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Abstract: In recent times, the power sector has become a focal point of extensive scientific interest,
driven by a convergence of factors, such as mounting global concerns surrounding climate change,
the persistent increase in electricity prices within the wholesale energy market, and the surge in
investments catalyzed by technological advancements across diverse sectors. These evolving chal-
lenges have necessitated the emergence of new imperatives aimed at effectively managing energy
resources, ensuring grid stability, bolstering reliability, and making informed decisions. One area that
has garnered particular attention is the accurate prediction of end-user electricity load, which has
emerged as a critical facet in the pursuit of efficient energy management. To tackle this challenge,
machine and deep learning models have emerged as popular and promising approaches, owing
to their having remarkable effectiveness in handling complex time series data. In this paper, the
development of an algorithmic model that leverages an automated process to provide highly accurate
predictions of electricity load, specifically tailored for the island of Thira in Greece, is introduced.
Through the implementation of an automated application, an array of deep learning forecasting mod-
els were meticulously crafted, encompassing the Multilayer Perceptron, Long Short-Term Memory
(LSTM), One Dimensional Convolutional Neural Network (CNN-1D), hybrid CNN–LSTM, Temporal
Convolutional Network (TCN), and an innovative hybrid model called the Convolutional LSTM
Encoder–Decoder. Through evaluation of prediction accuracy, satisfactory performance across all the
models considered was observed, with the proposed hybrid model showcasing the highest level of
accuracy. These findings underscore the profound significance of employing deep learning techniques
for precise forecasting of electricity demand, thereby offering valuable insights with which to tackle
the multifaceted challenges encountered within the power sector. By adopting advanced forecasting
methodologies, the electricity sector moves towards greater efficiency, resilience and sustainability.

Keywords: load forecasting; long short-term memory; Temporal Convolution Networks; Multilayer
Perceptron; Convolutional Neural Networks; CNN–LSTM; Convolutional LSTM Encoder–Decoder;
evaluation metrics; power sector; data analysis

MSC: 68T07

1. Introduction

The power energy sector is perhaps gathering the most interest from scientists and
stakeholders in recent years, due to the rapid development and changes that have occurred.
New investments, which create needs for new equipment, but also the establishment of new
rules and legislation aimed at protecting the environment and eliminating the greenhouse
effect, make this sector more critical and create necessary conditions for its control [1].
At the same time, a wide and extensive energy crisis has been created on a global scale,
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mainly due to the recent phenomenon of the war that has broken out in Northern Europe.
Large industrial units and businesses are suspending their operations due to increased
operating costs. With the global increase in electricity demand, the uncertainties and energy
risks have also increased [2].

Electrical load forecasting and power generated from different renewable energy
sources is extremely important to ensure the performance and effectiveness of all power
networks [3–5]. This sector is generally classified in terms of forecasting load as follows:
very short-term load forecasting (VSLTF) for a few minutes, short-term load forecasting
(SLTF) ranging from one hour to one week ahead, mid-term load forecasting (MLTF) for
more than one week to a few months and long-term load forecasting (LTLF) for longer than
one year [6]. In this work, STLF was used to predict future electrical demand.

In terms of electrical load forecasting, several methodologies have been introduced
and can be classified into two main groups of methods: traditional and modern. In tra-
ditional techniques, statistical methods are mostly applied. These include models such
as autoregression (AR), moving average (MA), autoregressive moving average (ARMA),
autoregressive integrated moving average (ARIMA), ARMA and ARIMA with exoge-
nous inputs (ARMAX and ARIMAX, respectively), grey (GM) and exponential smoothing
(ES) [7,8].

On the other hand, modern load forecasting methods take advantage of neural net-
works, which are more suitable for processing complex associations within the data and for
developing robust forecasting models that are tolerant to noise. The simplest Artificial Neu-
ral Network (ANN) is the MultiLayer Perceptron (MLP) which can model non-linear trends,
is able to manage missing values in the datasets, while also providing fast predictions after
training [9], as observed by Kontogiannis et al. in trials with household electrical power
consumption data. The proposed MLP model, in comparison with LSTM models with
several configurations and the 1D CNN model, presents a lower loss function score (mean
absolute error) and faster average converge time [10]. Arvanitidis et al. used MLP models
to suggest novel train data pre-processing approaches [11] and clustering techniques [12]
for SLTF. Furthermore, MLP architecture is extended to conduct day-ahead electricity price
forecasting [13].

Moreover, another type of ANNs are the long short-term memory (LSTM) networks,
which are capable of identifying the long-term dependencies between data points. In 2017,
Zheng et al. [14] presented a hybrid algorithm that combines similar day (SD) selection,
Empirical Mode Decomposition (EMD), and LSTM neural networks to construct a predic-
tion model for STLF of ISO New England. This hybrid model, when compared to other
forecasting models, showed good effectiveness on SD clustering and accurate forecasting
on complex non-linear electric load time series. Additionally, Kwon et al., in 2020 [15],
proposed an LSTM model combined with fully-connected (FC) layers, which predicted
Korea’s total electrical load. Specifically, the LSTM layer is used to extract the variability
and dynamics from historical data, while the FC layers are used to project prediction data
and shape the relationship with the output of the layer. The proposed model demon-
strated lower load forecasting error (mean absolute percentage error) compared with the
STLF method used by Korea’s power operator. Another hybrid model was presented by
Jin et al. [16] for real power prediction in three major Australian states, which accomplished
high prediction accuracy. The authors, to strengthen the prediction performance, were
focused on the importance of the data pre-processing with the variational mode decompo-
sition (VMD) method and conducted an advanced optimization technique with the binary
encoding genetic algorithm (BEGA) to optimize the length of the input data sample unit of
the LSTM and the number of cell units.

Furthermore, a few studies have found that the LSTM models can be combined with
Convolutional Neural Networks (CNNs), which can extract the features of the input data.
In 2018, Tian et al. [17] first introduced a new STLF model, which combined CNN and
LSTM modules to improve forecasting accuracy. After several detailed experiments were
conducted on real world load data from the Italy–North area, the authors concluded
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that the proposed model improved performance at least 12% and 14%, compared to the
individual CNN and LSTM prediction models, respectively. Similarly, Rafi et al. [18] found
that the developed CNN–LSTM network provided the lowest values of evaluation metrics
compared to LSTM, radial basis functional network and extreme gradient boosting models
for short-term load forecasting in the Bangladeshi power system. In [19], the authors
studied the forecasting performance of an attention-based CNN combined with LSTM and
a bidirectional LSTM model on time-sequenced, non-linear, and complex electrical load
data from an integrated energy system park in North China. The examined model and
other attention-based LSTM models performed better in predictions than the traditional
machine learning models, such as backpropagation neural network (BPNN), random
forest regression (RFR) and support vector regression (SVR). Even though the previously
mentioned ANN models present exceptional forecast performance, the researchers [20]
mentioned that the extracted features of the CNN module influenced the training of LSTM.
So, they also suggested a combined CNN and LSTM model wherein the CNN module
and LSTM module work in two parallel paths. The processed data then enters a fully
connected layer, which includes dense and dropout layers, leading to the final prediction.
The suggested framework, named PLCNet, was tested in two case studies for different
time horizons and it manifested that this approach had advantages in accuracy and model
convergence speed.

In addition to the previously mentioned ANN topologies, recent studies have exam-
ined the use of the Temporal Convolutional Network (TCN) model for short-term load
forecasting, due to its superiority in long-term feature extraction in time series. Peng and
Liu [21] suggested a TCN prediction model for residential short-term load forecasting
based on the AMPds2 smart energy meter dataset. The important consumption elements
are determined as auxiliary inputs to the prediction model, after a correlation analysis
among total load and appliance loads of the household. In terms of prediction performance,
the proposed model obtained lower evaluation metrics than the models it was compared
with. In [22], the researchers examined a hybrid TCN–LightBGM model, opposed to sta-
tistical, deep learning, tree and hybrid models, for a range of industrial consumers. This
hybrid model utilized the benefits of TCN in feature extraction and LightGBM in load
prediction which improved forecast accuracy in comparison with other models. Other
researchers proposed, in [23], a novel STLF model based on TCN and Attention Mechanism
(AM), which examines the effect of weather fluctuations on the load forecast and reveals
the non-linear association between weather and load data. Additionally, a combination of
fuzzy c-means (FCM) clustering algorithm and dynamic time wrapping (DTM) was applied
to classify similar power data in clusters. Despite the proposed framework presenting
slower training time per epoch than the compared models, due to the requirement for more
weight parameters to be trained, it also presented more accurate prediction in terms of
evaluation metrics.

The Deep Learning topology we propose in this work for STLF is a hybrid model,
named Convolutional LSTM Encoder–Decoder, which was used by other researchers
to forecast global total electron content [24] and to predict the El Niño-related Oceanic
Niño Index (ONI) and El Niño events [25]. Generally, our research contributions can be
summarized as follows:

1. Proposal of a hybrid model called Convolutional LSTM Encoder–Decoder for power
production time series.

2. Presentation of an automated STLF algorithm which incorporates data pre-processing
techniques, training, optimization of several AI models, testing and prediction of results.

The remaining part of the paper is organized as follows. Section 2 presents sev-
eral short-term load forecasting approaches. Section 3 analyzes the dataset, the essential
procedures related to the pre-processing of the data used for forecasting, the architec-
ture of the artificial intelligence models and the automated STLF algorithm. In Section 4,
the experiments of the case study are illustrated and the results of experiments discussed.



Mathematics 2023, 11, 2912 4 of 21

Finally, Section 5 contains the conclusions of this work and suggests some directions for
future work.

2. Materials and Methods

This section provides a brief and concise description of the fundamental concepts of
each of the Deep Learning models used in this paper. More specifically, descriptions for
each model are presented.

2.1. Forecasting Approaches
2.1.1. Long Short-Term Memory Networks

Long Short-Term Memory models are variants of the RNN network that overcome
the vanishing or explosion of gradients of the latter when processing the long-term depen-
dencies of load series. They were first proposed in 1970 to efficiently handle the long-term
dependencies that may exist in time series. Through adding the input, output, and forget
gates to the RNN, the LSTM has been widely used in natural language processing (NLP),
machine translation, load forecasting and in the health sector.

In regard to the architecture and working principle, the core idea behind the LSTM
(Figure 1) and the key operating point is the cell state, which is the horizontal black line at
the top of the middle module and the connecting link between the modules [26].

Figure 1. Basic Structure of LSTM model.

The working mechanism of the LSTM structure, from left to right, is described below:

• Forget Gate ( ft): the useful bits of the cell state (long-term memory of the network) are
decided on given both the previous hidden state ht−1 and new input data xt. At the
bottom, the forget gate controls which part of the long-term memory must be forgotten.

ft = σ (W f [ht−1,xt] + b f ) (1)

• Input Gate (it): The main operation of the input gate is to update the cell state of the
LSTM unit. Firstly, a sigmoid layer σ decides which values it is going to update. Next,
a tanh layer creates a vector (C̃t) of all possible values that can be added to the cell
state and, finally, these two are combined to update the cell state.

it = σ
(

Wi[ht−1,xt] + b f

)
(2)

C̃t = tanh(WC[ht−1,xt] + bC) (3)

• Cell State (ct): The Cell State multiplies the old state Ct−1 by ft and then adds it ∗ C̃t.

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)
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• Output Gate (ot): The output gate decides what information is going to be output.
Using a sigmoid and a tanh function to multiply the two outputs they create, what
information the hidden state ht must carry is decided on.

ot = σ (Wo[ht−1,xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

W f , Wi, Wc, Wo and b f , bi, bc, bo represent the weight matrices and biases for the Forget Gate,
Input Gate, Cell State, and Output Gate, respectively.

2.1.2. MultiLayer Perceptron

Multilayer Perceptron (MLP) is a type of Deep Learning Feed-forward Neural Network
that consists of full connection of hidden layers and has one input and one output layer.
The MLP’s architecture is illustrated in Figure 2.

Figure 2. Basic Multilayer Perceptron Architecture with one input layer, two hidden layers and one
output layer.

The process by which MLP algorithms are trained to predict future data is as follows:

• Firstly, MLP algorithms use a Forward Propagation Process to calculate their parame-
ters at the training period, as they propagate data from the input to the output layer.

• Secondly, the network calculates the value of the loss function, which contains the
difference between the actual and forecasting data and tries to find the optimal solution,
minimizing any error [27].

• Then, using back-propagation algorithms, the gradient of loss function is calculated
and the values of the synaptic weights between neurons updated [28].

This process is repeated until the model finds its optimal parameters.

2.1.3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs/ConvNets) are a type of deep learning feed-
forward algorithm, originally used for pattern recognition. They are quite similar to
conventional neural networks, such as MLPs, since they consist of neurons that contain
synaptic weights and biases (learnable weights and biases).

A CNN Model is a sequence of layers. Each CNN neuron receives some inputs and
performs a vector operation (dot product). The basic architecture consists of three main
types of layers: a Convolutional Layer, a Pooling Layer and a Fully Connected Layer.
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Each Layer accepts as input a 3D vector and converts it to an output 3D vector through a
differentiable function [29]. The main working principle of each of the three main layers
are explained below and presented in Figure 3:

• Convolutional Layer: The Convolutional layer is the core building block of a Convolu-
tional Network that does most of the computational heavy lifting.

• Pooling Layer: The objective of the Pooling Layer is the progressive reduction of
the spatial size of the representation in order to reduce computational volume of the
system and, as a result, to reduce overfitting in the training process.

• Fully-Connected Layer: Neurons in a fully-connected layer have full connections to all
activations in the previous layer, as seen in regular Neural Networks. Their activations
can, hence, be computed with a matrix multiplication followed by a bias offset.

Figure 3. Main ConvNet Architecture.

2.1.4. Hybrid CNN–LSTM Model

The CNN–LSTM model is a hybrid deep learning algorithm that uses the CNN layers
for feature extraction of the input dataset and the LSTM model for sequence prediction,
resulting in multisteps ahead forecasting of time series. Although the process of this model
is divided into two parts, the operation of each of the two component models separately is
the same as described in Sections 2.1.1 and 2.1.3 for LSTM and CNN algorithms, respectively.
Figure 4 shows the CNN–LSTM’s architecture.

Figure 4. CNN–LSTM Model Architecture.

2.1.5. Temporal Convolutional Networks

Temporal Convolutional Network (TCN) is a relatively new type of deep learning
model that has a dilation of CNN-1D layers, having the same input and output lengths.
The working principle of TCNs is the following [30]:

• First, the model computes the low-level features using the CNN-1D modules encoding
the spatial–temporal information,

• Second, the model feeds this information and classifies it using Recurrent Neural Net-
works.
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Recent studies have proven that TCNs have great performance in predicting time
series with multiple seasonality and trends. Figure 5 presents the basic architecture of
a TCN.

Figure 5. Temporal Convolutional Network [30].

2.2. Proposed Approach: Convolutional LSTM Encoder–Decoder Model

In regard to the proposed model, a description of the Convolutional LSTM Network
(ConvLSTM) is first provided and then the basic operation of the Encoder–Decoder Mecha-
nism is analyzed.

The ConvLSTM model uses Recurrent Layers, such as simple RNN and LSTM Net-
works, but, in contrast with these types of models, the internal matrix multiplications are
exchanged with convolutional operations, as this model has convolutional structures in
both the input-to-state and state-to-state transitions. As a result, the data that flows through
the ConvLSTM cells keeps the input dimension (3D in our case) instead of being just a 1D
vector with features [31]. The basic architecture of the ConvLSTM model is presented in
Figure 6.

Additionally, the proposed model is a hybrid method that uses an Encoder–Decoder
mechanism for the hourly prediction of electricity demand. The Encoder–Decoder mecha-
nism provides efficient techniques for Sequence-to-Sequence (Seq2Seq) forecasting, such as
Natural Language Processing (NLP) and time series forecasting, as well as Image Recogni-
tion and Sentiment Analysis. An Encoder–Decoder model (Figure 7) consists of three main
parts [32]:

• The Encoder Component: This is the first component of the Network and its main
function is feature extraction of the input dataset, which is why it is called an ‘encoder’.
It receives a sequence as input and passes the information values into the internal
state vectors or Encoder Vectors, creating, in this way, a hidden state.

• The Encoder Vector: The encoder vector is the last hidden state of the Network which
converts the 2D output of the RNN (ConvLSTM in our case) model to a high length
3D vector in order to help the Decoder Component make better predictions.

• The Decoder Component: The Decoder Component consists of one recurrent unit, or a
stack of several recurrent units, each one of which predicts an output y at a time step t.

One of the main advantages which makes this model stand out from others is the fact
that the input and output vector lengths may be different, allowing this model to perform
effectively in big Seq2Seq problems and video captioning.
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Figure 6. A ConvLSTM cell [33].

Figure 7. Encoder–Decoder Mechanism

2.3. Automated STLF Algorithm

Using Deep Learning techniques, a DL-based forecasting algorithm was implemented
to easily and efficiently find the best forecasting model for every kind of time series dataset.
The function of the algorithm includes the following steps:

1. The algorithm loads the dataset.
2. The algorithm proceeds to the Pre-processing Step, in which the dataset is normalized

using the Min–Max Scaling algorithm, and the Cyclical Time Features are created
using One-Hot Encoding.

3. The dataset is split into Training, Validation and Test sets.
4. Every Deep Learning Model is trained and evaluated using the Bayesian Optimiza-

tion Algorithm.
5. The best model from the algorithm, in terms of higher prediction accuracy, is selected

to be used for future predictions.

The algorithmic process is described in Figure 8.
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Figure 8. STLF automated algorithm structure.

3. Case Study

In this section, we present the case study used to test the proposed approach. The final
dataset used for our experiments incorporated weather conditions and power demand
from the Greek Cycladic Island, in the Aegean Sea, Thira, also known as Santorini. Thira
island is a non-interconnected island to the Greek electrical bulk network and the power
production is solely based on fossil fuel generators. The dataset period was three years
from January 2017 to December 2019. The specific time period was chosen because the
power requirements followed a normal distribution and there were no special events (such
as COVID-19) that would hinder safe conclusions. Working with this dataset, no such
limitations were observed. Regarding the challenges encountered, these came mainly from
the parameterization and adaptation of the algorithms created and their abilities to be
assimilated and trained on a dataset with multiple seasonality, such as the one studied.

3.1. Climate Dataset

The climate data was collected from Santorini airport’s Meteorological Aerodrome
Reports (METAR) [34,35]. The airport’s International Civil Aviation Organization (ICAO)
code is LGSR. A typical report is usually published from the airport’s weather station every
hour or half-hour and aggregates actual values and current conditions for temperature,
dew point, wind direction and speed, precipitation, cloud cover and height, visibility,
and barometric pressure. For the current work we retrieved, from METARs, hourly values
for temperature in ◦C, dewpoint in ◦C, wind speed in m/s and degrees of wind direction.
Interpolation was applied to fill in missing values in the climate data.
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3.2. Electrical Power Dataset and Exploratory Analysis

The power production dataset contained the actual hourly generated energy from
the island’s unique thermal station and referred to the entire island’s power demand [36].
Thira exhibits multiple seasonality throughout year, due to changes in the numbers of
residents and tourists on the island, which dramatically affects the energy demands of
different months. Additionally, the current energy dataset presented nil number of missing
values, which facilitated realistic experiments and safe conclusions.

Table 1 presents a descriptive analysis of the power consumption data set. Based on the
above table, it can be observed that the dataset contained a total of 25,944 values. Its mean
value and standard deviation were 23.31 MW and 9.95 MW, respectively. The minimum
value was 8.50 MW and the maximum 51.52 MW. Finally, regarding the intermediate values,
it turned out that 25% of the dataset values were smaller than 14.70 MW, 50% smaller than
21.15 MW and 75% smaller than 31 MW, respectively.

Table 1. Power consumption descriptive analysis.

Power Consumption Descriptive Analysis

Number of samples 25,944
Mean value 23.31 MW

Standard deviation 9.95 MW
Minimum value 8.50 MW
Percentile 25% 14.70 MW
Percentile 50% 21.15 MW
Percentile 75% 31.00 MW

Maximum value 51.52 MW

In order to better observe the daily distribution of power consumption, a boxplot was
created. Figure 9 presents the variation of average hourly power per day. It is worth noting
that the peak demand was at 01:00 p.m. and 08:00 p.m. every day. The events were more
intense on summer days, due to the increased number of tourists on the island.

Figure 9. Boxplot of the daily average hourly consumption for the reviewed time period.

Correlation Heatmap

Figure 10 presents the Correlation Heatmap which visualizes the strength of rela-
tionships between all the numerical variables created. For instance, it was clear that the
“temperature” variable had a very strong relationship with the “power” variable, which
was equal to 0.81 with a maximum possible value of 1.
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Figure 10. Feature Correlation Heatmap.

3.3. Feature Selection

Several input features were studied and evaluated for this study to understand the
most significant for predicting electricity demand. A total of ten input features were studied
for predicting electricity demand one hour ahead. The data used as input variables were
the same for all the Deep Learning Models and are shown in Table 2:

Table 2. Deep learning models’ input variables.

Input Variable Description

Power The sequence of 24 h of load values for 1 day.
Temperature The sequence of 24 h of temperature values for 1 day.
Dew Point The sequence of 24 h of dew point values for 1 day.

Cosine of Day of Week/Sine of Day of Week The Day of the Week converted by One-Hot Encoding to sine
and cosine type.

Cosine of Hour of Day/Sine of Hour of Day The Hour of Day 1–24, converted by One-Hot Encoding to sine
and cosine type.

Cosine of Month of Year/Sine of Month of Year The Month of the Year converted by One-Hot Encoding to sine
and cosine type.

Is Weekend A dummy variable, “Is Weekend”, takes 0 for working days and
1 for weekends.

3.4. Data Pre-Possessing
3.4.1. Min–Max Scaling

The prepossessing technique for all the datasets used in this paper was Min–Max
Scaling, which scaled all the data points between 0–1. For this reason, two different
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scalers were used, one for input datasets and one for output datasets. The mathematical
formulation is given in the follow equation:

Xscaled =
Xactual − Xmin
Xmax − Xmin

(7)

where Xactual is the real value of a data, and Xmin and Xmax are the minimum and maximum
values of the dataset, accordingly. The main reason Min–Max Scaling was used is that it
helps train the deep learning models more efficiently in the training period and converges
faster to an optimal solution of the loss function.

3.4.2. One-Hot Encoding

One-Hot encoding is a mathematical methodology that converts categorical to numer-
ical vectors and transforms numerical data to cyclical data, using trigonometric transforma-
tion. Using this technique, day of the week, hour of the day and also month of the year
were converted to Sine and Cosine types.

3.5. Data Partitioning

The data was split into training and test sets, while maintaining the temporal order of
the data. The data from 1 January 2017 to 30 September 2019, were used as the training set
and the last 10% of this were used for the validation of the models. The data from 1 October
2019 to 31 December 2019, were used as the test set. The specific interval was not random.
It was chosen because throughout its range it had both an interval with a trend and an
interval which was stationary. Thus, the deep learning models were tested in the most
difficult case that could be extracted from our dataset. Figure 11 presents the visualization
plot of the power consumption for all the datasets and the individual partitioning sections.

Figure 11. Dataset partitioning in training, validation and test sets.

3.6. Model Architecture

This subsection details the architectures of each model used in this paper, in order
to provide a clear understanding of the optimal parameters that were extracted. The hy-
perparameters of all models were chosen after applying the Bayesian Hyperparameter
Optimization Algorithm with a maximum of 20 iterations in every search. Initially, several
trials were performed with different values of batch sizes. Due to the faster convergence
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and higher accuracy of the DL algorithms, a batch size equal to 128 was chosen for every
model created in this paper. The main architectural components and the search space of
every hyperparameter optimized for each model are presented in Table 3. The optimal
extracted parameters are presented below:

Table 3. Models main optimization parameters summary.

Model
Type

Input
Length

Loss
Function

Bayesian
Optimization

Model
Hyperparameters

LSTM 24 MSE Objective:
validation

loss

• LSTM module with search space of the units:
min_value = 16, max_value = 256, step = 16

• Optimizer = Adam
• Learning rate with search space:

min_value = 0.0010, max_value = 0.010, sampling = “log”

MLP 24 MSE Objective:
validation

loss

• 1 Dense layer with search space of Neurons:
min_value = 16, max_value = 512, step = 16

• Dropout layer with search space:
min_value = 0, max_value = 0.5, step = 0.05

• Optimizer = Adam
• Learning rate with search space:

min_value = 0.0010, max_value = 0.010, sampling = “log”

CNN-1D 24 MSE Objective:
validation

loss

• Filters of CNN with range:
min_value = 64, max_value = 128, step = 16

• CNN kernel size with search space:
min_value = 4, max_value = 8, step = 2

• Neurons of Dense Layer with search space:
min_value = 24, max_value = 120, step = 12

• Optimizer = Adam
• Learning rate with search space:

min_value = 0.0010, max_value = 0.010, sampling = “log”

CNN-LSTM 24 MSE Objective:
validation

loss

• Filters of CNN module with range:
min_value = 64, max_value = 128, step = 16

• Kernel size with search space:
min_value = 1, max_value = 3, step = 1

• LSTM units with search space:
min_value = 16, max_value = 256, step = 16

• Optimizer = Adam
• Learning rate with search space:

min_value = 0.0010, max_value = 0.010, sampling = “log”

TCN 24 MSE Objective:
validation

loss

• Filters of TCN with search space:
min_value = 128, max_value = 256, step = 16

• Dilations = [1, 2, 4, 8, 16, 32]
• Optimizer = Adam
• Learning rate with search space:

min_value = 0.0010, max_value = 0.010, sampling = “log”

Conv LSTM
Encoder–Decoder 24 MSE Objective:

validation
loss

• Filters of ConvLSTM with range:
min_value = 64, max_value = 128, step = 16

• Kernel size of ConvLSTM with range:
min_value = 2, max_value = 4, step = 1

• Repeated Vector with range:
min_value = 1, max_value = 3, step = 1

• LSTM module with search space of the units:
min_value = 16, max_value = 128, step = 16

• Optimizer = Adam
• Learning rate with search space:

min_value = 0.0010, max_value = 0.010, sampling = “log”

3.6.1. LSTM Model

The LSTM model performed most accurately in the optimization process and had the
following hyperparameters:

• Units of lstm network = 256
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• Batch size = 128
• ReLU activation function for the LSTM Module, as well as the output Dense Layer
• Optimizer = Adam
• Learning rate = 0.0010
• Epochs = 100

3.6.2. CNN–LSTM Model

The hyperparameters of the hybrid CNN–LSTM model are presented below:

• filters = 64
• kernel size = 2
• ReLU activation function for the both the CNN and LSTM Module
• 48 units for the LSTM Module
• MaxPooling1D with pool size = 2
• Batch size = 128
• Optimizer = Adam
• Learning rate = 0.0010
• Epochs = 100

3.6.3. Multilayer Perceptron Model

After converging to the optimal forecasting accuracy, the hyperparameters for the
MLP model were formulated as follow:

• 480 Neurons for the Input Layer
• Batch size = 128
• ReLU activation function for the Input Layer, as well as the output Dense Layer
• Optimizer = Adam
• Learning rate = 0.0011
• Epochs = 100

3.6.4. Temporal Convolution Network

• Filters = 256
• Dilations = [1, 2, 4, 8, 16, 32]
• Batch size = 128
• Optimizer = Adam
• Learning rate = 0.0010
• Epochs = 100

3.6.5. CNN-1D Model

• Filters = 64
• Kernel size = 3
• MaxPooling1D (pool size=2)
• Neurons of Dense Layer = 16
• ReLU activation function for the CNN Module, as well as the output Dense Layer
• Optimizer = Adam
• Learning rate = 0.0010
• Epochs = 100

3.6.6. ConvLSTM Encoder–Decoder Model

This is this paper’s proposed hybrid model, which outperformed the other deep
learning models. The hyperparameters that composed the architecture of this model were
the followings:

• Filters = 64
• Kernel size = (1,4)
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• ReLU activation function for the ConvLSTM2D Module, for the LSTM Layer, as well
as the output Dense Layer

• Encoder Vector with size = 1
• 64 Units for the LSTM module
• Optimizer = Adam
• Learning rate = 0.0068
• Epochs = 100

A visualization of each model is presented in Figure 12.

Figure 12. Models visualization.

3.7. Software Environment

The experiments presented in this study were implemented in Python 3.8 Language,
using the Open-Source software library Tensorflow 2.11.0 and the high-level API, Keras
2.11.0. Pandas 1.5.2 and Numpy 1.23.5 libraries were used for data analysis and visual-
ization of the problem. The project was executed on Google Colab Pro platform, using a
GPU with the following characteristics: NVIDIA- SMI 460.32.03, Driver Version: 460.32.03,
CUDA Version: 11.2, RAM: 25.45 GB and Disk: 166.77 GB.

Regarding the time required to train each model, one of the primary factors influencing
this process is the architecture and the level of complexity of each model, and, more specif-
ically, the number of trainable parameters required to train each algorithm. Among the
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models examined, the MLP (MultiLayer Perceptron) stood out as the simplest and fastest to
train, followed by CNN-1D, CNN–LSTM, LSTM, ConvLSTM Encoder–Decoder, and TCN.
Despite their architectural differences, the training times did not exhibit significant varia-
tions. Once the optimization procedure was completed and the optimal hyperparameters
for each algorithm determined, the training of each model took no more than 20 min.
Finally, regarding the time required for each model to make a complete prediction, i.e., the
inference time, this did not exceed 1 min. So, this remarkably short training time en-
abled real-time predictions using these models, extending their applicabilities beyond the
academic realm pursued in this paper.

3.8. Performance Metrics (Evaluation Metrics)

In this section, we present the performance metrics used in the evaluation of the hourly
power prediction models. Mean Absolute Error (MAE) [37] is a commonly used metric
with regression models, comparing actual and predicted values, which gives a measure of
average error. MAE is calculated by the following formula:

MAE =
∑n

i=1 |yi − xi|
n

(8)

where yi is the predicted value and xi is the actual value in a set of n samples.
Moreover, Mean Absolute Percentage Error (MAPE) [38] is used as a measure of

quality for regression and time series models because it intuitively explains the relative
error. MAPE is computed by the following formula, which uses the same parameters as the
MAE calculation:

MAPE =
100
n

n

∑
i=1
|yi − xi

xi
| (9)

Furthermore, Mean Squared Error (MSE) [37] and Root Mean Squared Error (RMSE) [39]
metrics were included in the performance evaluation of this study. The MSE metric
measures the average squared difference between the predicted and true values. In this
study, we used MSE as the loss function for the training of the neural network prediction
models, due to its characteristic of giving a higher weight on extreme error values. MSE
and RMSE metrics, which use the same parameters as the previously mentioned evaluation
metrics, are given as follows:

MSE =
1
n

n

∑
i=1

(yi − xi)
2 (10)

RMSE =

√
n

∑
i=1

(yi − xi)2

n
(11)

Additionally, the coefficient of determination, or R squared, was used as a perfor-
mance metric in this study, representing the proportion of variance (of y), explained by
the independent variables in the model. It indicates a proper model fit and measures how
possible it is for unobserved samples to be forecast by the model, through the proportion of
explained variance. R squared can be more informative than the formerly mentioned met-
rics in regression analysis evaluation [39]. R squared is calculated by the following formula:

R2 = 1− sum squared regression (SSR)
total sum of squares (TSS)

= 1− ∑n
i=1(yi − xi)

2

∑n
i=1(x̄− xi)2 (12)

where yi is the predicted value, xi is the actual value and x̄ is the mean of the actual values
in a set of n samples.
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4. Results Analysis and Discussion

In the presented work, an automated application was implemented in order to find
the optimal forecasting model for hourly electricity data in MWs. For this purpose, six
artificial deep learning models were created and optimized, as shown in the tables above.
Essentially, an application was implemented which is not only able to run on electric power
data, but can also be used in any kind of time series forecasting problems.

The results obtained from the algorithmic experiments are presented and an analysis
of their results conducted. In Figure 13 the prediction of the daily hourly demand in MWs
for a three-month period, from 1 October 2019 to 31 December 2019, is presented.

Figure 13. The prediction results. Lower subfigure represents the whole testing dataset. Upper
subfigures describe different three-day prediction plots from the same training dataset.

More specifically, Table 4 presents the values of R2, MAE, MSE, RMSE and MAPE for
each model. For a better understanding of the results, the above table was sorted by MAPE
in descending order and the optimal metrics’ values are presented in bold.

Table 4. Evaluation metrics.

Method R2 (MW) MAE (MW) MSE (MW) RMSE (MW) MAPE (%)

CNN-1D 0.9906 0.4936 0.5302 0.7282 2.66
TCN 0.9910 0.4576 0.5036 0.7096 2.40
MLP 0.9919 0.4477 0.4602 0.6784 2.38
CNN-LSTM 0.9917 0.4412 0.4714 0.6866 2.31
LSTM 0.9920 0.4275 0.4552 0.6747 2.25
ConvLSTM Encoder-Decoder 0.9921 0.4142 0.4454 0.6674 2.15

Based on the experiments carried out, it is easy to see that the worst models were the
CNN-1D and TCN networks. The models containing Recurrent Networks, such as LSTM
and the two hybrid models implemented, were the most accurate. So, an important finding
was that the models that contain only convolutional operations were the least accurate,
a fact that led to the conclusion that such a mechanism does not allow models to extract
meaningful features from input time series data, compared to other models.

More specifically, the CNN-1D and TCN models presented MAE 0.4936 and 0.4576 MW
and RMSE 0.7282 and 0.7096 MW, respectively, while the MLP model achieved MAE equal
to 0.4477 and RMSE equal to 0.6784 MW. The LSTM model presented MAE 0.4275 and
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RMSE 0.6747 MW and the hybrid CNN–LSTM network presented MAE 0.4412 and RMSE
0.6866 MW, respectively.

The proposed model, which has not been extensively used in electricity forecasting
datasets, is a hybrid model, called Convolutional LSTM Encoder–Decoder. The advantage
of this model, compared to the other models implemented and particularly compared to
the hybrid CNN–LSTM model, is the use of a ConvLSTM Network, offering better feature
extraction and accuracy. Thus, the profile of a time series with multiple seasonality, such
as the one studied in our case, is recognized in a more efficient way, making this model
capable of achieving MAE and RMSE 0.4142 and 0.6674, respectively. Figure 14 presents
and illustrates the comparative values of R2, MAE, MSE and RMSE for each of the six
models proposed.

Figure 14. Comparison of the models in terms of R2, MAE, MSE and RMSE error metrics.

5. Conclusions and Future Work

In recent years, the energy sector has experienced substantial transformations due to
a continuous surge in demand and to energy crises. These developments have given rise
to new requirements aimed at addressing emerging situations and ensuring the effective
and efficient operation of the power grid. Accurate demand forecasting is a key factor
for the reliable operation and robustness of modern power systems. In short-term load
forecasting, efficiency is a cornerstone for market flexibility which ensures balance between
supply and consumption in real time. For these reasons, this study introduced an innovative
and automated Deep Learning forecasting model for use in the energy sector. The load
forecasting results of five enhanced models, namely, the CNN-1D, LSTM, CNN–LSTM,
TCN and MLP, were ascertained and compared with those generated by the proposed
forecasting hybrid model, named ConvLSTM Encoder–Decoder.

Based on the results obtained and presented, the proposed ConvLSTM Encoder–
Decoder, compared with the other methods, had better results, achieving a MAPE equal
to 2.15%. The LSTM followed with 2.25%, the hybrid CNN–LSTM with 2.31%, MLP with
2.38%, TCN with 2.40% and, lastly, CNN-1D, with a MAPE equal to 2.66%. The differences
in terms of the MAPE were quite small among the models, most likely due to the extensive
optimization process carried out for all models.

Regarding the contribution of the current research, it emphasizes the benefits in
implementing a Deep Learning automated algorithm, capable of identifying the optimal
model in predicting future time series data across various problems. While the present
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study focused on load forecasting, the proposed approach could also be applied to predict
quantities in systems involving renewable energy sources, such as wind and solar power.
Moreover, the system has potential in predicting building energy consumption in general
and, specifically, in commercial, industrial and military facilities, considering factors such
as climate data, indoor environmental information and occupants’ behavior, which applies
to time series problems.

In addition, through the suggested load forecasting model, a new and innovative
deep learning model is presented that achieved the higher forecasting accuracy among the
models studied. This proposed hybrid model consists of a ConvLSTM component, which
encodes the information contained in the input time series vectors. Then, the information
passes through an Encoder Vector, and is distributed to an LSTM model, targeted to predict
future data.

Considering the aforementioned contribution of the current research, it is apparent
that the developed methodology distinguishes itself from its counterparts presented in the
literature review. While the referenced papers primarily focused on comparing outcomes
derived from various statistical and machine learning methods, this work adopted a differ-
ent approach. The selection of the best model was accomplished through an automated
process, introducing flexibility and performance for potential users of the developed appli-
cation. Furthermore, an advantage of the proposed approach lies in the introduction of a
state-of-the-art model (ConvLSTM Encoder–Decoder) that has not been applied extensively
before to load forecasting problems.

In terms of future research directions stemming from the current research, some
noteworthy propositions emerge. The automated model could be enhanced by incorpo-
rating additional efficient models, such as the Exponential Smoothing LSTM (ESLSTM)
and advanced Multi-Head Transformer. A notable challenge lies in applying the models
developed to medium- and long-term multistep prediction tasks to evaluate their stability
over extended sequences. Furthermore, testing the applicability of the proposed approach
in regard to other diverse types of time series data, could also be a significant challenge.
Moreover, conducting a comparative analysis of prediction accuracy in time series tasks
by combining the models used in this paper with Custom Activation Functions repre-
sents another potential avenue for future investigation. Lastly, exploring the utilization
of these algorithms in Demand Side Management and Demand Response problems is a
challenging prospect, given the high level of accuracy required for short-term forecasting
in such problems.
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AM Attention Mechanism
BO Bayesian Optimization
BEGA Binary Encoding Genetic Algorithm
BPNN Backpropagation Neural Network
CNN-1d Convolutional Neural Network One Dimensional
CNN-LSTM Convolutional Neural Network - Long Short-Term Memory
ConvLSTM Convolutional Long Short-Term Memory
DTM Dynamic Time Wrapping
FC Fully-Connected
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multilayer Perceptron
NLP Natural language processing
R2 R-Squared
RFR Random Forests Regression
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
STLF Short-Term Load Forecasting
SVR Support Vector Regression
TCN Temporal Convolutional Network
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