1 t =2 t =T

sublevel . . .

ore flow

mining plan for l =2

t =1 t =2 t =T

sublevel . . .

mining plan for l =3

t =1 t =2 t =T

sublevel . . .

⁞ ⁞ . . . ⁞ ⁞

mining plan for l =L

t =1 t =2 t =T

sublevel . . .

main haulage level loading point

section concentration point

dumping point

concentration point

j -th  ore pass

mining plan for l =1

ore pass 1 ore pass 2 ore pass 3 ore pass n

j =1 j =2 j =3 j =n

main haulage level

dumping points

sublevel 1, l =1

sublevel 2, l =2

sublevel 3, l =3

sublevel L , l =L

. . .

. . .

. . .

⁞. . .

. . .

. . .

⁞ ⁞ ⁞

dumping points

⁞

loading points

Time period t ϵ[1,T ]

dumping points

dumping points

Figure 9. Vertical cross section of an ore pass.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 40 
 

 

 

Figure 9. Vertical cross section of an ore pass. 

 

Figure 10. Longitudinal cross section of ore pass system. 

t =1 t =2 t =T

sublevel . . .

ore flow

mining plan for l =2

t =1 t =2 t =T

sublevel . . .

mining plan for l =3

t =1 t =2 t =T

sublevel . . .

⁞ ⁞ . . . ⁞ ⁞

mining plan for l =L

t =1 t =2 t =T

sublevel . . .

main haulage level loading point

section concentration point

dumping point

concentration point

j -th  ore pass

mining plan for l =1

ore pass 1 ore pass 2 ore pass 3 ore pass n

j =1 j =2 j =3 j =n

main haulage level

dumping points

sublevel 1, l =1

sublevel 2, l =2

sublevel 3, l =3

sublevel L , l =L

. . .

. . .

. . .

⁞. . .

. . .

. . .

⁞ ⁞ ⁞

dumping points

⁞

loading points

Time period t ϵ[1,T ]

dumping points

dumping points

Figure 10. Longitudinal cross section of ore pass system.



Mathematics 2023, 11, 2914 13 of 35Mathematics 2023, 11, x FOR PEER REVIEW 14 of 40 
 

 

 

Figure 11. Horizontal cross-section of ore pass system on sublevel. 

Since the concentration point and dumping point are neighboring points, a potential 

set of ore pass locations is then equal to a set of concentration points. According to the 

terminology of location–allocation methodology, ore passes are candidate points. The lo-

cation of ore passes on the candidate sites and the assignment of mined ore to each located 

ore pass are determined such that the total cost is minimized. The total cost is the sum of 

the transportation costs and costs of ore pass excavation (development). An ore pass is 

usually excavated via the drill and blast method. A graph of the ore pass location–alloca-

tion problem is shown in Figure 12. 

 

Figure 12. A graph of the ore passes optimization problem. 

The optimization problem can be presented by a graph denoted as G (V, E), where V 

is a finite set of vertices, and E is a finite set of edges. Set V consists of ore pass candidate 

points, while set E consists of haulage drift sections. Vertices are weighted by ore pass 

development costs, and edges are weighted by ore transportation costs. The problem is to 

find a subset 𝐾 ⊆ V  of ore passes as to minimize the total cost. The outcome of the 

section concentration

stope stope point stope stope

t =1

t =2

⁞ ⁞ ⁞ ⁞ . . . ⁞

t =T

production drifts

sublevel drift

concentraition . . . sublevel l -th

points

dumping points . . . sublevel l -th

section concentration point orepass j

1 1

2 2

3 3

⁞ ⁞

m n

Time period t ϵ[1,T ]

Sublevel l ϵ[1,L ]

Figure 11. Horizontal cross-section of ore pass system on sublevel.

Since the concentration point and dumping point are neighboring points, a potential
set of ore pass locations is then equal to a set of concentration points. According to the
terminology of location–allocation methodology, ore passes are candidate points. The
location of ore passes on the candidate sites and the assignment of mined ore to each
located ore pass are determined such that the total cost is minimized. The total cost is
the sum of the transportation costs and costs of ore pass excavation (development). An
ore pass is usually excavated via the drill and blast method. A graph of the ore pass
location–allocation problem is shown in Figure 12.
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The optimization problem can be presented by a graph denoted as G (V, E), where V
is a finite set of vertices, and E is a finite set of edges. Set V consists of ore pass candidate
points, while set E consists of haulage drift sections. Vertices are weighted by ore pass
development costs, and edges are weighted by ore transportation costs. The problem is to
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find a subset K ⊆ V of ore passes as to minimize the total cost. The outcome of the problem
is the number of selected ore passes as well as their locations and ore tonnage assignment
plan over time.

Accordingly, the fuzzy objective function, which is aimed at minimizing the total cost
of the ore pass system, is as follows:

∼
F =

m

∑
i=1

n

∑
j=1

T

∑
t=1

L

∑
l=1

ri,t,l
∼
c tdij,t,l xij,t,l +

n

∑
j=1

∼
Cjxj → min, (27)

subject to:
∑m

i=1xij,t,l = 1, ∀j ∈ [1, n], ∀t ∈ [1, T], ∀l ∈ [1, L], (28)

xij,t − xj,t ≤ 0, ∀i ∈ [1, m], ∀j ∈ [1, n], ∀t ∈ [1, T], ∀l ∈ [1, L], (29)

∑T
t=1xij,l+1−∑T

t=1xij,l ≤ 0, ∀i ∈ [1, m], ∀j ∈ [1, n], ∀l ∈ [1, L− 1], (30)

xij,t,l + xs
ij,t,l ≤ 1, ∀i ∈ [1, m], i = j, ∀s ∈ [1, S], ∀t ∈ [1, T], ∀l ∈ [1, L], (31)

xij + xs
ij ≤ 1, ∀i ∈ [1, m], i = j, ∀s ∈ [1, S], (32)

xij,t,l − xj ≤ 0, ∀i ∈ [1, m], i = j, ∀t ∈ [1, T], ∀l ∈ [1, L], (33)

xij,t,l ∈ [0, 1]; xj ∈ [0, 1]. (34)

where the following are defined:
m—total number of section concentration points;
n—total number of ore pass candidate points;
ri,t,l—tonnage of ore which gravitates to the i-th section concentration point on the l-th

sublevel in time t;
∼
c t—fuzzy unit transportation costs in time t;
dij,t,l—distance between the i-th section concentration point and the j-th candidate

point on the l-th sublevel in time t;
L—total number of sublevels;
T—mining time;
S—a set of candidate points that do not meet the safe distance condition relative to

j-th candidate point;
∼
Cj—fuzzy cost of ore passes excavation (development);
xij,t,l—binary variable;
xj—binary variable.
In underground mining practice, ore pass excavation is called ore pass development.

Ore pass development through the rock massive is accomplished via drilling and blasting.
Information on rock mass properties is gathered by surface exploration drilling with
sampling. A wide-space grid pattern of drilling and testing of the rock core samples is
used, and information on rock mass characteristics between bore holes is gathered by
interpolation. Hence, we cannot define the properties of rock mass at a micro-location,
where the ore pass should be developed, with high level precision. It may be that the
full length of the ore pass, or some sections, must be supported by rebar and liners, such
as shotcrete. It is a source of uncertainties, and triangular fuzzy numbers are a very
convenient way to quantify cost uncertainties. Transportation equipment operating costs
are also burdened with uncertainties, due to adjustments in inputs such as labor, fuel,
lubricants, tires and spare parts. The market price of these inputs is explicitly defined by
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the business strategy of suppliers. To protect themselves, suppliers are offering short-term
contracts to mines, which is in contrast to traditional long-term contracts. This is one of the
reasons why we use triangular fuzzy numbers to express ore transportation costs.

In some cases, alternative fuzzy set types, such as Interval Type-2 Fuzzy Sets (IT2FS),
may be required to capture more complex or higher-order uncertainty patterns. The choice
of fuzzy set type depends on the specific characteristics of the uncertainty being modeled
and the requirements of the application at hand. But, in this case study, TFNs have shown
stable and rational results.

We have implemented TFNs in this study due to several reasons:

• TFNs are useful when data availability is limited or uncertain, which is the case in this
study. In this study, obtaining precise data for uncertainty modeling was challenging,
and TFNs enable experts to represent and reason about uncertainty based on their
knowledge, experience or imprecise data.

• TFNs are computationally efficient compared to more complex fuzzy set types such
as interval type-2 fuzzy sets. The calculations involving TFNs are less demanding in
terms of computational resources. This efficiency facilitates quicker linear program-
ming and decision-making processes.

• One of the contributions of this study is the proposal of a new methodology for
the defuzzification of fuzzy numbers. To present the mentioned idea, the authors
decided to apply TFNs. This paper presents a novel approach for the defuzzification
of TFNs using the Torricelli–Simpson ranking function. In the following research,
the author’s intention is to show the possibilities of applying the Torricelli–Simpson
ranking function for the defuzzification of trapezoidal fuzzy numbers and other types
of uncertainty.

• Our intention is to develop a decision support system based on the developed method-
ology. To achieve this goal, we need a stable system with easily integrated parts.
TFNs can be easily integrated into real-world decision support systems and processes.
They can be used alongside traditional crisp or deterministic values, providing a
seamless transition from conventional methods to fuzzy-based approaches without
major disruptions.

The objective function (27) of the ore pass system model minimizes the total costs,
including the ore transportation costs from a stope to an ore pass and the fixed costs of ore
pass excavation. Equation (28) implies that total ore tonnage must be transported from a
stope (section concentration point) to one ore pass only. Constraint (29) and constraint (30)
do not allow discontinuity or segmentation of the ore pass.

The continuity of the ore pass must be achieved, from the first sublevel to the main
haulage level.

Constraints (31), (32) and (33) relate to the pillar thickness between two operating ore
passes. We named this thickness as safety distance D. The aim of this constraint is to select
locations of ore passes with no stress interaction between them. Having created numerical
stress modeling, Bunker et al. showed the mechanism of stress interaction (see Figure 13)
and proposed a minimum safety distance of 30 m [32].

Members of set S are defined in the following way:{
1, if dj,j+h,t,l < D → s ∈ S, ∀j ∈ [1, n], ∀h ∈ [1, 2, . . . , n− j], ∀t ∈ [1, T], ∀l ∈ [1, L],
0, if dj,j+h,t,l ≥ D → s /∈ S, ∀j ∈ [1, n], ∀h ∈ [1, 2, . . . , n− j], ∀t ∈ [1, T], ∀l ∈ [1, L].

(35)

Constraint (34) strictly supports the following statements:

• If variable xij,t,l takes a value of 1, then the ore is transported from i-th section concen-
tration point to the j-th ore pass on the l-th sublevel in time t, otherwise 0;

• If the ore pass is excavated in location j, then variable xj takes a value of 1, otherwise 0.

Figure 14 shows a flowchart of the ore passes optimization model.
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4. Numerical Example

To evaluate the developed optimization model, we used a hypothetical cooper deposit.
The sublevel mining method was selected as a means of underground mining, with the
following design parameters and ore characteristics:

• Number of sublevels which was analyzed, 3 sublevels;
• Sublevel height, 15 m;
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• Stope width, 10 m;
• Stope height, 15 m;
• Ore pass length, 44 m;
• Ore pass is vertical;
• Cross-section of ore pass is circular, with diameter of 2 m;
• Number of stopes on each sublevel, 20 stopes;
• Total number of stopes, 60 stopes;
• Ore density, 2.65 t/m3.

The hypothetical cooper deposit and sublevel mining method are presented in Figure 15.
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Figure 15. Ore deposit and schematic design of sublevel development.

The sublevel’s mining plan is presented in Figure 16 and Table 1. On each sublevel,
there are twenty stopes, and each stope is divided into three sections. Colored sections
represent the sequencing of the stope with respect to yearly time horizon. The mining plan
spans three years for a total production of 882,848 t of ore.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 40 
 

 

 

Figure 15. Ore deposit and schematic design of sublevel development. 

The sublevel’s mining plan is presented in Figure 16 and Table 1. On each sublevel, 

there are twenty stopes, and each stope is divided into three sections. Colored sections 

represent the sequencing of the stope with respect to yearly time horizon. The mining plan 

spans three years for a total production of 882,848 t of ore. 

 

Figure 16. Mining plan on each sublevel. 

Table 1. Mining plan on sublevels. 

 Sublevel 1 Sublevel 2 Sublevel 3 

 
Year 1 

(t) 

Year 2 

(t) 

Year 3 

(t) 

Year 1 

(t) 

Year 2 

(t) 

Year 3 

(t) 

Year 1 

(t) 

Year 2 

(t) 

Year 3 

(t) 

 5605 5247 5804 8030 5247 3419 5247 3021 3697 

 6201 5247 6201 7115 5247 3379 5048 3419 3061 

 
 

 

AA

OREBODY

CAVED ZONE

SURFACE

Orepass

Main haulage level

Loading drift

Sublevel driftProduction drift

Stope

LHD maneuver drift

Dumping point

Unloading drift

1

1

1

2

2

2

3

3

3

CROSS-SECTION  A-A

Hanging wall

Footwall
Orepasses

Unloading driftsSublevel drift

Production drifts
Sublevel 1

Concentration point Dumping point

 
 

 

 Figure 16. Mining plan on each sublevel.



Mathematics 2023, 11, 2914 18 of 35

Table 1. Mining plan on sublevels.

Sublevel 1 Sublevel 2 Sublevel 3
Year 1

(t)
Year 2

(t)
Year 3

(t)
Year 1

(t)
Year 2

(t)
Year 3

(t)
Year 1

(t)
Year 2

(t)
Year 3

(t)

5605 5247 5804 8030 5247 3419 5247 3021 3697
6201 5247 6201 7115 5247 3379 5048 3419 3061
6758 5247 5645 5645 5247 3061 4889 3816 2663
7314 5207 6002 4055 5247 3737 4850 4253 2783
7354 5207 6917 2504 5247 4730 4571 4651 3419
6519 5287 7791 2266 5247 5684 3856 5128 4214
6678 5525 7314 4015 5565 5645 3498 5525 4571
7235 5525 6440 6797 5486 4770 4134 5446 4412
7592 5525 5963 6917 5486 4770 3816 5168 5804
6917 5366 5247 6758 5724 4850 2981 5088 6440
5366 4810 4333 5366 6082 4691 3339 5048 5168
4174 4214 4214 4611 6440 4333 4094 4929 3816
3538 3657 4134 5446 6758 3975 4691 4810 3101
3776 3935 3419 7354 5645 4015 5724 4333 3061
3657 5088 3101 8626 4253 4214 6400 3339 4015
4889 5207 3896 7910 4850 3935 4015 4253 5605
5605 5287 6042 4889 5207 4214 2942 5128 6042
5287 5287 7831 2703 4770 5168 3697 4571 5963
4214 5287 8467 2544 4333 5406 4134 3935 4174
1630 3896 8069 2703 3856 3339 994 3299 2067

Total 110,306 100,051 116,825 106,252 105,934 87,331 82,919 89,159 84,071

Summary mining plan is shown in Table 2 and Figure 17.

Table 2. Summary mining plan.

Year/Sublevel Year 1 (t) Year 2 (t) Year 3 (t)

Sublevel 1 110,306 100,051 116,825
Sublevel 2 106,252 105,934 87,331
Sublevel 3 82,919 89,159 84,071

Total 299,477 295,144 288,227
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Figure 17. Summary mining plan.

Since production activities are planned, we can create a graph that represents the
ore pass system optimization problem. The numbering system which defines the section
concentration points (SCP) in ascending order, on each sublevel, is as follows:

• Sublevel 1: SCP 1 is located 54 m from the sublevel drift (upper-right corner). SCP 21
and SCP 41 are located 36 m and 16 m from the sublevel drift, respectively (see
Figure 18);
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• Sublevel 2: SCP 61 is located 58 m from the sublevel drift (upper-right corner). SCP 81
and SCP 101 are located 36 m and 21 m from the sublevel drift, respectively (see
Figure 19);

• Sublevel 3: SCP 121 is located 54 m from the sublevel drift (upper-right corner).
SCP 141 and SCP 161 are located 40 m and 19 m from the sublevel drift, respectively
(see Figure 20).
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Accordingly, on each sublevel, there are 60 section concentration points, and in total,
there are 180 section concentration points. The location of each SCP is defined by the
perpendicular distance from the sublevel drift (see Table 3).

Table 3. Distance between section concentration point and concentration point.

Concentration
Point

Sublevel 1 Sublevel 2 Sublevel 3
Year 1

(m)
Year 2

(m)
Year 3

(m)
Year 1

(m)
Year 2

(m)
Year 3

(m)
Year 1

(m)
Year 2

(m)
Year 3

(m)

1 54 36 16 58 36 21 54 40 29
2 58 39 19 59 38 23 56 41 30
3 61 41 22 58 40 26 57 43 32
4 65 43 24 58 43 27 59 44 33
5 68 46 25 58 45 28 62 47 33
6 68 48 27 60 48 29 63 49 32
7 68 47 25 62 46 27 62 46 30
8 65 42 22 63 43 25 59 42 26
9 60 37 18 63 41 24 58 43 25
10 54 33 15 61 41 24 59 46 26
11 50 33 17 60 42 23 58 45 28
12 46 32 18 62 41 24 59 44 29
13 43 31 19 65 42 24 59 43 30
14 44 31 19 62 40 25 58 40 28
15 47 33 20 61 40 26 53 37 24
16 52 35 19 54 39 23 50 36 21
17 56 38 16 49 38 21 51 38 19
18 56 39 16 48 37 21 51 37 20
19 54 40 16 47 37 21 50 37 24
20 53 40 15 47 37 25 45 37 28

The numbering system which defines ore passes or candidate points is directed from
right to left, in ascending order (see Figures 18–20). The distance between concentration
points is 10 m, and the distance between the concentration and candidate point is 10 m. The
distance between the SCP and candidate point is calculated by summing up all the sections
along the way from the SCP to the candidate point. The following example shows the
method of calculating the distance between SCP 10 and candidate point 5 (see Figure 21).
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Figure 21. Partial distances between SCP 10 and candidate point 5.

The distance between SCP 10 and candidate point 5 on sublevel 1 in year 1 equals:

di=10,j=5,t=1,l=1 = 54 + 50 + 10 = 114 m, (36)
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The same approach is used to calculate all distances that exist between the set of section
concentration points and set of candidate points. If we take into consideration the presence
of m = 180 section concentration points and n = 20 candidate points, then 3600 distances
exist. Obviously, Figure 20 presents the directed graph of the selected example, which
describes only geometrical elements of the optimization problem. To obtain a weighted
graph, it is necessary to assign costs to edges and vertices. For that purpose, the data set
concerning costs is given in Table 4 and in Figures 22 and 23.

Table 4. Cost data.

Cost
Value

Transportation Unit Cost

Year 1 (0.047 0.049 0.058) USD/t m
Year 2 (0.051 0.057 0.062) USD/t m
Year 3 (0.048 0.052 0.061) USD/t m

Ore pass excavation unit cost (2270 2550 2750) USD/m
Ore pass length 44 m
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𝑏𝑁  =  
38,636
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45,732
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Figure 23. Fuzzy unit cost of ore pass excavation (development).

The combination of SCP 10 and candidate point 5 is also used as an example of the
fuzzy coefficient calculation of variable xi=10,j=5,t=1,l=1. The value of the fuzzy coefficient
for i = 10, j = 5, t = 1, l = 1 equals:

ri,t,l
∼
c tdij,t,l = 6917× (0.047 0.049 0.058)× 114 = (37, 059 38, 636 457, 32)USD, (37)
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The fuzzy coefficient of variable x5 equals:

∼
C5 = 44× (2270 2550 2750) = (99, 880 112, 200 121, 000)USD, (38)

Equation (37) represents the transportation cost component, while Equation (38)
represents the development cost component of the fuzzy objective function. The same
calculation is used to define all coefficients in the fuzzy objective function. To solve the
problem of ore pass system optimization, it is necessary to transform the objective function
from the fuzzy state to the crisp one.

The transportation cost component, which is expressed by triangular fuzzy number
∼
A = (37, 059 38, 636 45, 732), is used for the presentation of the developed defuzzification
method. Applying Equation (6), we obtain normalized triangular fuzzy number as follows.

∼
AN =


aN = 37,059√

37,0592+38,6362+45,7322
= 0.526, µ(aN) = 0

bN = 38,636√
37,0592+38,6362+45,7322

= 0.548, µ(bN) = 1 + 3+1
3

cN = 45,732√
37,0592+38,6362+45,7322

= 0.649, µ(cN) = 0

, (39)

The value of the fuzzy coefficient for i = 10, j = 5, t = 1 and l = 1, and its normalized
form is shown in Figure 24.
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Figure 24. The value of fuzzy coefficient and its normalized form expressed by triangular
fuzzy numbers.

According to Figure 4, the coordinates of vertices of the normalized triangular fuzzy
number are: V1(0.526;0), V2(0.548;2.333) and V3(0.649;0). The gradient of the line l1, which
passes through the vertex V1, and its equation are given as follows:

g1 = tan
(

60 + arctan
(

2.333
|0.548− 0.526|

))
= −0.5902, (40)

l1 : y = g1(x− aN) = −0.5902·(x− 0.526), (41)

The gradient of the line l2, which passes through the vertex V2, and its equation are:

g2 = tan
(

30− arctan
(
|0.548− 0.526|

2.333

))
= 0.5646, (42)

l2 : y = g2(x− bN) + 2.333 = 0.5646·(x− 0.548) + 2.333, (43)
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The coordinates of the vertex, which lies at the intersection of lines l1 and l2, are
V4(−1.483;1.186). So, the equation of the Simpson line s3, which passes through vertices V4
and V3, is as follows:

s3 : y = −0.5561·(x + 1.483) + 1.186, (44)

The equations of lines l3 and l4, which pass through vertices V1 and V3, respectively,
are as follows:

l3 : y = −
√

3(x− aN) = −
√

3(x− 0.526), (45)

l4 : y =
√

3(x− cN) =
√

3(x− 0.649), (46)

The coordinates of the vertex, which lies at the intersection of lines l3 and l4, are
V6(0.587; −0.106). Accordingly, the equation of the Simpson line s2, which passes through
vertices V6 and V2, is:

s2 : y =
2.333−

√
3
(

aN−cN
2

)
bN − aN+cN

2

(
x− aN + cN

2

)
+
√

3
(

aN − cN
2

)
= −62.2578·(x− 0.587)− 0.106, (47)

The solution of the system of Equations (44) and (47) presents the x-coordinate of

the Torricelli point of the normalized triangular fuzzy number
∼
AN = (0.526 0.548 0.649),

TN = 0.585.

The crisp value of the original triangular fuzzy number
∼
A = (37, 059 38, 636 45, 732)

based on the Torricelli–Simpson ranking function (TSRF) is as follows:

TSRF
(∼

A
)
= TN ·

√
a2 + b2 + c2 = 0.585·

√
37, 0592 + 38, 6362 + 45, 7322 = 41, 235 USD, (48)

The intersection between the Simpson line s2 : y = −62.2578·(x− 0.587)− 0.106 and
the x-axis defines a point with the following x coordinate, SN = 0.586. Now, the crisp value

of
∼
AN = (0.526 0.548 0.649) based on the Simpson ranking function (SRF) is:

SRF
(∼

A
)
= SN ·

√
a2 + b2 + c2 = 0.586·

√
37, 0592 + 38, 6362 + 45, 7322 = 41, 275 USD, (49)

Applying either the TSRF or SRF approach, we obtain crisp values of each coefficient,
which are represented by variables xij,t,l and xj, respectively. Through this method, the
original fuzzy objective function is transformed into a crisp one, and it can be solved by
using any standard linear programming methods.

The validation of the developed method was carried out on the example that we
borrowed from Garrido et al. [33]. The example considered the problem of economic
benefit maximization generated by tourists with respect to several socio-environmental
constraints. The results are shown in Table 5.

Table 5. Validation of proposed methodology.

Ranking Function ∼
c1=(190,210,230)

∼
c2=(140,160,180)

∼
c1=(45,60,80)

Center of gravity 210 160 61.66
Yager’s F1 210 160 61.67
Yager’s F3 210 160 61.25

Adamo 220 170 70
Campos 216.67 113.33 45
Gonzales 209.57 160 61.67

TSRF 210 160 62.14
SRF 210 160 62.23

To assess the stability of the presented defuzzification techniques (TSRF and SRF), the
change in parameters of the fuzzy number

∼
c 1 = (190, 210, 230) was simulated. Since it is
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a symmetric fuzzy number where the deviation of the left and right boundaries from the
modal value is equal, the defuzzified number is expected to be close to the modal value.
Therefore, in the following part, the change in left, modal and right parameters is simulated
to generate non-symmetrical parameters of the triangular fuzzy number. The simulation
involved ten thousand iterations and was carried out through two phases:

1. In the first phase, a simulated change was performed in the right boundary of the

fuzzy number
∼
c 1 = (190, 210, 230), while the left boundary and the modal value

remained unchanged. The right border is increased by one in each iteration, so in the
last iteration, the right border is increased by ten thousand.

2. In the second phase, the change in all three parameters of the fuzzy number
∼
c 1 was

simulated as follows: the left value was increased by one in each iteration, the modal
value was increased by two times, and the right value was increased by six times in
each iteration compared to the previous iteration.

The results obtained in the first and second phases of the simulation were compared
using the COG defuzzification technique. Figure 25 compares the defuzzification techniques
TSRF, SRF and COG during the first and second phases of the simulation (Figure 25a,b).
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To see the deviation more clearly, the percentage deviation of the considered defuzzi-
fication techniques’ results was monitored, as shown in Figure 26. As a reference value
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concerning how the deviation was determined, the defuzzified values obtained by applying
COG were taken.
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The presented results in Figures 25 and 26 show that the TSRF and SRF provide stable
results regardless of whether they are symmetric or non-symmetric fuzzy numbers.

We applied the TSRF method to transform the fuzzy objective function of the follow-
ing form:

min
∼
f = (16, 859 17, 576 20, 805)x11,1,1 + (19, 493 20, 323 24, 056)x12,1,1 + . . . + (4762 5159 6052)x2019,3,3

+(3770 4084 4791)x2020,3,3 + (99, 880 112, 200 121, 000)x1 + . . . + (99, 880 112, 200 121, 000)x20
(50)

to a crisp objective function:

min f = TSRF
(∼

c
)

xij,t,l

= 18, 759x11,1,1 + 21, 689x12,1,1 + . . . + 5391x2019,3,3 + 4267x2020,3,3 + 11, 0531x1 + . . . + 110, 531x20
(51)

The pillar thickness between two operating ore passes, or the distance between candi-
date points, is depicted in Table 6.
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Table 6. Distance between candidate points (m).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
2 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
3 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
4 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
5 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
6 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
7 0 10 20 30 40 50 60 70 80 90 100 110 120 130
8 0 10 20 30 40 50 60 70 80 90 100 110 120
9 0 10 20 30 40 50 60 70 80 90 100 110

10 0 10 20 30 40 50 60 70 80 90 100
11 0 10 20 30 40 50 60 70 80 90
12 0 10 20 30 40 50 60 70 80
13 0 10 20 30 40 50 60 70
14 0 10 20 30 40 50 60
15 0 10 20 30 40 50
16 0 10 20 30 40
17 0 10 20 30
18 0 10 20
19 0 10
20 0

According to the safety distance D = 30 m, Table 7 presents a safety matrix composed
of ones and zeros. One (1) is assigned to an ore pass that does not meet the condition
defined by Equation (35), otherwise zero (0).

Table 7. Safety matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 1 0 0 0 0 0 0 0 0 0 0 0
8 0 1 1 0 0 0 0 0 0 0 0 0 0
9 0 1 1 0 0 0 0 0 0 0 0 0

10 0 1 1 0 0 0 0 0 0 0 0
11 0 1 1 0 0 0 0 0 0 0
12 0 1 1 0 0 0 0 0 0
13 0 1 1 0 0 0 0 0
14 0 1 1 0 0 0 0
15 0 1 1 0 0 0
16 0 1 1 0 0
17 0 1 1 0
18 0 1 1
19 0 1
20 0

The model is composed of 3620 variables and 5130 constraints, excluding binary
constraints. The model is solved using Open Solver software [34]. The model selected
candidate points (ore passes) x2, x5, x10, x15 and x18 as a solution to the problem. The value
of the objective function is USD 3,444,102, with an ore transportation cost component of USD
2,891,447 and an ore pass development cost component of USD 552,655. Also, the model
created a unique dynamic ore transportation plan, which is depicted in Figures 27–29.
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The result of the dynamic ore transportation plan is explained in Table 8.
The distribution of ore tonnage by selected ore passes, for a mining period of three

years, is shown in Figure 30.
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The distribution of ore tonnage by selected ore passes with respect to time and sub-
levels is presented in Figures 31–33.

Table 8. Yearly sublevel ore transportation plan.

Year Sublevel Ore Pass x2 (tons) Ore Pass x5 (tons) Ore Pass x10 (tons) Ore Pass x15 (tons) Ore Pass x18 (tons)

1
1 18,563 27,865 31,283 15,860 16,735
2 20,789 12,839 30,449 29,336 12,839
3 15,185 16,775 18,365 20,829 11,766

2
1 15,741 21,227 25,440 17,888 19,756
2 15,741 21,306 29,216 21,505 18,166
3 10,256 19,557 25,679 16,735 16,934

3
1 17,649 28,024 26,195 14,549 30,409
2 9858 19,796 23,413 16,139 18,126
3 9421 14,986 25,639 15,781 18,245
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As we mentioned above, total transportation costs are USD 2,891,447, and the time
distribution of costs is depicted in Figure 34.
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5. Sensitivity Analysis of the Model

The model produced a solution with following properties:

• Selected ore passes are x2, x5, x10, x15 and x18;
• Value of objective function is USD 3,444,102;
• Value of ore transportation costs is USD 2,891,447;
• Value of ore pass development costs is USD 552,655;
• Ratio between transportation and development costs is 5.23.

Obviously, the component of the objective function relating to the ore transportation
costs has the greatest influence on the solution, followed by the ore pass development costs.
So, the sensitivity analysis is based on changes in the coefficients of the objective function,
which present the unit transportation costs (see Table 9).

Table 9. Magnitude of changes in unit transportation costs.

Magnitude of Change
(%)

Unit Transportation Cost
Year 1, (USD/tm)

Unit Transportation Cost
Year 2, (USD/tm)

Unit Transportation Cost
Year 3, (USD/tm)

−50 0.024 0.025 0.029 0.026 0.029 0.031 0.024 0.026 0.031
−45 0.026 0.027 0.032 0.028 0.031 0.034 0.026 0.029 0.034
−40 0.028 0.029 0.035 0.031 0.034 0.037 0.029 0.031 0.037
−35 0.031 0.032 0.038 0.033 0.037 0.040 0.031 0.034 0.040
−30 0.033 0.034 0.041 0.036 0.040 0.043 0.034 0.036 0.043
−25 0.035 0.037 0.044 0.038 0.043 0.047 0.036 0.039 0.046
−20 0.038 0.039 0.046 0.041 0.046 0.050 0.038 0.042 0.049
−15 0.040 0.042 0.049 0.043 0.048 0.053 0.041 0.044 0.052
−10 0.042 0.044 0.052 0.046 0.051 0.056 0.043 0.047 0.055
−5 0.045 0.047 0.055 0.048 0.054 0.059 0.046 0.049 0.058
0 0.047 0.049 0.058 0.051 0.057 0.062 0.048 0.052 0.061
5 0.049 0.051 0.061 0.054 0.060 0.065 0.050 0.055 0.064
10 0.052 0.054 0.064 0.056 0.063 0.068 0.053 0.057 0.067
15 0.054 0.056 0.067 0.059 0.066 0.071 0.055 0.060 0.070
20 0.056 0.059 0.070 0.061 0.068 0.074 0.058 0.062 0.073
25 0.059 0.061 0.073 0.064 0.071 0.078 0.060 0.065 0.076
30 0.061 0.064 0.075 0.066 0.074 0.081 0.062 0.068 0.079
35 0.063 0.066 0.078 0.069 0.077 0.084 0.065 0.070 0.082
40 0.066 0.069 0.081 0.071 0.080 0.087 0.067 0.073 0.085
45 0.068 0.071 0.084 0.074 0.083 0.090 0.070 0.075 0.088
50 0.071 0.074 0.087 0.077 0.086 0.093 0.072 0.078 0.092

For each change in fuzzy unit transportation costs, we ran the model, and the results
of the changes are shown in Table 10 and Figure 35.
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Table 10. Results of the sensitivity analysis.

Magnitude of
Change

(%)

Total Costs
(USD)

Transportation
Costs
(USD)

Development
Costs
(USD)

Total Number of Ore Passes

−50 1,931,604 1,600,011 331,593 3
−45 2,087,657 1,645,533 442,124 4
−40 2,237,250 1,795,126 442,124 4
−35 2,386,844 1,944,720 442,124 4
−30 2,536,438 2,094,314 442,124 4
−25 2,686,032 2,243,908 442,124 4
−20 2,835,626 2,393,502 442,124 4
−15 2,985,220 2,543,096 442,124 4
−10 3,134,814 2,692,690 442,124 4
−5 3,284,407 2,842,283 442,124 4
0 3,444,102 2,891,447 552,655 5
5 3,589,021 3,036,366 552,655 5
10 3,736,805 3,184,150 552,655 5
15 3,868,816 3,316,161 552,655 5
20 4,020,593 3,357,407 552,655 5
25 4,161,238 3,608,583 552,655 5
30 4,297,119 3,633,933 663,186 5
35 4,431,073 3,767,887 663,186 6
40 4,570,624 3,907,438 663,186 6
45 4,710,175 4,046,989 663,186 6
50 4,849,727 4,186,541 663,186 6
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Figure 35. Number of ore passes vs. costs.

The results of the sensitivity analysis show the model is stable, and underground mine
designers can use it for solving this complex problem.

6. Conclusions

This paper has demonstrated that an integrated planning tool can provide an especially
useful support for obtaining the globally optimal result, by considering interaction between
ore transportation and ore pass design costs, with uncertainty. Fuzzy triangular numbers
are used to quantify the uncertainties of objective function coefficients. To reduce the
complexity of the optimization model with uncertainty, we developed a methodology
which transforms the fuzzy 0-1 linear cost objective function of ore passes into a crisp one.
This transformation is based on the application of Graph theory and the algorithm of the
Torricelli point, which lies at the intersection of the Simpson lines. The x-coordinate of the
Torricelli point is a crisp value of a triangular fuzzy number. We performed a comparison
with some of the existing methods and a stability analysis of the proposed methodology,
which showed that the Torricelli–Simpson method is very capable of transforming a fuzzy
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environment into a crisp environment. In the Appendix A section, we showed additional
benefits of the developed model, which relate to the ranking of special cases of triangular
fuzzy numbers.

In essence, the ore passes optimization problem is a location–allocation problem but
with an added space–time component, according to the nature of sublevel mining methods.
From the finite set of potential ore pass locations, the model selects the optimal number
and optimal locations of ore passes, by minimizing the total costs of ore transportation and
ore pass development with respect to techno-dynamic constraints. In addition, the model
also creates an optimal ore transportation plan. The sensitivity analysis, which considered
the changes in ore transportation costs, showed that model is capable of discovering an
equilibrium between them and the total number of ore passes. The main aim of the model is
to help mine designers to solve such complex problems, which have a significant influence
on mining economics.

The proposed fuzzy linear programming model extends linear programming to handle
fuzzy constraints and objectives, but it has certain limitations that should be considered.
These limitations derive from the basic limitations of fuzzy linear models:

• The proposed methodology can introduce additional complexity compared to tradi-
tional linear programming due to the incorporation of fuzzy variables, fuzzy con-
straints, and fuzzy objectives.

• Solving the proposed fuzzy linear programming model can be computationally de-
manding, especially for large-scale or complex optimization models.

• In the case of expanding the proposed model by introducing subjective linguistic
assessments, it can lead to inconsistent or subjective results. This limitation comes
from the subjective nature of the membership functions and linguistic terms used to
represent uncertainty in expert judgments.

Despite these limitations, the proposed fuzzy linear model remains a valuable tool for
decision-making under uncertainty. By carefully considering its limitations and choosing
appropriate methodologies, the proposed fuzzy linear model can provide insights into and
solutions to real-world problems.

In this study, a novel approach for the defuzzification of TFNs using the Torricelli–
Simpson ranking function (TSRF) is proposed. Since the proposed model showed stable
results, future research should be directed toward the implementation of the TSRF for
the defuzzification of trapezoidal fuzzy numbers. Also, an interesting direction of future
research is the consideration of the possibility of applying the TSRF for reading the footprint
of uncertainty in information and transforming TFNs into interval type-2 fuzzy numbers.
In addition to the mentioned directions of future research, there are also possibilities of
applying the TSRF for the transformation of interval type-2 fuzzy numbers into crisp values.
Also, further research will be directed toward developing an integrated model which will
join the planning of mining and the planning of ore passes. Such a model must be capable
of giving the optimal solution for mining planning and ore passes planning simultaneously.
Accordingly, it is necessary to develop a specific cash flow objective function which should
be maximized with respect to a set of constraints.
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Appendix A

Recall the definition of triangular fuzzy number.

Definition A1. Let X be a universe set. A fuzzy set A of X is defined by a following membership
function µA(x)→ [0, 1] , where µA(x), ∀x ∈ X, indicates the degree of x in A.

Definition A2. A fuzzy subset A of universe set X is normal if and only if supx∈XµA(x) = 1,
where X is the universe set.

Definition A3. A fuzzy subset A of universe set X is convex if and only if µA(βx + (1− β)y) ≥
min(µA(x), µA(y)), ∀x, y ∈ X, ∀β ∈ [0, 1].

Definition A4. A fuzzy set A is a triangular fuzzy number if and only if A is normal and convex
on X.

Accordingly, properties of a triangular fuzzy number are as follows:

• µ(x) is upper semicontinuous;
• There are real numbers a, b, c; a ≤ b ≤ c, for which the following holds: µ(x) is

monotonic increasing function on [a,b], monotonic decreasing function on [b,c] and
µ(x) = 1 for x = b;

• µ(x) = 0, outside interval [a,c].

A symmetric triangular fuzzy number is defined as:

µ∼
A
(x) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0, x ≥ c
b− a = c− b

, (A1)

To present the additional benefit of the TSRF, we borrowed an example from Sanei-
fard [35]. Consider the two symmetric triangular fuzzy numbers, A(1,3,5) and B(2,3,4),
which are shown in Figure A1. Numbers A and B have equal modes but different spreads.
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Figure A1. Two symmetric triangular fuzzy numbers with equal modes.

Let ∆x be a small increment close to zero. By adding up ∆x to the mode of numbers
A and B, respectively, we create prerequisites to apply the TSRF for ranking two symmet-
ric triangular fuzzy numbers, without a loss of generality. For ∆x = 0.001, we obtain
A(1,3.001,5), B(2,3.001,4) and the corresponding TSRF(A) = 3.000267, TSRF(B) = 3.000161.
So, the following ranking order of fuzzy numbers is A > B. The ranking index values
obtained by Saneifard’s approach are I(A) = 2.5, I(B) = 2, and the ranking order of fuzzy
numbers is A > B. The center of gravity of A and B equals COG(A) = COG(B) = 3.000333
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and ranking order is A = B. Obviously, the TSRF is capable of ranking symmetric triangular
fuzzy numbers with equal modes and different spreads.

The TSRF algorithm is also capable of ranking the symmetric triangular fuzzy numbers
with equal modes but with different membership functions. If A and B are two triangular
fuzzy numbers, then the following rules are used to rank such kinds of triangular fuzzy
numbers:

A > B, if TSRF(A) > TSRF(B),
A > B, if TSRF(A) < TSRF(B), for b− a > c− b,
A > B, if TSRF(A) < TSRF(B), for b− a > c− b ∧ a + b + c < 0.

(A2)

This ability is demonstrated by the following special case. Consider two triangular
fuzzy numbers A = (0.1, 0.3, 0.5, µ(0.3) = 0.8) and B = (0.1, 0.3, 0.5, µ(0.3) = 1) [36] (see
Figure A2).
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Figure A2. Two symmetric triangular fuzzy numbers with equal modes and different membership
functions.

For ∆x = 0.001, we obtain A = (0.1, 0.301, 0.5, µ(0.301) = 0.8), B = (0.1, 0.301, 0.5,
µ(0.301) = 1) and the corresponding TSRF(A) = 0.300267, TSRF(B) = 0.300286. For number
A and number B, b− a = 0.201, and c− b = 0.199. According to Equation (A2), it follows
that A < B. A new parametric method developed by Shureshjani and Darehmiraki ranks
fuzzy numbers A and B in the same way.
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