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Abstract: Two nutrient–phytoplankton–zooplankton (NZP) models for a closed ecosystem that
incorporates a delay in nutrient recycling, obtained using the gamma distribution function with one
or two degrees of freedom, are analysed. The models are described by systems of ordinary differential
equations of four and five dimensions. The purpose of this study is to investigate how the mean
delay of the distribution and the total nutrients affect the stability of the equilibrium solutions. Local
stability theory and bifurcation theory are used to determine the long-time dynamics of the models.
It is found that both models exhibit comparable qualitative dynamics. There are a maximum of three
equilibrium points in each of the two models, and at most one of them is locally asymptotically
stable. The change of stability from one equilibrium to another takes place through a transcritical
bifurcation. In some hypotheses on the functional response, the nutrient–phytoplankton–zooplankton
equilibrium loses stability via a supercritical Hopf bifurcation, causing the apparition of a stable limit
cycle. The way in which the results are consistent with prior research and how they extend them is
discussed. Finally, various application-related consequences of the results of the theoretical study
are deduced.

Keywords: plankton; nutrient recycling; delay; gamma distribution; closed ecosystem; dynamics;
bifurcation
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1. Introduction

Plankton are floating organisms that provide a food source for other organisms rang-
ing from shellfish to whales. As such, they play a crucial role in aquatic foodwebs [1].
Phytoplankton are organisms, such as algae, which carry out photosynthesis and are an
important means of carbon storage in the ocean [2]. Zooplankton feed on phytoplankton
or other zooplankton and include insect larvae and jellyfish. Due to their fundamental
role in aquatic ecosystems and their influence on the global carbon cycle, it is important to
understand the temporal dynamics of plankton ecosystems.

A variety of different models have been proposed for plankton ecosystems, empha-
sizing different aspects of these complex systems [3–11]. Here, we study a model due
to Kloosterman et al. [12], which focussed on two aspects. The chemical nutrients in
the system are recycled, thus the system is closed—the total amount of nutrient remains
constant. This recycling takes time (e.g., due to decomposition of dead organisms) and thus
the model should include a time delay. Both are important features of plankton ecosystems
that lead to interesting mathematics.
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The model of Kloosterman et al. [12] is called an NPZ model as it is a system with
three compartments, representing the dissolved nutrient (N ), the amount of phytoplankton
(P), and the amount of zooplankton (Z). It is described by the following equations:

dN
dt (t) = λ

∫ ∞
0 P(t− u)η(u)du + δ

∫ ∞
0 Z(t− u)η(u)du

+(1− γ)g
∫ ∞

0 Z(t− u)h(P(t− u))η(u)du− µP(t) f (N(t))
dP(t)

dt = µP(t) f (N(t))− gZh(P(t))− λP(t)
dZ(t)

dt = γgZ(t)h(P(t))− δZ(t)

. (1)

Here, λ, µ, γ, δ and g are positive parameters representing biological properties while
η is an appropriate distribution representing the time delay in nutrient recycling.

The function f stands for the phytoplankton nutrient uptake as a function of the
available nutrient and it has the following properties [4]:

f (0) = 0, f ′(N) > 0, f ′′(N) < 0, lim
N→∞

f (N) = 1. (2)

Similarly, the function h stands for the available phytoplankton and it must satisfy
conditions [13,14]:

h(0) = 0, h′(P) > 0, lim
P→∞

h(P) = 1. (3)

Kloosterman et al. [12] investigated how this model for a planktonic ecosystem
is affected by the quantity of biomass it contains and by the delay distribution. They
described the existence of the equilibrium points and gave some stability results for a
general distribution function, using methods as in [15]. Other stability results considered
particular cases of the distribution function and relied primarily on numerical work.

In this study, we assume that the delay follows a gamma distribution function, with
either one or two degrees of freedom, as these numbers of freedom degrees correspond
to the biological data. We derive two models, described by systems of ordinary differ-
ential equations (ODEs), and analyse how the local stability and local bifurcation of the
equilibrium points depend on the amount of total nutrients and on the mean delay of the
distribution.

For the numerical simulations we have used a Holling type II functional response
for f ,

f (N) =
N

N + kN
,

with kN > 0. For function h, we used either a Holling Type II functional response

h(P) =
P

P + kP
,

or a Holling Type III response

h(P) =
P2

P2 + k2
P

,

with kP > 0.
Using this delay, we have extended the results obtained in [12].

2. The Models

Consider η the gamma distribution of mean τ, with k degrees of freedom:

η(u) =

{
kk

τk(k−1)!
uk−1e−

k
τ u, u ≥ 0

0, u < 0
(4)

Starting from system (1) and using the gamma distribution function for the cases
k = 1 and k = 2, and some appropriate new variables, we derive two models, described by
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systems of ordinary differential equations (ODEs), without explicit delay. This reduction is
often called the linear chain trick [16–18].

For the case k = 1, we obtain a 4-dimensional system of ODEs, which is then reduced
to a three-dimensional one. This will be called the weak model.

For k = 2, we obtain a five-dimensional system of ODEs that can be reduced to a
four-dimensional system, which will be called the strong model.

2.1. The Weak Model

If k = 1, we have η(u) = 1
τ e−

u
τ , for u ≥ 0. Denoting

Q(t) =
∞∫
0

[λP(t− u) + δZ(t− u) + (1− γ)gZ(t− u)h(P(t− u))]e−
u
τ du, (5)

the equation describing the evolution of the dissolved nutrient N can be written as:

dN
dt

(t) =
1
τ

Q(t)− µP(t) f (N(t)).

In addition, using the change of variable t− u = θ, we have:

Q(t) = −
−∞∫

t

[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))]e−
t−θ

τ dθ

=

t∫
−∞

[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))]e−
t−θ

τ dθ.

It follows:

dQ
dt

(t) = λP(t) + δZ(t) + (1− γ)gZ(t)h(P(t))

+

t∫
−∞

[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))]e−
t−θ

τ

(
− 1

τ

)
dθ.

With the change of variable t− u = θ, we have

dQ
dt

(t) = λP(t) + δZ(t) + (1− γ)gZ(t)h(P(t))− 1
τ

Q(t)

Thus, we obtain a 4D model (NPZQ), called “the weak model” in the following,
described by 

dN(t)
dt = 1

τ Q(t)− µP(t) f (N(t)),
dP(t)

dt = µP(t) f (N(t))− gZh(P(t))− λP(t),
dZ(t)

dt = γgZ(t)h(P(t))− δZ(t),
dQ(t)

dt = λP(t) + δZ(t) + (1− γ)gZ(t)h(P(t))− 1
τ Q(t).

(6)

Since the conservation law d
dt (N + P+ Z + Q) = 0 is fulfilled, we obtain N(t) + P(t) +

Z(t) + Q(t) = N1
T = constant. The substitution Q(t) = N1

T − N(t)− P(t)− Z(t), leads to
the following reduced 3D system:

dN(t)
dt = 1

τ

(
N1

T − N(t)− P(t)− Z(t)
)
− µP(t) f (N(t))

dP(t)
dt = µP(t) f (N(t))− gZh(P(t))− λP(t),

dZ(t)
dt = γgZ(t)h(P(t))− δZ(t).

(7)
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with the phase space

D1 =
{
(N, P, Z), N ≥ 0, P ≥ 0, Z ≥ 0, N + P + Z ≤ N1

T

}
. (8)

2.2. The Strong Model

If the number of freedom degrees is k = 2, we have η(u) = 4
τ2 ue−

2
τ u, for u ≥ 0. Denoting

Q1(t) =
∫ ∞

0
[λP(t− u) + δZ(t− u) + (1− γ)gZ(t− u)h(P(t− u))]

2
τ

ue−
2
τ udu, (9)

the equation describing the evolution of the dissolved phytoplankton nutrient from (1) reads:

dN
dt

(t) =
2
τ

Q1(t)− µP(t) f (N(t)). (10)

In addition, using the change of variable t− u = θ, we have

Q1(t) = − 2
τ

∫ ∞

t
[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))](t− θ)e−

2
τ (t−θ)dθ

=
2
τ

∫ t

−∞
[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))](t− θ)e−

2
τ (t−θ)dθ.

Denoting by

Q2(t) =
∫ t

−∞
[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))]e−

2
τ (t−θ)dθ, (11)

it follows:
dQ1

dt
(t) =

2
τ
(Q2(t)−Q1(t)), (12)

dQ2

dt
(t) = λP(t) + δZ(t) + (1− γ)gZ(t)h(P(t))

+
∫ t

−∞
[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))]e−

2
τ (t−θ)

(
− 2

τ

)
dθ

= λP(t) + δZ(t) + (1− γ)gZ(t)h(P(t))− 2
τ

Q2(t).

Thus, we obtain the following 5D model (NPZQ1Q2), also called “the strong model”:

dN(t)
dt = 2

τ Q1(t)− µP(t) f (N(t)),
dP(t)

dt = µP(t) f (N(t))− gZh(P(t))− λP(t),
dZ(t)

dt = γgZ(t)h(P(t))− δZ(t),
dQ1(t)

dt = 2
τ (Q2(t)−Q1(t)),

dQ2
dt (t) = λP(t) + δZ(t) + (1− γ)gZ(t)h(P(t))− 2

τ Q2(t).

(13)

Obviously, the conservation law

d
dt
(N + P + Z + Q1 + Q2) = 0 (14)

is fulfilled, so we can substitute Q2(t) = N2
T − N(t)− P(t)− Z(t)−Q1(t), leading to the

following reduced 4D system of ordinary differential equations (ODE):
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dN(t)

dt = 2
τ Q1(t)− µP(t) f (N(t)),

dP(t)
dt = µP(t) f (N(t))− gZh(P(t))− λP(t),

dZ(t)
dt = γgZ(t)h(P(t))− δZ(t),

dQ1(t)
dt = 2

τ

(
N2

T − N(t)− P(t)− Z(t)− 2Q1(t)
)
,

(15)

with the phase space

D2 =
{
(N, P, Z, Q1) ∈ R4, N ≥ 0, P ≥ 0, Z ≥ 0, Q1 > 0, N + P + Z + Q1 ≤ N2

T

}
. (16)

Also, for consistency, the initial conditions of the ODE model must satisfy

Q1(0) = − 2
τ

∫ 0

−∞
[λP(θ) + δZ(θ) + (1− γ)gZ(θ)h(P(θ))]θe

2
τ θdθ

2.3. The Model without Delay

In the absence of delay, the model (1) is described by the following equations:
dN(t)

dt = λP(t) + δZ(t) + (1− γ)gZ(t)h(P(t))− µP(t) f (N(t))
dP(t)

dt = µP(t) f (N(t))− gZh(P(t))− λP(t)
dZ(t)

dt = γgZ(t)h(P(t))− δZ(t)

. (17)

Using conservation law N0
T = N(t) + P(t) + Z(t), this system can be reduced to the

following 2D system: { dP
dt = µP f

(
N0

T − P− Z
)
− gZh(P)− λP

dZ
dt = γgZh(P)− δZ

, (18)

with the phase space

D0 =
{
(P, Z) ∈ R2, P ≥ 0, Z ≥ 0, P + Z ≤ N0

T

}
. (19)

In the following, NT shall denote the biomass of the model. Thus, when referring to
the model without delay NT = N0

T , for the weak model NT = N1
T , while for the strong

model NT = N2
T .

3. Equilibrium Solutions

In this section, we determine the stationary solutions of the two reduced systems (7) and (15),
for the NPZ model with delayed gamma distribution, with one or two degrees of freedom.
These solutions correspond to the equilibrium points of the corresponding dynamical systems.

Each of the three systems has at most three equilibrium points în the region of inter-
est, namely:

- A trivial equilibrium E1, with no phytoplankton and no zooplankton;
- An equilibrium with phytoplankton and no zooplankton, denoted E2;
- An equilibrium with both phytoplankton and zooplankton, denoted E3.

These equilibria may coexist for certain values of the total nutrients. The same property
is valid for the reduced 2D system (18) for the NPZ model without delay.

3.1. Equilibrium Points for the System without Delay

In [12], it is shown that under the assumptions

λ < µ, δ < gγ (20)
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system (18) has at most three equilibrium points in D0, depending on the value of the total
nutrient NT . Denoting as

NT1 = f−1
(

λ

µ

)
, NT2 = f−1

(
λ

µ

)
+ h−1

(
δ

gγ

)
, (21)

the equilibrium points of system (18) are E1 = (0, 0), for all NT , E2 =
(

P̂, 0
)
, with

P̂ = NT − NT1 , for all NT ≥ NT1 , and E3 = (P∗, Z∗), with P∗ = h−1
(

δ
gγ

)
, and Z∗ unique

solution of the equation

Z∗ =
µγ

δ
P∗
(

f (NT − P∗ − Z∗)− λ

µ

)
, (22)

for all NT , with NT ≥ NT2 .

3.2. Equilibrium Points for the Reduced Weak System (7)

The system (7) possesses at most three equilibria with the first three coordinates
non-negative, solutions of the system

1
τ (NT − N − P− Z)− µP f (N) = 0
µP f (N)− gZh(P)− λP = 0
γgZh(P)− δZ = 0

(23)

It follows that the trivial equilibrium is E1 = (NT , 0, 0).
The equilibrium with only phytoplankton is E2 =

(
N̂, P̂, 0

)
, with f

(
N̂
)
= λ

µ . Taking
into account the properties of f , if the condition

λ < µ (24)

is satisfied (that is the growth rate of the plankton must be greater than the death rate),
then there exists an unique N̂, namely N̂ = f−1

(
λ
µ

)
, satisfying this condition. From the

first equation we obtain

P̂ =
1

1 + λτ

(
NT − N̂

)
. (25)

while from the conservation law we obtain

Q̂ = λτP̂. (26)

This equilibrium is in the domain of interest D1 if and only if NT ≥ N̂. Note that if
NT = f−1

(
λ
µ

)
, then E1 = E2.

The equilibrium with both phyto- and zooplankton is E3 = (N∗, P∗, Z∗), with h(P∗) = δ
γg

from the third equation in (23). If condition

δ < γg (27)

is satisfied, then there exists an unique P∗ > 0 such that h(P∗) = δ
γg , namely

P∗ = h−1
(

δ

γg

)
. (28)

and

Z∗ =
γµ

δ

(
f (N∗)− λ

µ

)
h−1

(
δ

γg

)
. (29)
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The condition f (N∗) ≥ λ
µ must be satisfied in order to have Z∗ ≥ 0. As f is an

increasing function, it follows that N∗ ≥ f−1( λ
µ ) and using the first equation of system (23)

we have

NT = N∗ + P∗ + Z∗ + τµP∗ f (N∗)

≥ f−1
(

λ

µ

)
+ (1 + λτ)h−1

(
δ

γg

)
.

To show that there exists an N∗ such that

NT = N∗ + P∗
(

1− γλ

δ
+ µ

(
τ +

γ

δ

)
f (N∗)

)
(30)

is satisfied, consider the function

F(N) = N +

(
1− γλ

δ
+ µ

(
τ +

γ

δ

)
f (N)

)
h−1

(
δ

γg

)
− NT .

It follows that F
(

f−1
(

λ
µ

))
< 0 and lim

N→∞
F(N) = ∞. As F is an increasing function,

there exists an unique value N∗ such that F(N∗) = 0.
Denote, as in [12], NT2(τ) = f−1

(
λ
µ

)
+ (1 + λτ)h−1

(
δ

γg

)
. Remark that NT2(0) = NT2 .

As a consequence, the third equilibrium point (N∗, P∗, Z∗) exists in D1 and is uniquely
determined by (30) if the conditions NT ≥ NT2(τ) and (20) are satisfied. Note that if
NT = NT2(τ), then E3 = E2. The transitions between the equilibrium points will be
discussed further in Section 5.

Finally, we note that if (N0, P0, Z0) is an equilibrium of system (7), then (N0, P0, Z0, Q0),
with Q0 = τµP0 f (N0) is an equilibrium point for system solution of system (6) and conversely.

In Figure 1, the coordinates N, P, Z, Q of the three equilibrium points are represented
as functions of the total nutrient NT , for a fixed τ = 5. As function h, a type II functional
response was considered. The values of the parameters used for simulations are µ = 5.9,
g = 7, λ = 0.017, γ = 0.7, δ = 0.17, kN = 1, kP = 1, as in [12]. For these values
of the parameters, the following values where obtained for thresholds: NT1 = 0.0028,
NT2(τ) = 0.0418.

Figure 1. N, P, Z, Q as functions of NT , for fixed τ = 5, for the equilibrium points E1 (blue line), E2

(green line), E3 (red line), using a type II response.
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3.3. Equilibria for the Reduced Strong Model (15)

The equilibria of system (15) correspond to the solutions of the system
2
τ Q1 − µP f (N) = 0
µP f (N)− gZh(P)− λP = 0
γgZh(P)− δZ = 0
2
τ (NT − N − P− Z− 2Q1) = 0

(31)

Substituting

Q1 =
τ

2
µP f (N), (32)

from the first equation into the last equation in (31), the remaining three equations coincide
with system (23). Consequently, we obtain the same expressions for N, P, and Z as for
system (23). Taking into account (32), we obtain the following equilibrium points for
system (15):

(1) The trivial equilibrium E1 = (NT , 0, 0, 0), for all NT ≥ 0;
(2) The equilibrium with no zooplankton E2 =

(
N̂, P̂, 0, Q̂1

)
, with Q1 = τλ

2 P̂,
for all NT , with NT ≥ NT1 , if λ < µ;

(3) The equilibrium E3 =
(

N∗, P∗, Z∗, Q∗1
)
, with Q∗1 = µτ

2 f (N∗)h−1
(

δ
γg

)
,

for all NT , with NT ≥ NT2(τ), if λ < µ and δ < γg.

Note that if (N0, P0, Z0, Q0) is an equilibrium of system (15), then (N0, P0, Z0, Q0, Q0)
is an equilibrium point for system solution of system (13) and conversely.

In Figure 2, there are represented the coordinates N, P, Z, Q1 of the three equilibrium
points as functions of the total nutrient NT , for a fixed τ = 5. As function h, a type III
functional response was considered. The values of the parameters used for simulations are
µ = 5.9, g = 7, λ = 0.017, γ = 0.7, δ = 0.17, kN = 1, kP = 1, as in [12]. For these values of
the parameters, the following values were obtained for stability thresholds: NT1 = 0.0028,
NT2(τ)

= 0.2085, NT3(τ)
= 1.0967. Remark that E1 = E2 at NT = NT1 and E2 = E3 at

NT = NT2(τ).

Figure 2. N, P, Z, Q1 as functions of NT , for fixed τ = 5, for the equilibrium points E1 (blue line), E2

(green line), E3 (red line), using a type III response.

Comparing the systems with and without delay, we see the following.

• The equilibrium point E1 is unaffected by the delay.
• For the equilibrium point E2, the value of P is reduced by the delay.
• For the equilibrium point E3, the values of N and Z are reduced by the delay.
• The first transition point is unaffected by the delay, NT1 = NT1(τ), while the second

transition point is increased by the delay, NT2 < NT2(τ), if τ > 0.
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4. Local Stability

For all three systems (7), (15) and (18), we find that at each value of the total nutrient
at most one of the equilibrium points is locally asymptotically stable. More precisely,

• for NT < NT1 , the only equilibrium point is E1, and it is asymptotically stable,
• for NT1 < NT < NT2(τ) the equilibrium E2 is asymptotically stable, while E1 is unstable,
• and, finally, as NT > NT2(τ), the equilibrium E3 is asymptotically stable either for

all NT > NT2(τ) or there exists an NT3(τ) such that E3 is asymptotically stable for
NT2(τ) < NT < NT3(τ), and unstable for NT > NT3(τ), depending on the response
function h, while the other two equilibria are unstable.

Note that for the system without delay (18), NT2 is equal to NT2(0). Our results for E1
and E2 reproduce the results of [12] for the system with general delay (1), while our results
for E3 improve those of [12].

Note that, for the two-dimensional reduced system without delay (18), the local stabil-
ity of the equilibria on the boundary of the domain can be extended to global stability [12].
Those arguments cannot apply for systems (7) and (15). Results on the global stability could
be obtained using Lyapunov functions, if they can be constructed.

4.1. The System without Delay

In [12], it is shown that the equilibrium E1 is globally asymptotically stable on D0 if
NT < NT1 , the equilibrium E2 is globally asymptotically stable on D0, except for the z axis,
if NT1 < NT < NT2 , while the stability of the equilibrium point E3 depends on the sign of
the quantity T, denoting the trace of the Jacobi matrix J0 at (P∗, Z∗),

J0(NT) =

(
δZ∗
γP∗ − µP∗a− gZ∗b −µP∗a− δ

γ

γgbZ∗ 0

)
.

Here, to simplify the expression, we denoted a = f ′(NT − P∗ − Z∗), b = h′(P∗).
They proved that if h′(P∗) ≥ h(P∗)/P∗, then the equilibrium point E3 is stable for all

NT > NT2 . This is valid for a type III zooplankton grazing response function h. While if
h′(P∗) < h(P∗)/P∗, then there exists a unique value NT3 of the total nutrient, such that
the equilibrium point E3 is asymptotically stable for all NT2 < NT < NT3 and unstable if
NT > NT3 . The value NT3 is found as the unique solution of the equation T(NT) = 0, with

T(NT) = gZ∗
(

h(P∗)
P∗

− h′(P∗)
)
− µP∗ f ′(NT − P∗ − Z∗). (33)

For NT = NT3 , the Jacobi matrix J0 has the purely imaginary eigenvalues λ1,2(NT) = ±iω0,

with ω0 > 0, ω2
0 = γgbZ∗

(
µP∗a + δ

γ

)
. Close to NT3 , we have Reλ1,2(NT) =

1
2 T(NT). Con-

sequently,
d

dNT
Reλ1,2(NT) =

1
2

d
dNT

T(NT) > 0, (34)

and thus the transversality condition in the Hopf bifurcation theorem is satisfied. A Hopf
bifurcation takes place for NT = NT3 if the Lyapunov coefficient L1

(
NT3

)
is non-zero.

4.2. The Weak Model Case

We analyse here the stability of the equilibrium points for the system (7) corresponding
to the gamma distribution delay, with one degree of freedom.

Proposition 1. For the equilibrium point E1 of system (7), the following statements hold:

(i) If NT < NT1 , then E1 is locally asymptotically stable in D1;
(ii) If NT > NT1 , then E1 is a (2,1) type saddle point;
(iii) If NT = NT1 , then E1 is a fold singularity.
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Proof. The Jacobian matrix J1 associated to system (7) at E1 = (NT , 0, 0),

J1 =

 − 1
τ − 1

τ − µ f (NT) − 1
τ

0 µ f (NT)− λ 0
0 0 −δ


has the eigenvalues

λ1
1 = − 1

τ
< 0, λ1

2 = µ

(
f (NT)−

λ

µ

)
, λ1

3 = −δ < 0.

As two eigenvalues are negative, the topological type of E1 is determined by the sign
of λ1

2. Thus, the equilibrium point E1 is an attractor if λ1
2 < 0, i.e., f (NT) <

λ
µ . As f is an

increasing function, we have λ1
2 < 0 if NT < f−1

(
λ
µ

)
= NT1 .

Proposition 2. The equilibrium point E2 =
(

N̂, P̂, 0
)

of system (7) is locally asymptotically stable
in D1 if and only if

NT1 < NT < NT2(τ).

In addition,

(i) if NT = NT1 or NT = NT2(τ) then E2 is a fold singularity;
(ii) if NT > NT2(τ) then E2 is a saddle point of type (2,1);
(iii) if NT < NT1 then E2 is not in D1.

Proof. For the equilibrium E2 =
(

N̂, P̂, 0
)
, we obtain the Jacobi matrix

J2 =

 − 1
τ − µP̂ f ′

(
N̂
)
− 1

τ − λ − 1
τ

µP̂ f ′
(

N̂
)

0 −gh
(

P̂
)

0 0 γgh
(

P̂
)
− δ


and the characteristic equation(

X2 + p1X + p2

)(
X− γgh

(
P̂
)
+ δ
)
= 0

with

p1 =
1
τ
+ µP̂ f ′

(
N̂
)
,

p2 =
µ(1 + λτ)

τ
P̂ f ′
(

N̂
)
.

Thus, one eigenvalue is λ2
3 = γg

(
h
(

P̂
)
− δ

γg

)
and we have λ2

3 < 0 if h
(

P̂
)
< δ

γg (that

is P̂ < P∗, as h is an increasing function). Consequently, λ2
3 < 0 iff

NT < f−1
(

λ

µ

)
+ (1 + λτ)h−1

(
δ

γg

)
= NT2(τ)

and λ2
3 = 0 if NT = NT2(τ).

The other two eigenvalues λ2
1, λ2

2, are solutions of the equation X2 + p1X + p2 = 0.
Further, if NT > NT1 , it follows that p1 > 0, p2 > 0, both solutions of this equation have
negative real parts. As a consequence, if NT1 < NT < NT2(τ), all eigenvalues have negative
real parts, hence the equilibrium point E2 is an attractor.

Note that if NT = NT1 , then p2 = 0, p1 > 0, thus λ2
2 = 0 and Re(λ2

1) < 0. The
equilibrium point E2 is a fold singularity both at NT = NT1 and NT = NT2(τ).
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For the equilibrium point E3 = (N∗, P∗, Z∗) of system (7), the Jacobi matrix reads

J3 =

 − 1
τ − µPa − 1

τ − µc − 1
τ

µPa µc− gZ∗b− λ − δ
γ

0 γgZ∗b 0

,

where, to simplify computation, we denoted:

a = f ′(N∗) > 0, b = h′(P∗) > 0, c = f (N∗) > 0, d = h(P∗) > 0, (35)

Thus, the characteristic polynomial of J3 reads

X3 + a1X2 + a2X + a3, (36)

with

a1 =
1
τ
+ λ− cµ + µP∗a + Z∗bg

a2 =
1
τ
(λ− cµ + µP∗a + Z∗bg) + gδZ∗b + λµP∗a + gµP∗Z∗ab

a3 =
g
τ

Z∗b(δ + P∗aγµ + τµδP∗a) (37)

Using the Routh–Hurwitz criterion [19], all the roots of the characteristic polynomial
have negative real parts if and only if the following conditions are satisfied:

(i) a1 > 0, (ii) a3 > 0, (iii) a1a2 − a3 > 0. (38)

Thus, the equilibrium point E3 is asymptotically stable if all these conditions are
fulfilled. In [12], one result on the stability of E3 with the weak gamma distributed delay
was obtained. For completeness and for comparison with the strong gamma distribution
case, we repeat that result here with proof.

Proposition 3. If
P∗h′(P∗)− h(P∗) ≥ 0, (39)

then the equilibrium E3 of system (7) is locally asymptotically stable for all NT > NT2(τ).

Proof. The equilibrium point E3 is stable if all conditions in (38) are fulfilled. To simplify
computation, denote

A = µP∗a > 0, B = µc− λ > 0, C =
γgbP∗

δ
> 0, D =

δ

γ
> 0, T = A + B(C− 1)

Note that, C− 1 = γg
δ (P∗h′(P∗)− h(P∗)) > 0. With these notations, we can write

a1 = T +
1
τ

,

a2 = BCDγ + ABC + Aλ +
1
τ

T,

As all parameters are positive, it follow that a3 > 0. As T > 0, conditions a1 > 0 and
a2 > 0 are satisfied. As

a1a2 − a3 = AT(BC + λ) + B2CDγ(C− 1) +
1− γ

τ
ABC +

λ

τ
A +

1
τ2 T(Tτ + 1) > 0, (40)

condition (iii) in (38) is satisfied. Consequently, all eigenvalues have negative real parts,
and E3 is an attractor for all NT > NT2(τ).



Mathematics 2023, 11, 2911 12 of 24

Proposition 4. If
P∗h′(P∗)− h(P∗) < 0, (41)

the following assertions hold for the equilibrium point E3 of system (7).

(i) For NT > NT2(τ), close to NT2(τ), the equilibrium point E3 is an attractor.
(ii) If a1a2 − a3 > 0, then E3 is locally asymptotically stable.
(iii) If a1a2 − a3 = 0 then E3 is a Hopf singularity.
(iv) If a1a2 − a3 < 0 then E3 is a (1,2) saddle point. In addition, for each τ there exists a value

NT3(τ), given by

NT3(τ) = min
{

NT , NT > NT2(τ), a1a2 − a3 = 0
}

,

such that E3(NT) is locally asymptotically stable for all NT2(τ) < NT < NT3(τ) and unstable for
NT > NT3(τ), close to NT3(τ).

Proof. (i) The coefficient a3 is equal to 0 if and only Z∗ = 0, which occurs when f (N∗) = λ
µ .

The discussion following (29) then shows that a3 = 0 at NT = NT2(τ), and a3 > 0 for
NT > NT2(τ).

For NT = NT2(τ), the other two coefficients of the characteristic equation associated
to E3,

a1 =
1
τ
+ µP∗a > 0,

a2 =
1
τ

µP∗a + λµP∗a > 0,

have positive values, and also a1a2 − a3 = a1a3 > 0. As the expressions a1, a2, a1a2 − a3 are
continuous functions of NT , they remain positive for NT > NT2(τ), in a neighbourhood of
NT2(τ). Hence (i).

(ii) Considering a1 as a function of NT , we obtain

lim
NT→∞

a1(NT) =
1
τ
+ λ +

γ

δ
(µ− λ)P∗ >

1
τ
+ λ > 0.

Also,
da1

dNT
= µ

(
P∗ f ′′(N∗) + f ′(N∗)

(
P∗h′(P∗)

h(P∗)
− 1
))

dN∗

dNT

Differentiating with respect to NT in (30), we obtain

1 =
dN∗

dNT

(
1 +

µ(γ + τδ

δ
P∗ f ′(N∗)

)
,

hence dN∗
dNT

> 0. As f ′′ < 0 and P∗h′(P∗)
h(P∗) − 1 < 0, it follows that da1

dNT
< 0, thus a1 is a

decreasing function of NT . Consequently, a1 > 1
τ + λ > 0. The result follows by applying

the Routh–Hurwitz criterion [19].
(iii) The characteristic polynomial (36) has a pair of purely imaginary roots λ1,2 = ±ωi

if conditions
a2 = ω2 > 0, a1a2 − a3 = 0.

As a1 > 0, a3 > 0 for all NT > NT2(τ), if a1a2 − a3 = 0 then a2 > 0. Thus, E3 is a
Hopf singularity.

(iv) As a1 > 0, a3 > 0 for all NT > NT2(τ), and (a1a2 − a3)
(

NT2(τ)
)
> 0, it follows

that NT3(τ) is the minimum value of NT > NT2(τ) for which condition a1a2 − a3 > 0 is
not satisfied.
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For the type II response function h, we have

Ph′(P)− h(P) = − P2

(P + kP)
2 < 0, ∀P ≥ 0.

In this case, Proposition 4 applies for the stability of the equilibrium point E3. See
Figure 3.

For the type III response function h, we obtain

Ph′(P)− h(P) =
(
k2

P − P2)P2(
P2 + k2

P
)2 .

In this case, if P∗ ≤ kP (i.e., δ
gγ ≤ h(kP)), then P∗h′(P∗)− h(P∗) ≥ 0 and the equilib-

rium point E3 is stable for all NT > NT2(τ). If h(kP) <
δ

gγ < 1, then Proposition 4 applies
for the stability of the equilibrium point E3.

4.3. The Strong Model Case

Proposition 5. The following assertions hold for the equilibrium point E1 of system (15).

(i) If NT < NT1 , then E1 is locally asymptotically stable in D2.
(ii) If NT > NT1 , then E1 is a (3,1) type saddle point.
(iii) If NT = NT1 , then E1 is a fold singularity.

Proof. For the equilibrium E1 = (NT , 0, 0, 0), we obtain the Jacobi matrix

J1 =


0 −µ f (NT) 0 2

τ
0 µ f (NT)− λ 0 0
0 0 −δ 0
− 2

τ − 2
τ − 2

τ − 4
τ

,

and the characteristic polynomial
(
X + 2

τ

)2
(X + δ)(X + λ− µ f (NT)). Thus, J1 has

the eigenvalues

λ1
1 = λ1

2 = − 2
τ
< 0, λ1

3 = −δ < 0, λ1
4 = µ

(
f (NT)−

λ

µ

)
.

As three eigenvalues are negative, the topological type of E1 is determined by the sign
of λ1

4. Thus, the equilibrium point E1 is an attractor if λ1
4 < 0, i.e., f (NT) <

λ
µ . As f is an

increasing function, we obtain λ1
4 < 0 if NT < f−1

(
λ
µ

)
= NT1 .

Proposition 6. The equilibrium E2 =
(

N̂, P̂, 0, Q̂1
)

of system (15) is locally asymptotically stable
in D2 if and only if

NT1 < NT < NT2(τ).

In addition,

(i) If NT = NT1 or NT = NT2(τ), then the equilibrium E2 is a fold singularity;
(ii) If NT > NT2(τ), then the equilibrium E2 is a saddle point of type (3,1);
(iii) If NT < NT1 , then the equilibrium E2 is not in D2.

Proof. For the equilibrium E2 =
(

N̂, P̂, 0, Q̂1
)
, we obtain the Jacobi matrix

J2 =


−µP̂ f ′

(
N̂
)
−λ 0 2

τ
µP̂ f ′

(
N̂
)

0 −gh
(

P̂
)

0
0 0 γgh

(
P̂
)
− δ 0

− 2
τ − 2

τ − 2
τ − 4

τ
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and the characteristic equation(
X3 + p1X2 + p2X + p3

)(
X− γgh

(
P̂
)
+ δ
)
= 0

with

p1 =
4
τ
+ µP̂ f ′

(
N̂
)
,

p2 =
4
τ2 +

µ(4 + λτ)

τ
P̂ f ′
(

N̂
)
,

p3 =
4µ(1 + τλ)

τ2 P̂ f ′
(

N̂
)
.

Thus, one eigenvalue is λ2
4 = γg

(
h
(

P̂
)
− δ

γg

)
and we have λ2

4 < 0 if h
(

P̂
)
< δ

γg (that

is P̂ < P∗, as h is an increasing function). Consequently, λ2
4 < 0 if

NT < f−1
(

λ

µ

)
+ (1 + λτ)h−1

(
δ

γg

)
= NT2(τ)

and λ2
4 = 0 as NT = NT2(τ). The other three eigenvalues λ2

1, λ2
2, λ2

3 are solutions of the equa-
tion X3 + p1X2 + p2X + p3 = 0. According to the Routh–Hurwitz criterion, all solutions of
this equation have negative real parts if conditions

p1 > 0, p3 > 0, p1 p2 > p3

are fulfilled. As all parameters µ, λ, τ are positive, if NT > NT1 the first two conditions
p1 > 0, p3 > 0 are satisfied. A simple computation shows that the third condition is also
satisfied if NT > NT1 . As a consequence, if NT1 < NT < NT2(τ) all eigenvalues have
negative real part, hence the equilibrium point E2 is an attractor.

Note that if NT = NT1 , then p3 = 0, p1 > 0, p2 > 0, thus λ2
3 = 0 and Re(λ2

1,2) < 0. The
equilibrium point E2 is a fold singularity both at NT = NT1 and NT = NT2(τ).

For the equilibrium E3 =
(

N∗, P∗, Z∗, Q∗1
)

of system (15), the Jacobi matrix reads

J3 =


−µP∗ f ′(N∗) −µ f (N∗) 0 2

τ
µP∗ f ′(N∗) µ f (N∗)− gZ∗h′(P∗)− λ −gh(P∗) 0

0 γgZ∗h′(P∗) γgh(P∗)− δ 0
− 2

τ − 2
τ − 2

τ − 4
τ


and the characteristic polynomial is

X4 + b1X3 + b2X2 + b3X + b4, (42)

with

b1 =
4
τ
+ µP∗ f ′(N∗) +

γg
δ
(µ f (N∗)− λ)

(
P∗h′(P∗)− h(P∗)

)
,

b2 =
4
τ2 +

4
τ

(
λ− f (N∗)µ + µP∗ f ′(N∗) + gZ∗h′(P∗)

)
+ gδZ∗h′(P∗) + λµP∗ f ′(N∗) + gµP∗Z∗ f ′(N∗)h′(P∗) (43)

b3 =
4
τ

(
gδZ∗h′(P∗) + cµ2P∗ f ′(N∗) + µP∗ f ′(N∗)

(
λ− cµ + gZ∗h′(P∗)

))
+

4
τ2

(
λ− cµ + µP∗ f ′(N∗) + gZ∗h′(P∗)

)
+ gδZ∗h′(P∗)

(
λ− cµ + µP f ′(N∗) + gZh′(P∗)

)
− gδZh′(P∗)

(
λ− cµ + gZh′(P∗)

)
,

b4 =
4g
τ2

(
δ + µ(γ + δτ)P∗ f ′(N∗)

)µγ

δ

(
f (N∗)− λ

µ

)
P∗h′(P∗).
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Using the Routh–Hurwitz criterion [19], all the roots of the characteristic polynomial
have negative real parts if and only if the following conditions are satisfied:

(i) b1 > 0, b2 > 0, b3 > 0, b4 > 0, (ii) b5 = b1b2 − b3 > 0, (iii) b6 = (b1b2 − b3)b3 − b2
1b4 > 0. (44)

Thus, the equilibrium point E3 is stable if all these conditions are fulfilled.

Proposition 7. For the equilibrium point E3 of system (15), the following assertions hold.

(i) For NT > NT2(τ), close to NT2(τ), the equilibrium point E3 is an attractor.
(ii) If one of the conditions bj > 0, j = 1, 6, in (44) is not satisfied, then E3 is unstable. In

addition, for each τ there exists a value NT3(τ), given by

NT3(τ) = min
{

NT
∣∣NT > NT2(τ), ∏6

j=1 bj = 0
}

,

such that E3 is locally asymptotically stable for all NT2(τ) < NT < NT3(τ).

Proof. The coefficient b4 is equal to 0 if and only f (N∗) = λ
µ . Thus, we have b4 = 0 at

NT = NT2(τ), and b4 > 0 for NT > NT2(τ).
At NT = NT2(τ), the other three coefficients of the characteristic equation associated

with E3 have the following values:

b1 =
4
τ
+ µP∗a > 0,

b2 =
4
τ2 +

4
τ

µP∗a + µ2P∗ac > 0,

b3 =
4
τ

µ2P∗ac +
4
τ2 µP∗a > 0.

In addition, we have

b5 =

(
µ2P∗ac +

4
τ

µP∗aτ +
16
τ2

)
µP∗a +

16
τ3 > 0,

b6 = b3b5 > 0.

As the expressions bj, j = 1, 6, are continuous functions of NT , they remain positive for
NT > NT2(τ), in a neighbourhood of NT2(τ). Hence (i). Obviously, NT3(τ) is the minimum
value of NT > NT2(τ) for which one of the conditions (44) is not satisfied.

Remark 1. As for NT > NT2(τ), we have b4 > 0, none of the eigenvalues λ3
i , i = 1, 4, can be 0.

Thus, the topological type of E3 could change only with the appearance of a pair of purely imaginary
eigenvalues. Using the Viète relations, if conditions

b1b3 > 0, (b1b2 − b3)b3 − b2
1b4 = 0, (45)

are satisfied, then the equilibrium point E3 is a Hopf singularity. If

b1 = 0, b2 > 0, b3 = 0, b4 > 0, b2
2 − 4b4 > 0, (46)

then the equilibrium point E3 has two pairs of purely imaginary eigenvalues and it is a double-
Hopf singularity.

Proposition 8. Assume
P∗h′(P∗)− h(P∗) ≥ 0, (47)

(i) If (b1b2 − b3)b3 − b2
1b4 > 0, then the equilibrium E3 of system (15) is locally asymptotically

stable for all NT > NT2(τ).
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(ii) If (b1b2 − b3)b3 − b2
1b4 = 0, then E3 is a Hopf singularity.

(iii) If (b1b2 − b3)b3 − b2
1b4 < 0, then E3 is unstable. In addition, for each τ, there exists a value

NT3(τ), given by

NT3(τ) = min
{

NT
∣∣NT > NT2(τ) , (b1b2 − b3)b3 − b2

1b4 = 0
}

,

such that E3 is locally asymptotically stable for all NT2(τ) < NT < NT3(τ).

Proof. The equilibrium point E3 is stable if all conditions in (38) are fulfilled. To simplify
computation, denote:

a = f ′(N∗) > 0, b = h′(P∗) > 0, c = f (N∗) > 0, d = h(P∗) > 0,

A = µP∗a > 0, B = µc− λ > 0, C =
γgbP∗

δ
> 0, D =

δ

γ
> 0, T = A + B(C− 1)

Note that, C− 1 = γg
δ (P∗h′(P∗)− h(P∗)) > 0. With these notations, we can write:

b1 = T +
4
τ

,

b2 = BCDγ + ABC + Aλ +
4
τ

T +
4
τ2 ,

b3 = ABCDγ +
4
τ
(BCDγ + ABC + Aλ) +

4
τ2 T,

b4 =
1
τ2 ABCγ(ADτ + A + D)

As all parameters are positive, it follow that b4 > 0. As T > 0, conditions b1 > 0,
b2 > 0, b3 > 0 are satisfied if the hypothesis (47) is true. As

b1b2 − b3 = AT(BC + λ) + B2CDγ(C− 1) +
4
τ3 (Tτ + 2)2,

condition b1b2 − b3 > 0 is satisfied if (47).
Consequently, if (b1b2 − b3)b3 − b2

1b4 > 0, then all eigenvalues have negative real
parts, thus E3 is an attractor.

If (b1b2 − b3)b3 − b2
1b4 < 0, at least two eigenvalues have negative real parts, thus E3

is unstable. As for NT = NT2(τ) we have

(b1b2 − b3)b3 − b2
1b4 =

(
µ2P∗ac +

4
τ

µP∗a +
24
τ2

)
µP∗a +

16
τ3 > 0,

the expression continue to be positive for NT > NT2(τ), close to NT2(τ). Obviously, NT3(τ)
is the minimum value of NT > NT2(τ) for which (b1b2 − b3)b3 − b2

1b4 = 0.

In Figure 3, there are represented the strata in the (τ, NT) plane that exhibit different
behaviours for the three equilibrium points, obtained in the case of a type II response
h(P) = P

P+kP
. The curve denoted NT_1 (blue line) separates the strata where E1 changes

stability with E2. The equilibrium E2 is stable for parameters in the stratum limited by the
curves NT_1 (blue line) and NT_2 (green line). The equilibrium E3 is stable for parameters
in region 3, in the stratum limited by the curves NT_2 (green line) and NT_3 (red line), and
loses stability in region 4. The other two equilibria are unstable in regions 3 and 4.

The values of the parameters used for simulations are µ = 5.9, g = 7, λ = 0.017,
γ = 0.7, δ = 0.17, kN = 1, kP = 1. The results are consistent with the ones obtained in [12].



Mathematics 2023, 11, 2911 17 of 24

Figure 3. Regions in the (τ, NT) plane that exhibit different behaviours for the equilibrium E3, using
the Type II response for: (a) the weak model; (b) the strong model. Region 3 is where the E3 and is
stable, but where E1, E2 are unstable. For parameters on the curve separating regions 3 and 4, E3

is a Hopf singularity, while in region 4, E3 is unstable. A Hopf bifurcation may take place when
parameters cross from region 3 to region 4.

5. Local Bifurcations

In the previous section, we proved that at each value of the total nutrients at most one
of the equilibrium points is locally asymptotically stable. In this section, we show that the
change of stability is realized either through a transcritical bifurcation or a Hopf bifurcation
that may occur at a fold singular point or at a Hopf singularity, respectively.

5.1. Transcritical Bifurcations

Two transcritical bifurcations undergo for both the weak and the strong models, namely:

(i) at NT = NT1 , the equilibrium points E1 and E2 collide and interchange stability;
(ii) at NT = NT2(τ), the equilibrium points E2 and E3 collide and interchange stability.

We prove these results by using the Sotomayor theorem [20], ([21], p. 338).

5.1.1. Transcritical Bifurcations for the Weak Model

Proposition 9. A transcritical bifurcation takes place at the equilibrium E1 of system (7) as
NT = NT1 .

Proof. As NT = NT1 we have E2 = E1 and the equilibrium E1 is a fold singularity. We
consider ε = µ f (NT)− λ as the bifurcation parameter, and the bifurcation value is ε0 = 0.
It follows λ = µ f (NT)− ε, and at ε = 0 we have λ = µ f

(
NT1

)
. The normal form on the

centre manifold is determined using Sotomayor theorem [20,21]. In order to carry this out,
consider first two eigenvectors v, w ∈ R4, such that J1v = 0 and wT J1 = 0. As for J2 = J1 = − 1

τ − 1
τ − λ − 1

τ
0 0 0
0 0 −δ

, we obtain that wT = (0, 1, 0) and vT = (−(λτ + 1), 1, 0). Then,

we compute the quantities A, B, C in Sotomayor theorem, where

A =
1
〈v, w〉

〈
w,

∂Φ
∂ε

(E2, ε0)

〉
, B =

1
〈v, w〉

3

∑
i,j,k=1

wivjvk
∂2Φi

∂xj∂xk
(E2, ε0),

C =
2
〈v, w〉

3

∑
i,j=1

wivj
∂2Φi
∂xj∂ε

(E2, ε0),

with ε0 = 0 and (x1, x2, x3) = (N, P, Z), and Φ is the vector field associated with system (7).
As 〈v, w〉 = 1 and vector w has only one non-zero component, we need only the second
component of the vector field Φ, which can be written as

Φ2(N, P, Z) = µP(t) f (N(t))− gZh(P(t))− (µ f (NT)− ε)P(t).
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We obtain

A =
∂Φ2

∂ε
(E2, 0) = 0,

B =
4

∑
j,k=1

vjvk
∂2Φ2

∂xj∂xk
(E2, 0) = −2(λτ + 1)µ f ′

(
NT1

)
6= 0,

and

C = 2
4

∑
j=1

vj
∂2Φ2

∂xj∂ε
(E2, 0) = 2v2

∂2Φ2

∂P∂ε
(E2, 0) = −2 6= 0.

Consequently, a transcritical bifurcation takes place as ε = 0, i.e., f (NT) =
λ
µ .

In a similar way we prove that a transcritical bifurcation takes place when the equilibria
E2 and E3 coincides, as NT = NT2(τ).

Proposition 10. A transcritical bifurcation takes place at the equilibrium E2 of system (7) as
NT = NT2(τ).

Proof. As NT = NT2(τ) we have E2 = E3 = (N0, P0, Z0), with N0 = NT1 , P0 = 1
1+λτ (NT2(τ)

−NT1) , Z0 = 0, and the equilibrium is a fold singularity. We consider ε = δ−γgh
(

P̂
)

as the
bifurcation parameter, and the bifurcation value is ε = 0. Apply the Sotomayor theorem [21]
as above. Consider two eigenvectors v, w ∈ R4, such that J2v = 0 and wT J2 = 0. As

J2 =

 − 1
τ − µP0 f ′(N0) − 1

τ − λ − 1
τ

µP0 f ′(N0) 0 − δ
γ

0 0 0

, we obtain that wT = (0, 0, 1) and vT =

(v1, v2, v3), with v1 = δ
γµP0 f ′(NT1 )

, v2 = − 1
λτ+1

(
τδ
γ + 1 + δ

γµP0 f ′(NT1 )

)
6= 0, v3 = 1. As

〈v, w〉 = 1 and vector w has only one non-zero component, we need only the third
component of the vector field Φ, which can be written as

Φ3(N, P, Z) = γgZh(P(t))−
(
ε + γgh

(
P̂
))

Z.

We obtain

A =
∂Φ2

∂ε
(E2, ε0) = 0,

B =
4

∑
j,k=1

vjvk
∂2Φ3

∂xj∂xk
(E2, ε0) = 2v2v3

∂2Φ3

∂Z∂P
(E2, ε0) = 2v2γgh′(P0) 6= 0,

and

C = 2
4

∑
j=1

vj
∂2Φ3

∂xj∂ε
(E2, ε0) = 2v3

∂2Φ3

∂Z∂ε
(E2, ε0) = −2 6= 0.

Consequently, a transcritical bifurcation takes place as ε = 0, i.e., NT = NT2(τ).

Remark 2. At the bifurcation, point the two equilibria E2 and E3 have the same eigenvalues,
λ2

j = λ3
j , j = 1, 3, with Reλ2

j < 0, for j = 1, 2, and λ2
3 = λ3

3 = 0. As a consequence of the
transcritical bifurcation, the eigenvalues these two eigenvalues change signs when passing through
the bifurcation values, while the real parts of the other three pairs of eigenvalues remain negative close
to the bifurcation value, due to continuity. Thus, the two equilibria exchange stability. Consequently,
close to NT = NT2(τ), if NT < NT2(τ) the equilibrium point E2 is an attractor and E3 is a saddle
of type (2,1), while if NT > NT2(τ) the equilibrium point E2 is a saddle of type (2,1) and E3 is
an attractor.
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5.1.2. Transcritical Bifurcations for the Strong Model

Proposition 11. A transcritical bifurcation takes place at the equilibrium E1 of system (15) as
NT = NT1 .

Proof. As NT = NT1 , we have E2 = E1 and the equilibrium is a fold singularity. We
consider ε = µ f (NT)− λ as the bifurcation parameter, and the bifurcation value is ε = 0. It
follows λ = µ f (NT)− ε, and at ε = 0 we have λ = µ f

(
NT1

)
. Consider two eigenvectors

v, w ∈ R4, such that J2v = 0 and wT J2 = 0. As J2 =


0 −λ 0 2

τ
0 0 0 0
0 0 −δ 0
− 2

τ − 2
τ − 2

τ − 4
τ

, we obtain

that wT = (0, 1, 0, 0) and vT =
(
−(λτ + 1), 1, 0, λτ

2

)
. Then compute the quantities A, B, C

in Sotomayor theorem. As 〈v, w〉 = 1 and vector w has only one non-zero component, we
need only the second component of the vector field Φ, associated with system (15), which
can be written as

Φ2(N, P, Z, Q1) = µP(t) f (N(t))− gZh(P(t))− (µ f (NT)− ε)P(t).

We obtain

A =
∂Φ2

∂ε
(E2, 0) = 0,

B =
4

∑
j,k=1

vjvk
∂2Φ2

∂xj∂xk
(E2, 0) = −2

(
µ f
(

NT1

)
τ + 1

)
µ f ′
(

NT1

)
6= 0,

and

C = 2
4

∑
j=1

vj
∂2Φ2

∂xj∂ε
(E2, 0) = 2v2

∂2Φ2

∂P∂ε
(E2, 0) = −2 6= 0.

Consequently, a transcritical bifurcation takes place as ε = 0, i.e., f (NT) =
λ
µ .

In a similar way, we prove that a transcritical bifurcation takes place when the equilib-
ria E2 and E3 of system (15) coincides, as NT = NT2(τ).

Proposition 12. A transcritical bifurcation takes place at the equilibrium E2 of system (15) as
NT = NT2(τ).

Proof. As NT = NT2(τ), we have E2 = E3 = (N0, P0, Z0, Q10), with N0 = NT1 ,
P0 = 1

1+λτ

(
NT2(τ)− NT1

)
, Z0 = 0, Q10 = λτ

2 P0, and the equilibrium is a fold singu-
larity. We consider ε = δ − γgh

(
P̂
)

as the bifurcation parameter, and the bifurcation
value is ε = 0. Apply the Sotomayor theorem [21] as above. Consider two eigenvectors

v, w ∈ R4, such that J2v = 0 and wT J2 = 0. As J2 =


−µPa −λ 0 2

τ

µPa 0 − δ
γ 0

0 0 0 0
− 2

τ − 2
τ − 2

τ − 4
τ

,

we obtain that wT = (0, 0, 1, 0) and vT = (v1, v2, v3, v4), with v1 = δ
γµP0 f ′(NT1 )

, v2 =

− 1
λτ+1

(
τδ
γ + 1 + δ

γµP0 f ′(NT1 )

)
6= 0, v3 = 1, v4 = τ

2(λτ+1)

(
δ
γ −

(
1 + δ

γµP0 f ′(NT1 )

))
. As

〈v, w〉 = 1 and vector w has only one non-zero component, we need only the third
component of the vector field Φ, which can be written as

Φ3(N, P, Z, Q1) = γgZh(P(t))−
(
ε + γgh

(
P̂
))

Z.
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We obtain

A =
∂Φ3

∂ε
(E2, ε0) = 0,

B =
4

∑
j,k=1

vjvk
∂2Φ3

∂xj∂xk
(E2, ε0) = 2v2v3

∂2Φ3

∂Z∂P
(E2, ε0) = 2v2γgh′(P0) 6= 0,

and

C = 2
4

∑
j=1

vj
∂2Φ3

∂xj∂ε
(E2, ε0) = 2v3

∂2Φ3

∂Z∂δ
(E2, ε0) = −2 6= 0.

Consequently, a transcritical bifurcation takes place as ε0 = 0, i.e., NT = NT2(τ).

Remark 3. At the bifurcation point the two equilibria E2 and E3 have the same eigenvalues,
λ2

j = λ3
j , j = 1, 4, with Reλ2

j < 0, for j = 1, 2, 3, and λ2
4 = λ3

4 = 0. As a consequence of the
transcritical bifurcation, the eigenvalues these two eigenvalues change signs when passing through
the bifurcation values, while the real parts of the other three pairs of eigenvalues remain negative close
to the bifurcation value, due to continuity. Thus, the two equilibria exchange stability. Consequently,
close to NT = NT2(τ), if NT < NT2(τ) the equilibrium point E2 is an attractor and E3 is a saddle
of type (3,1), while if NT > NT2(τ) the equilibrium point E2 is a saddle of type (3,1) and E3 is
an attractor.

5.2. Hopf Bifurcations

A Hopf bifurcation may occur at a Hopf singularity. As we proved in Section 4,
only the equilibrium point E3 is a Hopf non-hyperbolic point, in certain conditions (see
Propositions 4, 7 and 8). At such a singular point, a Hopf bifurcation takes place if the
conditions of the Hopf bifurcation theorem [22] are fulfilled.

5.2.1. Hopf Bifurcations for the Weak Model

As a consequence of Proposition 3, if P∗h′(P∗)− h(P∗) ≥ 0, then the equilibrium point
E3 = (N∗, P∗, Z∗) of system (7) is locally asymptotically stable for all NT > NT2(τ), so
there can be no Hopf bifurcation in this case.

If P∗h′(P∗)− h(P∗) < 0, then equilibrium point E3 is a Hopf sigularity for parameters
in the bifurcation stratum defined by the equation

a1a2 − a3 = 0, (48)

with a1, a2, a3 given by (37). Consequently, for each NT > NT2(τ) such that (48), a Hopf
bifurcation may occur, and a branch of periodic solutions may emerge around E3.

Note that the eigenvalues of the Jacobi matrix associated with E3 are λ1
1,2 = ±iω,

λ1
3 = −a1, with ω2 = a2. Thus, as a1 > 0, the centre manifold of E3 is attractive. As a

consequence, if the conditions of the Andronov–Hopf bifurcation theorem [22] are satisfied
and a supercritical Hopf bifurcation takes place (i.e., the first Lyapunov coefficient is
negative), then the stable limit cycle born through this bifurcation on the extended centre
manifold is locally asymptotically stable.

For the type II response function h, in the hypotheses of Proposition 4, a Hopf bifurca-
tion may take place for each τ, at the bifurcation value NT = NT3(τ).

The numerical simulations in Figure 4 show the existence of a stable limit cycle for
values of NT > NT3(τ). The values of the parameters used for simulations are µ = 5.9,
g = 7, λ = 0.017, γ = 0.7, δ = 0.17, kN = 1, kP = 1. The results are consistent with the
ones obtained in [12]. For τ = 5, the approximate value of NT for the Hopf bifurcation
is NT3(τ) = 1.096. The simulations show time series for an initial point closed to the
equilibrium E3, proving an evolution towards the steady state E3 for NT = 1.05 < NT3(5)
and to a limit cycle for NT = 1.2 > NT3(5).
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Figure 4. Simulations for the weak model, using a type II response h(P) = P
P+kP

: (a) τ = 5, NT = 1.05,
showing an evolution towards E3; (b) τ = 5, NT = 1.2, showing a periodic behavior; (c) projections
of the attractor, for τ = 5, NT = 1.2, t ∈ [400, 500]. The stable limit cycle may appear through a
supercritical Hopf bifurcation at NT3 (τ) = 1.096.

For the type III response function h, for the values of the parameters considered for
simulations we have δ

gγ ≤ h(kP), so there are no Hopf bifurcations at E3, as NT > NT2(τ).

5.2.2. Hopf Bifurcation for the Strong Model

According to Proposition 8, if P∗h′(P∗) − h(P∗) ≥ 0 the equilibrium point
E3 =

(
N∗, P∗, Z∗, Q∗1

)
of system (15) is a Hopf singularity if condition

(b1b2 − b3)b3 − b2
1b4 = 0, (49)

with bj, j = 1, 4 given by (43), is satisfied.
If P∗h′(P∗)− h(P∗) < 0, the equilibrium point E3 is a Hopf singularity for parameters

in the bifurcation stratum defined by the conditions (45). Consequently, for each NT > NT2(τ)
such that (45), a Hopf bifurcation may occur.

For the type II response function h, Proposition 8 does not apply. For the considered
values of the parameters, µ = 5.9, g = 7, λ = 0.017, γ = 0.7, δ = 0.17, kN = 1, kP = 1, we
have found that, for (τ, NT) on the curve defined by (49) in the (τ, NT) parameter plane,
the equilibrium P∗ is a Hopf singularity. This curve separates regions 3 and 4 in Figure 3b,
and a Hopf bifurcation may take place when the parameters cross this curve.

For τ = 5, the approximate value of NT for the Hopf bifurcation is NT3(τ) = 0.955.
The simulations in Figure 5, show the projections of parts of the trajectories for an initial
point near the equilibrium E3, proving an evolution towards a stable limit cycle, for (a)
NT = 1.05 > NT3(5), (b) NT = 1.096 > NT3(5) and (c) NT = 1.2 > NT3(5).

The trajectories in Figures 4 and 5 were obtained using the DEtools package in MAPLE
18, applying the fourth-order Runge–Kutta method, with a stepsize 0.01.

Remark 4. As the parameters vary away from the Hopf bifurcation curve, the limit cycle born
through the Hopf bifurcation may disappear, may double the period, etc. Since the dimensions
of both the weak and the strong models are greater than three, strange attractors may also exist.
Nevertheless, as the domains for each of the two models are bounded, the ω-limit set for each model
is also bounded, and so are their attractors.
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Figure 5. Simulations for the strong model, using a type II response h(P) = P
P+kP

. Projections of the
attractor for τ = 5 and (a) NT = 1.05; (b) NT = 1.096; (c) NT = 1.2; t ∈ [700, 800]. The stable limit
cycle may appear through a supercritical Hopf bifurcation at NT3 (τ) = 0.955.

6. Discussion

In this study, we have analysed two NPZ models for a closed ecosystem with three
compartments, dissolved nutrient, phytoplankton and zooplankton, incorporating a delay
in nutrient recycling. The models were obtained starting from a NPZ model introduced
in [12], by using the gamma distribution function with one or two degrees of freedom. The
aim of the paper was to study how the stability and bifurcation of the equilibrium solutions
depend on the total amount of nutrient and the delay.

We have shown that each of the two models have at most three equilibrium points in
the region of interest, and that at most one of the equilibrium points is locally asymptotically
stable at each value of the total nutrients. More precisely,

(1) For NT < NT1 , there is only one equilibrium point with no phytoplankton and no
zooplankton (E1), which is asymptotically stable;

(2) For NT1 < NT < NT2(τ) the equilibrium E2with phytoplankton and no zooplankton
is asymptotically stable, while E1 is unstable;

(3) As NT > NT2(τ), the first two equilibria are unstable, while the equilibrium E3 with
both phytoplankton and zooplankton is asymptotically stable either for all NT > NT2(τ) or
there exists an NT3(τ) such that E3 is stable for NT2(τ) < NT < NT3(τ), and unstable
for NT > NT3(τ), close to NT3(τ), depending on the response function h.

Further, we have proven that the changes of stability at NT1 and NT2(τ) occur through
transcritical bifurcations. Finally, we have shown that the change of stability at NT3 is
a Hopf singularity and the associated bifurcation will lead to stable limit cycles if it is
supercritical. Numerical simulations show the existence of stable limit cycles for each delay
τ, close to the bifurcation value NT = NT3(τ).

Thus, for each of the two considered models, the ω-limit sets contains at most one
equilibrium point. In specific hypotheses on the response function h, the ω-limit sets may
contain a limit cycle for certain values of the parameters NT and τ. However, as the dimen-
sion of both models is greater than 2, the ω-limit sets may also contain strange attractors.

Our results on the existence of equilibria are consistent with those of [12] for the
system with a general distribution (1), who showed the equilibrium values of N, P, Z are
only affected by the mean delay and not the form of the distribution. The stability result
(1) above reproduces that of [12] for the general distribution case. The stability result (2) is
stronger than that of [12] for a general distribution, and thus is likely a consequence of our
choice of distributions. In fact, [12] showed that if the system has a discrete delay (Dirac
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distribution), then the equilibrium E2 may undergo a Hopf bifurcation; however, we show
that it is not possible for the distributions we consider. Our results extend those of [12]
by proving the stability result (3) for the two systems studied and by proving the types
of bifurcations that occur as the stability of the equilibrium points changes. Further, we
showed the possibility of a codimension-two double Hopf bifurcation in the system with
the two-degrees of freedom gamma distribution.

To conclude, we discuss the implications of our work for application. The general
trend of bifurcations of the equilibrium points as the total amount of nutrients is increased
is as follows: first, the phytoplankton only equilibrium point, E2, appears and then the
coexistence equilibrium point, E3. This is is biologically plausible: as more nutrients are
available, the system can support more organisms. Our work highlights the fact that a
delay in the recycling can be stabilizing: the amount of nutrients needed for the transcritical
bifurcation leading to the emergence of E3 to occur increases with the size of the mean delay.
We also showed, for a given amount of total nutrients, the delay decreases the equilibrium
size of at least one of N, P, Z. This is because some of the nutrients are stored in the other
compartments of the system, which represent the nutrients that are being recycled. Both
these results were identical for the weak and strong models. Where these models differ
was in the effect of the delay on the Hopf bifurcation of the E3 equilibrium point. For
both models, as the delay is increased we observe the same qualitative effect: the Hopf
bifurcation value NT3 increases, then decreases, then increases. However, the variation is
larger for the strong model than for the weak model. Thus, the NT3 for the weak model
is less than that for the strong model for small enough delay, with the reverse for large
enough delay.
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