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Abstract: The synchrosqueezing transform (SST) has attracted much attention as a post-processing
technique since it was proposed. In recent years, improvements to SST have been made. However,
the existing methods are mainly based on the time-domain signal model, and the weak frequency
modulation assumption for the components composing the signal is always taken into account.
Thus, the signals characterized by a rapidly changing instantaneous frequency (IF) may fail to be
adequately tackled. To address this problem, the paper presents a novel seismic time–frequency
analysis method via synchrosqueezing transform where a frequency-domain Gaussian modulated
linear chirp model is utilized to deduce the SST. The group delay (GD) rather than the IF estimator is
implemented to compute an estimation of the ridge. Furthermore, a new synchrosqueezing operator
is constructed to rearrange the energy around the ridge. A synthetic example verifies the efficiency
and robustness of the proposed SST method, which generates better results than some classic time–
frequency analysis (TFA) approaches, e.g., short-time Fourier transform (STFT) and STFT-based SST
(FSST). A field dataset further demonstrates this method’s potential in the delineation of subsurface
geological structures.

Keywords: time–frequency representation; synchrosqueezing transform; chirp model; time localization;
geological structures

MSC: 86-10

1. Introduction

In the real world, nonstationary signals exist widely in different forms, such as seismic
waves, radar signals, and communications and sonar systems [1–5]. Time–frequency analy-
sis (TFA) is a powerful tool for the analysis of nonstationary signals when a one-dimensional
signal of time can be mapped into a two-dimensional signal of time and frequency, which
makes it feasible to characterize the time–frequency information [6]. The most common
time–frequency analysis algorithms are the short-time Fourier transform (STFT) [7] and
continuous wavelet transform (CWT) [8]. However, because of the Heisenberg uncertainty
principle, such transforms fail to obtain a satisfactory time–frequency representation (TFR)
result. In addition, the STFT is more affected by different types of window functions, and
the width of the window function directly relates to the time–frequency resolution. Despite
the variable resolution by means of a wavelet family, the CWT cannot enhance time and
frequency resolutions simultaneously [9–11]. The Wigner–Ville distribution (WVD) [12], a
quadratic algorithm, improves the readability of a TFR by concentrating the energy density
in the time–frequency plane, but the cross-terms that exist in the energy distribution of the
WVD when coping with multicomponent signals hinder its further application in practice.
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In order to solve these issues, many efforts have been made. Auger and Flandrin [13]
introduced a post-processing approach called the reassignment method (RM) to sharpen
the TFR where it achieves the reassignment of time–frequency transformation coefficients
along the two axes of time and frequency using the time and frequency derivatives of its
phase. Unfortunately, the RM is not invertible; that is, the modes cannot be reconstructed
from the TFR. To this end, Daubechies et al. [14] proposed an alternative solution called
synchrosqueezing transform (SST), which was first used in audio signal processing [15].
This method is based on a wavelet framework and has a reasonable theoretical principle.
Moreover, the SST is capable of enhancing the readability of TFR and is characterized
by the invertible property [16,17]. Thakur and Wu [18] developed the STFT-based SST
(FSST) by extending the ‘synchrosqueezing’ idea to the STFT framework. Nevertheless, it
should be noted that both methods, SST and FSST, need to satisfy the assumption that the
components that make up the signal are weakly frequency-modulated, which indicates that
the signals characterized by a rapidly changing instantaneous frequency (IF) are unable
to be adequately handled. Recently, Oberlin et al. [19] utilized a second-order estimate
of the IF to enhance the mode reconstruction and localization processes based on an SST
framework; this is called second-order synchrosqueezing transform (FSST2). Afterward,
Duong-Hung Pham and Sylvain Meignen [20] generalized the FSST2 to an N-order SST
(FSSTN), namely a high-order synchrosqueezing transform, by implementing high-order
approximations on the amplitude and phase of the signal [21]. Liu et al. [22] employed a
three-parameter S transform (TPST) to control the window width in order to optimize the
time–frequency resolution flexibly and applied it to detect the channels and characterize
the channel features. Li et al. [23] proposed the time-synchroextracting transform (TSET)
for the delineation of subsurface geological information, which achieves a highly concen-
trated time–frequency representation for the signal with a rapidly varying instantaneous
frequency. Bing et al. [24] presented a seismic time–frequency analysis method based
on a time-reassigned synchrosqueezing transform (TSST) to highlight subtle geological
structures, where the time–frequency coefficients are reassigned in the time direction rather
than in the frequency direction. Yu et al. [25] developed a high-resolution processing tech-
nique for the detection of seismic activities in gas reservoirs and carried out identification
using the improved synchrosqueezing transform, which only adjusts the phase of the
signal before and after transformation. Paksima et al. [26] analyzed the capabilities of a
high-resolution synchrosqueezing S-transform on nonstationary seismic signals and used it
to describe the gas accumulation zones and accurately separate two different gas reservoir
formations based on enhanced resolution in both time and frequency directions.

It is worth noting that all above-mentioned synchrosqueezing methods use a time-
domain signal model; the IF is computed by the partial derivative of the instantaneous
phase with respect to the time, and then the estimated IF is utilized to sharpen the TFR
along the frequency or time direction. In this paper, we propose a novel seismic time–
frequency analysis method via synchrosqueezing transform where a frequency-domain
Gaussian-modulated linear chirp model is employed to deduce the SST, and, inspired by
the FSST2, we extend the frequency-domain SST to the second-order version, which is
more suited to analyze signals characterized by a strongly changing IF. In this method, the
traditional IF estimator based on the instantaneous phase is replaced by the group delay
(GD) to compute an estimation of the ridge. Then, a new synchrosqueezing operator is
constructed to rearrange the energy around the ridge along the horizontal direction. The
key contributions of this paper are summarized as follows:

(1) We construct a new synchrosqueezing operator to rearrange the time–frequency
energy along the time direction.

(2) We first investigate the properties of SST and second-order SST in the frequency
domain and achieve seismic time–frequency feature extraction;

(3) The proposed method shows a large advantage over conventional STFT and FSST
approaches in characterizing subtle geological structures.
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The organization of this paper is arranged as follows. We first review some funda-
mental notations and definitions of the Fourier transform and STFT in Section 2. Then,
we introduce a frequency-domain Gaussian modulated linear chirp model and the GD
estimation to deduce the new SST and second-order SST. Sections 3 and 4 show several
examples concerning a synthetic signal and a field dataset and compare the proposed
approach with some classical techniques, such as STFT and FSST. This comparison vali-
dates the effectiveness of the proposed method in time localization and the description
of subsurface geological structures. Section 5 provides some discussions on this subject.
Finally, the conclusions are presented in Section 6.

2. Methodology
2.1. Theoretical Basis

For a signal f (t), the Fourier transform is formulated as

F(ς) =
∫ +∞

−∞
f (t)e−i2πςtdt (1)

where t is the time variable and ς is the frequency variable.
The Fourier spectrum F(ς) depicts the frequency information of the signal f (t) over

the entire time; however, it is not appropriate to analyze a nonstationary signal using only
the expression in the time or frequency domain. Consequently, the STFT was introduced,
and the STFT of the above signal f (t) is defined as

Vg
f (t, ς) =

∫ +∞

−∞
f (τ)g∗(τ − t)e−i2πςτdτ (2)

where g∗ denotes the complex conjugate of a window function g.
According to Parseval’s theorem, the frequency-domain STFT can be expressed as

Vg
f (t, ς) = VG

f (t, ς)

= 1
2π

∫ +∞
−∞ F(ξ)G∗(ξ − ς)ei2πt(ξ−ς)dξ

(3)

where F(ξ) and G(ς) are Fourier transforms of signal f and window function g, respec-
tively. Note that we abbreviate VG

f (t, ς) as VG
f in the following equations for convenience,

Appendix A.
Additionally, the inverse Fourier transform can be implemented to reconstruct the

original signal f (t) on the condition that G(ς) does not vanish and is continuous at zero,
Appendix B.

f (t) = F−1
(

1
G∗(0)

∫ +∞

−∞
VG

f dt
)

(4)

2.2. Frequency-Domain SST (FDSST)

A Gaussian-modulated linear chirp signal model in the frequency domain is consid-
ered as follows:

F(ς) = A(ς)ei2πψ(ς) (5)

where F(ς) is the Fourier transform of the analyzed signal f (t), and A(ς) and ψ(ς) denote
the amplitude function and phase function, respectively.

Then, the GD can be written as

τ(ς) = −dψ(ς)

dς
(6)
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The core idea of frequency-domain SST is to improve the TFR using a new reassign-
ment operator

∼
υ f (t, ς), which is defined as (VG

f (t, ς) 6= 0), such that

∼
υ f (t, ς) = −

∂ςVG
f (t, ς)

i2πVG
f (t, ς)

(7)

where
∂ςVG

f (t, ς)

= − 1
2π

∫ +∞
−∞ F(ξ)[G∗(ξ − ς)]′ ei2πt(ξ−ς)dξ

−i2πt
1

2π

∫ +∞
−∞ F(ξ)G∗(ξ − ς)ei2πt(ξ−ς)dξ

= −VG′
f (t, ς)− i2πtVG

f (t, ς)

(8)

Thus, the real part of
∼
υ f (t, ς), namely

∧
υ f (t, ς) = R

[∼
υ f (t, ς)

]
, denotes the estimated GD.

Finally, the frequency-domain SST is expressed as

TG,γ
f (t, ς) =

1
G∗(0)

∫
{t,|VG

F |>γ} VG
f (µ, ς)δ

(
t− ∧υ f (µ, ς)

)
dµ

(9)

where γ is the threshold.
Moreover, the original signal f (t) can be reconstructed by an inverse Fourier transform.

f (t) = F−1
(∫ +∞

−∞
TG,γ

f (t, ς)dt
)

(10)

where F−1(•) denotes the inverse Fourier transform.

2.3. Frequency-Domain Second-Order SST (FDSST2)

Inspired by FSST2, a second-order local modulation operator is defined and employed
to compute the new second-order local GD estimation.

For the signal f (t), the reassignment operator
∼
ω f (t, ς) is defined by (VG

f (t, ς) 6= 0):

∼
ω f (t, ς) = ς +

∂tVG
f (t, ς)

i2πVG
f (t, ς)

(11)

where
∂tVG

f (t, ς) =
1

2π

∫ +∞
−∞ F(ξ)G∗(ξ − ς)(
i2π(ξ − ς)ei2πt(ξ−ς)

)
dξ

= i2π
1

2π

∫ +∞
−∞ F(ξ)(ξ − ς)

G∗(ξ − ς)ei2πt(ξ−ς)dξ

= i2πVςG
f (t, ς)

(12)

Now, we combine Equations (7) and (11) to obtain the second-order modulated modu-
lation operator

∼
q f (t, ς), namely,

∼
q f (t, ς) =

∂t
∼
υ f (t, ς)

∂t
∼
ω f (t, ς)

when ∂t
∼
ω f (t, ς) 6= 0 (13)
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Then, the second-order GD estimate of signal f (t) is described as

∼
υ
[2]
f (t, ς) =


∼
υ f (t, ς)+

∼
q f (t, ς)

(
ς− ∼ω f (t, ς)

)
if ∂t

∼
ω f 6= 0

∼
υ f (t, ς) otherwise

(14)

Additionally, the estimated GD is written as

υ̂
[2]
f (t, ς) = R

[
∼
υ
[2]
f (t, ς)

]
(15)

The frequency-domain second-order SST is defined by replacing
∧
υ f (µ, ς) with υ̂

[2]
f (µ, ς)

in Equation (9):

TG,γ
2, f (t, ς) =

1
G∗(0)

∫
{t,|VG

F |>γ} VG
f (µ, ς)δ

(
t− υ̂

[2]
f (µ, ς)

)
dµ

(16)

where γ is the threshold.
Meanwhile, the original signal f (t) can be reconstructed by an inverse Fourier transform,

f (t) = F−1
(∫ +∞

−∞
TG,γ

2, f (t, ς)dt
)

(17)

where F−1(•) represents the inverse Fourier transform.

3. Synthetic Example

In this section, we consider a synthetic multicomponent signal composed of two impulses
at 0.015 s and 0.04 s and one chirp and one modulation sinusoid between 0.06 s and
0.5 s, as shown in Figure 1a, to illustrate the improvements brought by frequency-domain
SST in comparison with the traditional STFT and FSST methods. The TFRs provided by
STFT, FSST, FDSST, and FDSST2 are displayed in Figure 2a–d. It can be seen that STFT
suffers from a poor time–frequency resolution owing to its fixed window function. FSST
performs better than STFT since it squeezes the time–frequency coefficients in the frequency
direction; however, the frequency squeezing also leads to time–frequency energy diffusion
in time. FDSST is characterized by better time localization compared with the STFT and
FSST methods, but it has relatively poor frequency resolution. The FDSST2 result clearly
illustrates its improvement over FDSST for representing the whole signal. The resolutions
in both time and frequency are greatly improved.

In order to obviously compare the performance of the above-mentioned approaches,
we enlarged some areas indicated by two colored rectangle boxes in Figure 2; the results
are depicted in Figures 3 and 4, respectively. For two impulse signals, the chirp signal and
the sinusoid signal, the STFT exhibits poor time–frequency resolution (Figures 3a and 4a).
The FSST provides a relatively nice TFR with a higher-frequency resolution (Figure 4b).
However, for the signals with a strongly varying IF, both STFT and FSST fail to give the
desired result. Compared with the STFT and FSST methods, FDSST can more effectively
characterize the time attribute of the signal (Figure 3c). Furthermore, one can clearly see the
advantage of FDSST2 in enhancing the energy concentration along the time direction (Figure 3d),
which is more helpful for the feature extraction of strong frequency-modulated signals.

In addition, to illustrate FDSST’s and FDSST2′s robustness with respect to noise,
we generated a series of noisy signals with signal-to-noise ratios (SNRs) ranging from
0 to 30 dB. Figure 1b shows the signal with an SNR of 4 dB. The resulting TFRs of applying
the STFT, FSST, FDSST, and FDSST2 methods are displayed in Figure 5, and the enlarged
TFR results marked by two rectangle boxes are depicted in Figures 6 and 7. As can be seen,
the STFT is prone to being affected by noise, which blurs the TFR. In the result of FSST,
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the noise enables time–frequency energy to spread around the ridge (Figure 7b), and as a
result, the IF cannot be accurately estimated. By contrast, FDSST and FDSST2 have better
anti-noise ability, especially the FDSST2. It can still show good energy concentration in the
presence of noise (Figures 6d and 7d) where the local characteristics of the signal can be
described well.

Figure 1. A synthetic signal (a) and noisy signal with an SNR of 4 dB (b).

Figure 2. TFR results of the synthetic signal (Figure 1a). (a) STFT, (b) FSST, (c) FDSST, and (d) FDSST2.
FDSST2 produces a highly energy-concentrated TFR.
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Figure 3. Enlarged TFR results from the yellow rectangle box in Figure 2. (a) STFT, (b) FSST, (c) FDSST,
and (d) FDSST2. The FDSST2 has better time localization.

Figure 4. Enlarged TFR results from the magenta rectangle box in Figure 2. (a) STFT, (b) FSST,
(c) FDSST, and (d) FDSST2. The FDSST2 is characterized by high-frequency resolution.
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Figure 5. TFR results of the noisy synthetic signal (Figure 1b). (a) STFT, (b) FSST, (c) FDSST, and
(d) FDSST2. The FDSST2 shows the better energy concentration in the presence of noise.

Figure 6. Enlarged TFR results from the yellow rectangle box in Figure 5. (a) STFT, (b) FSST, (c) FDSST,
and (d) FDSST2. FDSST2 still shows the better time localization in the presence of noise.
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Figure 7. Enlarged TFR results from the magenta rectangle box in Figure 5. (a) STFT, (b) FSST,
(c) FDSST, and (d) FDSST2. FDSST and FDSST2 have the better anti-noise abilities, especially FDSST2.

Finally, the Renyi entropy is employed to evaluate the performances of the STFT, FSST,
FDSST, and FDSST2 methods. It is worth noting that a lower Renyi entropy means a more
energy-concentrated TFR [27,28]. As shown in Figure 8, for the STFT, the value of the
Renyi entropy is higher. The FSST and FDSST are almost equivalent in value of Renyi
entropy. The FDSST2 has the lowest Renyi entropy; in other words, it can produce the most
energy-concentrated TFR. The Renyi entropy is defined by

I = −1
2

log2

(s
R2 |T(t, ς)|3dςdt

s
R2 |T(t, ς)|dςdt

)
(18)

where T(t, ς) denotes the TFR result.

Figure 8. Renyi entropies of the TFRs from different TFA methods under different noise levels.
FDSST2 has the lowest Renyi entropy in each noise level.
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4. Real Example

To further illustrate the potential of frequency-domain SST in field data analysis, we
employed real seismic data from a seismic land survey (Figure 9a), which was analyzed
previously by Chen and Fomel [4] and Liu et al. [29]. These data are composed of 150 traces
with 500 samples per trace and a sampling interval of 2 ms. First, a seismic trace labeled
120 (Figure 9b) was taken as an example to show the TFR results from the STFT, FSST,
FDSST, and FDSST2 methods, which are depicted in Figure 10, and the enlarged local area
indicated by a yellow rectangle box is shown in Figure 11. The STFT result indicates that
there are four obvious spectral energies at 0.08 s, 0.15 s, 0.32 s, and 0.75 s, which correspond
to the four strong amplitudes in the waveform (Figure 9b). However, the STFT is unable
to effectively identify the time of occurrence due to the low time–frequency resolution
(Figure 10a). The other methods, FSST, FDSST, and FDSST2, exhibit sparser representations
in the time–frequency plane. It should be noted that the spectral energy of FSST diffuses
along the time direction since the time–frequency coefficients are squeezed in frequency,
which makes the time localization of FSST poor (Figures 10b and 11b). In the results of
FDSST and FDSST2, the time–frequency energy is concentrated in time (Figure 10c,d).
In this sense, FDSST and FDSST2 are more helpful for detecting these existing spectral
energies and thus facilitating seismic interpretation. In particular, FDSST2 more clearly
characterizes the time of these spectral energies (Figures 10d and 11d), which is due to the
second-order local modulation operator.

Figure 9. A field data (a) and trace 120 (b).
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Figure 10. The TFR results of trace 120 obtained by (a) STFT, (b) FSST, (c) FDSST, and (d) FDSST2.
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Figure 11. Enlarged local TFR results corresponding to Figure 10 for (a) STFT, (b) FSST, (c) FDSST,
and (d) FDSST2. FDSST2 generates the more energy-concentrated TFR.

Next, we extracted 40 Hz frequency slices based on the results of the STFT, FSST FDSST
and FDSST2 methods, which are displayed in Figure 12. Figure 13 is the enlarged local area
from a white rectangle box in Figure 12. The STFT fails to effectively provide stratigraphic
information due to the impact of the time–frequency resolution (Figures 12a and 13a).
FSST improves the frequency resolution to a certain extent, but it is not an ideal result
(Figures 12b and 13b). FDSST and FDSST2 provide much sparser representations and de-
pict the spectral characteristics of seismic reflections more clearly (Figure 12c,d). Compared
to the results of FDSST, FDSST2 performs better, with more continuous reflections and
more detailed stratifications (Figures 12d and 13d).
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Figure 12. Representation of 40 Hz frequency slices using STFT-based method (a), FSST-based
method (b), FDSST-based method (c), and FDSST2-based method (d). FDSST2 shows a higher
time resolution.

Figure 13. Enlarged local TFR results corresponding to Figure 12. (a) STFT, (b) FSST, (c) FDSST, and
(d) FDSST2.
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5. Discussion

TFA is one of the most effective tools for characterizing nonstationary signals. STFT
analyzes the frequency content of a signal over time, and it is based on a fixed widow,
which means that high time resolution and frequency resolution cannot be obtained simul-
taneously. FSST is a kind of reassignment method that aims to sharpen a TFR by reassigning
the time–frequency coefficients of STFT in the frequency direction. FDSST and FDSST2
utilize a frequency-domain Gaussian modulated liner chirp model to achieve the TFRs,
where the amplitude is locally approximated by a Gaussian function, and the phase is a
quadratic polynomial. Specifically, in the FDSST algorithm, the reassignment operation
is implemented in the time direction rather than the frequency direction, as is the case
with FSST. Meanwhile, the IF is replaced by a GD estimator in the reassignment operation.
Subsequently, we extended the FDSST to a second-order version, namely FDSST2, using
a second-order local modulation operator and a second-order local GD estimation. Thus,
both FDSST and FDSST2 are more suitable for describing the signals characterized by a
rapidly changing IF.

Due to the Heisenberg uncertainty principle, the time–frequency resolution of STFT
is poor, which limits the wide application of such a technique to some extent. FSST
integrates STFT and the ‘synchrosqueezing’ idea. In the FSST method, the IF estimator
is utilized to sharpen the STFT representation of the signal in the frequency direction.
However, the hypothesis of weak frequency modulation for the modes making up the
signal makes the FSST unsuitable for analyzing some nonstationary signals, such as signals
with strongly varying IF and even impulse signals. In this study, we employ a frequency-
domain Gaussian-modulated linear chirp model to deduce the SST. Next, the GD with
respect to frequency is utilized to depict the ridge. Then, we define a local modulation
operator to rearrange the time–frequency coefficients along the time direction. Since the
proposed method is implemented based on STFT in the frequency domain, it is thus called
frequency-domain SST. Inspired by FSST2, we introduce a second-order local modulation
operator and drive the frequency-domain second-order SST (FDSST2). FDSST and FDSST2
achieve relatively highly energy-concentrated TFR for signals with strongly varying IF,
especially FDSST2. In fact, the frequency-domain SST and FSST are two complementary
methods. The FSST is suitable for characterizing a slowly time-varying signal, while the
frequency-domain SST is more capable of a strongly time-varying signal. Both methods
have their own advantages and working conditions. In addition, we also evaluate the
computation costs of the STFT, FSST, FDSST and FDSST2 methods based on synthetic signal
and field data, which are listed in Table 1. It can be clearly seen that STFT takes the shortest
time, FSST and FDSST are nearly equivalent in time, and FDSST2 takes the longest time
because it involves several STFTs compared to FDSST. All tests were conducted on a PC
station with an Intel Pentium Duo Core CPU clocked at 2.53 GHz and 2 GB of RAM.

Table 1. Computational costs of STFT, FSST, FDSST and FDSST2.

Data STFT FSST FDSST FDSST2

Synthetic data 0.22 s 0.41 s 0.34 s 1.03 s

Field data 36.02 s 47.09 s 43.62 s 147.31 s

In the experiments, we show that the proposed FDSST and FDSST2 methods clearly
outperform STFT and FSST with regard to energy concentration and noise robustness.
Further, we will apply our method to more complicated signals. However, the FDSST2
has a high computational burden because the algorithm itself needs to perform multiple
STFTs. Generally, a computationally efficient algorithm is favorable in practical applica-
tions. Therefore, future work will focus on parallel algorithm development to reduce the
computational burden.

The Renyi entropy is a common measure to estimate the distribution concentration of a
TFR. The larger the Renyi entropy is, the less concentrated the TFR is [27]. Considering the
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readability of the TFR, we utilize the Renyi entropy to evaluate the energy concentration of
the TFRs obtained by the STFT, FSST, FDSST and FDSST2 methods. In the paper, the 3-order
Renyi entropy is used to quantitatively measure the time–frequency energy concentration
since it uses the smallest integer value to yield a well-defined useful information measure
for a large class of signals [30].

Finally, we summarize a list of abbreviations of some technical terms frequently used
in the paper, which is shown in Table 2.

Table 2. List of abbreviations.

Abbreviation Full Name

SST Synchrosqueezing transform

IF Instantaneous frequency

GD Group delay

TFA Time–frequency analysis

STFT Short-time fourier transform

FSST STFT-based SST

CWT Continuous wavelet transform

TFR Time–frequency representation

WVD Wigner–Ville distribution

RM Reassignment method

FSST2 Second-order SST

FSSTN N-order SST

TPST Three-parameter S transform

TSET Time-synchroextracting transform

TSST Time-reassigned synchrosqueezing transform

FDSST Frequency-domain SST

FDSST2 Frequency-domain second-order SST

SNR Signal-to-noise ratio

6. Conclusions

In this paper, a new frequency-domain synchrosqueezing transform is presented for
seismic time–frequency analysis. We derive FDSST and FDSST2 using a frequency-domain
Gaussian-modulated linear chirp model. The FDSST and FDSST2 methods achieve a highly
energy-concentrated TFR for signals with strongly varying IF, especially for FDSST2. In the
proposed algorithm, the GD estimation rather than the IF estimator is utilized to calculate
the ridge. Meanwhile, a new synchrosqueezing operator is implemented to rearrange the
time–frequency energy along the time direction. The effectiveness of FDSST and FDSST2
is validated using the synthetic signal and field dataset. Both methods provide superior
results over some classical TFA techniques, such as STFT and FSST, and are much more
robust to noise. Moreover, we quantitatively evaluate the performance of the FDSST and
FDSST2 methods using Renyi entropy and SNR. The results indicate that the FDSST2 has
the lowest Renyi entry and the strongest robustness to noise compared with the STFT and
FSST methods. A real example further indicates the potential of frequency-domain SST in
the delineation of subsurface geological structures, which renders this technique promising
for seismic data analysis. Future work will be devoted to the influence of noise on the
reassignment operators and parallel algorithm development.
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Appendix A

The proof of Equation (3) is as follows:
The window function g can be expressed as

g(t) =
1

2π

∫ +∞

−∞
G(ς)ei2πςtdς (A1)

Then, the frequency-domain STFT can be written as

Vg
f (t, ς) = VG

f (t, ς)

=
∫ +∞
−∞ f (τ)g∗(τ − t)e−i2πςτdτ

=
∫ +∞
−∞ f (τ)

(
1

2π

∫ +∞
−∞ G∗(ξ)e−i2πξ(τ−t)dξ

)
e−i2πςτdτ

= 1
2π

∫ +∞
−∞ G∗(ξ)ei2πξt

(∫ +∞
−∞ f (τ)e−i2π(ξ+ς)τdτ

)
dξ

= 1
2π

∫ +∞
−∞ G∗(ξ)ei2πξtF(ξ + ς)dξ

= 1
2π

∫ +∞
−∞ F(ξ)G∗(ξ − ς)ei2πt(ξ−ς)dξ

(A2)

Appendix B

The proof of Equation (4) is as follows:

F−1
(

1
G∗(0)

∫ +∞
−∞ VG

f dt
)

= F−1
(

1
G∗(0)

∫ +∞
−∞

∫ +∞
−∞ f (τ)g∗(τ − t)e−i2πςτdτdt

)
= F−1

(∫ +∞
−∞

[
1

G∗(0)

∫ +∞
−∞ g(τ − t)dt

]∗
f (τ)e−i2πςτdτ

)
= F−1( f (τ)e−i2πςτdτ

)
= f (t)

(A3)
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