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Abstract: Income distribution models can be useful for describing the economic properties of a
population. In this study, three-part composite Pareto models are fitted to the income distribution
in Malaysia for the years 2007, 2009, 2012, 2014, and 2016. The three-part composite Pareto models
divide the population into three parts, each following a different distribution model. The lower
part follows the inverse Pareto distribution, the upper part follows the Pareto distribution, and the
middle part follows another unspecified distribution model. For application in income data, the
use of Gaussian mixture distribution is proposed for the middle part, making the inverse Pareto–
Gaussian mixture-Pareto distribution model semi-parametric. From the model, it is found that the
levels of income inequality in the lower and upper income groups decrease over the period of study.
Additionally, the proportion of data following the inverse Pareto distribution in the model is highly
correlated with the official absolute poverty incidence.
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1. Introduction

The research on income distribution has been around for a long time, starting from
Vilfredo Pareto’s observation on income in 1896. Even though the topic has been discussed
at length, it is still relevant and important, as income is heavily related to the well-being
of a country. For example, it is found that income inequality is highly correlated with
the number of criminal activities [1,2] and countries with low income inequality have
healthier citizens mentally and physically [3–6]. High income inequality between groups
in a population may also cause political instability [7] and is considered one of the main
causes of the racial riot in Malaysia in 1969 [8].

There have been many models proposed for describing income distribution. For ex-
ample, the lognormal, Weibull, gamma, Dagum, beta distribution of the second kind,
and Singh–Maddala distributions have been used to model the income distribution of the
whole population. However, these distributions may not fit the upper and lower tails of the
income distribution well. Dagum [9] and Singh and Maddala [10] for example have noted
that the lognormal or gamma distributions alone are not enough to describe the upper
and lower tails of the income distribution well. On the other hand, Pareto distribution
has been used extensively to model the upper tail of the income distribution in various
countries [11–15] and the inverse Pareto distribution can be used for the lower tail as
both the upper and lower tails of income distribution exhibit power-law behaviour [16,17].
In general, the power-law behaviour is observed for the top 5–10% of the population [18].
In the context of the household income in Malaysia, previous studies have identified the
power-law behaviour in the upper tail of the income distribution [19–22]. Additionally,
Safari et al. [23] have noted that the inverse Pareto distribution is a good model to be used
for lower income groups in Malaysia.
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The three-part composite Pareto model can be seen as an extension of the two-
part composite Pareto model introduced by Cooray and Ananda [24]. This composite
model is also known as the spliced distribution in some literature [25,26]. In the intro-
duction of the two-part composite Pareto model, Cooray and Ananda have used the
Pareto distribution for the upper tail and the lognormal distribution for the rest of the
data. After the model was introduced, there have been many advances and varieties
of the two-part composite Pareto model [27–34]. As for the three-part composite Pareto
model, Mendes and Lopes [35] have used a composite model that uses t-distribution for
the middle part and two generalized Pareto distributions both for the lower and upper
parts of the data. Luckstead and Devadoss [36] and Luckstead et al. [37] on the other hand
have used the inverse Pareto distribution for the lower part, lognormal distribution for the
middle part, and Pareto distribution for the upper part for the cities size distribution in
the US and India. Wiegand and Nadarajah [38] have also used the three-part composite
Pareto model with Pareto type IV distribution for the upper part and lognormal, gamma,
beta Weibull, or Pareto type IV for the lower and middle part of the data for categorizing
companies based on their market value, sales, assets, and profits. The two-part composite
Pareto model has been applied to the income data [39], but to the authors knowledge,
the three-part composite Pareto model has not been proposed and used to describe the
income distribution.

Since the Pareto distribution fits well for the upper tail and the inverse Pareto distribu-
tions is suitable for the lower tail of the household income data, a model that combines these
two distributions together with another distribution for the middle part of the data may
be useful. In this paper, we propose the use of the three-part composite Pareto models for
income distribution that describe lower, middle, and upper parts of the data using separate
distributions: inverse Pareto distribution for the lower part, an unspecified distribution
for the middle part, and Pareto distribution for the upper part of the income data. For the
middle part of the data, this paper proposed the usage of Gaussian mixture distribution.
By combining these three distributions, the three-part composite Pareto model can divide
the population into three categories: the lower, middle, and upper income groups. Further
analysis on each of these categories can be performed by studying the properties of the
respective distribution for the group. This approach of combining three separate distribu-
tions is different as compared to the practice used in other literature, which which analyses
each part separately [14,40–42].

The choice of using Pareto and inverse Pareto distributions in the composite model is
due to their properties that fit with the upper and lower parts of the income distribution
together their simplicity. While there are other distributions that can be used, for example
Pareto Type II–IV, Generalized Pareto, or Generalized Extreme Value distributions for
the upper tail, using these distributions increases the complexity of the composite model.
Additionally, the shape parameters in the Pareto and inverse Pareto distributions are useful
for measuring income inequalities, as discussed in Section 2.2. The Lorenz curve and Gini
index used for measuring the income inequality model will also be shown. And finally,
the model is then applied to the household income data in Malaysia for the years 2007,
2009, 2012, 2014, and 2016.

This paper is organized as follows. Section 2 discusses the methodologies used in
the study. This includes the three-part composite Pareto model, the Lorenz curve and
Gini index, the semi-parametric three part composite Pareto model, as well as the pseudo-
likelihood approach used to estimate the parameters in the model. Section 3 focuses on the
application of the three-part composite Pareto model to the income distribution in Malaysia.
Then finally, Section 4 concludes the paper.

2. Methodologies
2.1. Three-Part Composite Pareto Model

In the three-part composite Pareto (3PCP) model, the data are divided into three
parts, the lower, upper, and middle parts, each following a different distribution model.
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The lower part of the data follows the inverse Pareto distribution with probability density
function (PDF)

f IP(x|τ1, α1) =
α1xα1−1

τα1
1

, for 0 < x < τ1, (1)

where τ1 and α1 are the threshold and shape parameters of the inverse Pareto distribution,
respectively. The inverse Pareto distribution is also called the power function distribution
in some literature [43]. The upper part of the data follows the Pareto distribution with PDF:

fP(x|τ2, α2) =
α2τα2

2
xα2+1 , for x > τ2, (2)

where τ2 and α2 are the threshold and shape parameters of the Pareto distribution, re-
spectively. And finally, the middle part of the data follows another distribution that is
not specified or fixed. Figure 1 shows a graphical representation of the PDF of a 3PCP
model with Gaussian mixture for the middle part of the data. In the figure, observations
with values between 0 and τ1 are modelled by the inverse Pareto distribution, observa-
tions with values between τ1 and τ2 are modelled by the Gaussian mixture distribution,
and observations with values greater than τ2 are modelled by the Pareto distribution.

f(x) vs x

x

0 τ1 τ2

Inverse

Pareto

Gaussian

mixture
Pareto

f(
x
)

Figure 1. A graphical example of the PDF of the 3PCP model with Gaussian mixture distribution for
the middle data.

Let h(x|η) and H(x|η) be the PDF and cumulative distribution function (CDF) of the
middle part of the data with parameter η, respectively. Combining the three distributions
for each part gives the following PDF for the 3PCP model:

f (x|θ) =


ρ1 f IP(x|τ1, α1), for 0 < x < τ1,

(1− ρ1 − ρ2)
h(x|η)

H(τ2|η)− H(τ1|η)
, for τ1 ≤ x ≤ τ2,

ρ2 fP(x|τ2, α2), for x > τ2,

(3)

where θ is the collection of all parameters in the model, ρ1 is the proportion of data in the
lower part following the inverse Pareto distribution, and ρ2 is the proportion of data in the
upper part following the Pareto distribution.
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The PDF in Equation (3) indicates that there are two threshold parameters, τ1 and
τ2. Any observation with a value less than τ1 follows the inverse Pareto distribution with
PDF f IP(x|τ1, α1). Any observation with a value between τ1 and τ2 follows the middle part
distribution with PDF h(x|η). And lastly, for any observation with a value greater than
τ2, it follows the Pareto distribution with PDF fP(x|τ2, α2). Because f IP(x|τ1, α1), h(x|η),
and fP(x|τ2, α2) are all PDFs, then ∫∞

0 f (x|θ) dx must be equal to 1. The PDF in Equation (3)
can also be considered as a mixture distribution, except the distributions do not overlap
each other.

The CDF for 3PCP model can be calculated simply by integrating the PDF in Equation (3)
to obtain

F(x|θ) =



ρ1

(
x
τ1

)α1

, for 0 < x < τ1,

ρ1 + (1− ρ1 − ρ2)
H(x|η)− H(τ1|η)
H(τ2|η)− H(τ1|η)

, for τ1 ≤ x ≤ τ2,

1− ρ2

(τ2

x

)α2
, for x > τ2.

(4)

Moreover, the quantile function for the model is

F−1(u|θ) =



τ1

(
u
ρ1

)1/α1

, for 0 < u < ρ1,

H−1
[

H(τ1) +
(u− ρ1)[H(τ2)− H(τ1)]

1− ρ1 − ρ2

∣∣∣∣η], for ρ1 ≤ u ≤ 1− ρ2,

τ2

(
ρ2

1− u

)1/α2

, for 1− ρ2 < u < 1.

(5)

The overall mean when α2 > 1 is given in the equation below:

µX =
ρ1α1τ1

α1 + 1
+

1− ρ1 − ρ2

H(τ2|η)− H(τ1|η)

∫ τ2

τ1

xh(x|η) dx +
ρ2α2τ2

α2 − 1
. (6)

If α2 ≤ 1, then the integral ∫∞
τ2

x fP(x|τ2, α2) dx diverges and µX = ∞.
However, note that the PDF in Equation (3) may not be continuous or differentiable.

Additional constraints are required if continuity and differentiability are desired. The conti-
nuity of the PDF can be achieved by setting

ρ1 =
α2τ1h(τ1|η)

α1α2[H(τ2|η)− H(τ1|η)] + α1τ2h(τ2|η) + α2τ1h(τ1|η)
, (7)

and

ρ2 =
α1τ2h(τ2|η)

α1α2[H(τ2|η)− H(τ1|η)] + α1τ2h(τ2|η) + α2τ1h(τ1|η)
. (8)

And as for the differentiability of the PDF, Equations (7) and (8) must be satisfied
together with

α1 =
h(τ1|η) + τ1h′(τ1|η)

h(τ1|η)
, (9)

and

α2 =
−h(τ2|η)− τ2h′(τ2|η)

h(τ2|η)
, (10)

where h′(x|η) is the first derivative of h(x|η) with respect to x.
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2.2. Lorenz Curve and Gini Index

Lorenz curve and Gini index are commonly used tools to measure the level of income
inequality in a population [18,44]. The general formula that can be used to calculate the
Lorenz curve for a population with a distribution function is [45]

LC(u) =
1

µX

∫ u

0
F−1(y|θ) dy, (11)

where µX is the overall mean and F−1(y|θ) is the quantile function. The value of LC(u) for
a specific u refers to the proportion of cumulative wealth or income earned by the lowest u
proportion of the population. Let

A(u) =
∫ u

ρ1

H−1
[

H(τ1) +
(y− ρ1)[H(τ2)− H(τ1)]

1− ρ1 − ρ2

∣∣∣∣η] dy. (12)

Then, it can be shown that for the 3PCP model,

LC(u) =



1
µX

ρ1α1τ1

α1 + 1

(
u
ρ1

)1+1/α1

, for 0 < u < ρ1,

1
µX

[
ρ1α1τ1

α1 + 1
+ A(u)

]
, for ρ1 ≤ u ≤ 1− ρ2,

1
µX

[
ρ1α1τ1

α1 + 1
+ A(1− ρ2) +

ρ2α2τ2

α2 − 1

(
1−

(
ρ2

1− u

)1/α2−1
)]

, for 1− ρ2 < u < 1.

(13)

Using the obtained Lorenz curve function in Equation (13), the Lorenz curve can be
plotted on a unit square where the x-axis is the population proportion, u, and the y-axis is
the proportion of cumulative wealth or income, LC(u), and will be compared to the 45◦

equality line. The closer the Lorenz curve is to the 45◦ equality line, the lower the level of
income inequality.

The Gini index on the other hand is a numerical measure calculated using the Lorenz
curve that can be used to assess the level of income inequality. The value of Gini index is
between 0 and 1 where the higher the Gini index is, the higher the level of income inequality.
Using the Lorenz curve in Equation (13), it can be shown that

Gini = 1− 2
∫ 1

0
LC(u) du,

= 1− 2
µX

[
ρ2

1α2
1τ1

(α1 + 1)(2α1 + 1)
+

ρ1α1τ1(1− ρ1)

α1 + 1
+
∫ 1−ρ2

ρ1

A(u) du

+ ρ2 A(1− ρ2) +
ρ2

2α2τ2

α2 − 1
−

ρ2
2α2

2τ2

(α2 − 1)(2α2 − 1)

]
.

(14)

The integral ∫ 1−ρ2
ρ1 A(u) du in the expression above may require a numerical method,

for example the trapezoidal rule, to approximate its value. Using Equation (14) above,
the income inequality for the whole population can be measured. A high Gini index value
shows a high level of income inequality, whereas a low Gini index value shows a low level
of income inequality.

Note that the Lorenz curve and Gini index can both be calculated empirically or
using a non-parametric approach, without having to specify a distribution model for the
income. In general, if the number of observations in the data is large, the Lorenz curve
and Gini index calculated empirically or using a non-parametric approach provide good
estimates of inequality measures. However, the Lorenz curve and Gini index calculated
using the underlying distribution model have the advantage when the sample size is small,
and provide more reliable estimates as compared to the non-parametric approach [46]. This
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is true for any distribution model, including the 3PCP model, provided that the distribution
model fits the data adequately.

Additionally, it can be shown that the Gini index for the inverse Pareto distribution
with shape parameter α1 is [23]

Gini =
1

2α1 + 1
, (15)

whereas for Pareto distribution with shape parameter α2, its Gini index is [43]

Gini =
1

2α2 + 1
. (16)

From these two equations, we can then use the values of α1 and α2 in the 3PCP model
to evaluate the income inequalities in the lower and upper data, respectively. For example,
if the value of α1 is high, this indicates a high level of income inequality in the lower part
of the data. On the other hand, if α1 is low, then the level of income inequality in the
lower part of the data is low, and similarly for α2 for the upper part of the data. Note
that comparisons on the income inequalities using the shape parameters can be made for
different datasets with different proportions of the upper and lower data, as long as the
proportions are not too small. As shown in Equations (15) and (16), the Gini index depends
on the shape of the distribution, and not on the threshold parameters or the proportions
of data.

2.3. Semi-Parametric Three-Part Composite Pareto Model

A problem might occur when using commonly used models for income distribution,
for example lognormal, gamma, or Weibull distributions, for the middle part of the data.
Suppose for example, the overall income distribution comes from a lognormal distribution.
Then, when the 3PCP model with PDF in Equation (3) is applied to the data with h(x|η) be
the lognormal distribution, we would expect ρ1 and ρ2 to be zero as the inverse Pareto and
Pareto distributions are not required for describing the income distribution, and lognormal
distribution alone is enough for the whole data. With that, information regarding the lower
and upper income earners will be lost and the 3PCP model is not useful.

To overcome this problem, we can set the middle part to follow a semi-parametric
model, for example the Gaussian mixture with k components. We can set

h(x|r, µ, σ) =
k

∑
j=1

rj fN(x|µj, σ2
j )

FN(τ2|µj, σ2
j )− FN(τ1|µj, σ2

j )
, for τ1 ≤ x ≤ τ2, (17)

and

H(x|r, µ, σ) =
k

∑
j=1

rj

[
FN(x|µj, σ2

j )− FN(τ1|µj, σ2
j )
]

FN(τ2|µj, σ2
j )− FN(τ1|µj, σ2

j )
, for τ1 ≤ x ≤ τ2, (18)

where fN(x|µj, σ2
j ) and FN(x|µj, σ2

j ) are the PDF and CDF of a normal distribution with

mean µj and variance σ2
j , respectively, and rj is the weight for the jth component in the

mixture model with ∑k
i=1 rj = 1 and rj > 0 for all j = 1, · · · , k. The number of components

k is not specified and depends on the data themselves. The AIC and BIC values can be used
to find the value of k that gives the lowest AIC and BIC values. Additionally, notice that
from Equation (18), H(τ1|η) = 0 and H(τ2|η) = 1. In this paper, the model that uses this
specification is called the inverse Pareto–Gaussian mixture-Pareto (IP-GM-P) model.

The usage of Gaussian mixture for the middle part of the data can give space for
the lower and upper part of the data to be modelled by the inverse Pareto and Pareto
distributions, respectively. In general, a normal distribution is not suitable to be used for
income distribution due to its properties. For example, a normal distribution is symmetric
and covers the whole real number, whereas the income distribution is commonly skewed
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to the right with heavy upper tail and with positive values only. When the Gaussian
mixture distribution is used for the middle part of the data, the Pareto and inverse Pareto
distributions are both required to fit the upper and lower parts of the data, respectively.
Thus, information about the upper and lower data in the form of the Pareto and inverse
Pareto distributions are not lost.

The finite mixture models have been used extensively to model the whole income
distribution and to separate income groups within the population [47]. Some finite mixture
models that have been used for the whole income distribution include the Gaussian mixture
model [48,49], the gamma mixture model [50], and the lognormal mixture model [51]. But as
mentioned, heavy tail distribution such as the lognormal, gamma, or Weibull distributions
including their mixture models, should be avoided for the middle part of the data when
the 3PCP model is to be fitted to income distribution. To our knowledge, the mixture
model has not been used to model middle-class income specifically. The choice of using the
Gaussian mixture model for the middle part of the 3PCP model is due to the properties of
the normal distribution that is not suitable for income distribution and that any continuous
distribution can be fitted by the Gaussian mixture model with a large enough number of
components [52].

By substituting Equation (17) with Equation (3), the PDF for the IP-GM-P model is

f (x|θ) =



ρ1 f IP(x|τ1, α1), for 0 < x < τ1,

(1− ρ1 − ρ2)
k

∑
j=1

rj fN(x|µj, σ2
j )

FN(τ2|µj, σ2
j )− FN(τ1|µj, σ2

j )
, for τ1 ≤ x ≤ τ2,

ρ2 fP(x|τ2, α2), for x > τ2.

(19)

Additionally, the overall mean for the IP-GM-P model can be written as

µX =
ρ1α1τ1

α1 + 1
+

ρ2α2τ2

α2 − 1
+

k

∑
j=1

{
rj(1− ρ1 − ρ2)

F2,j − F1,j

{
µj

[
Φ

(
τ2 − µj

σj

)
−Φ

(
τ1 − µj

σj

)]

+
σj√
2π

[
exp

{
−
(τ1 − µj)

2

2σ2
j

}
− exp

{
−
(τ2 − µj)

2

2σ2
j

}]}}
, (20)

where Φ(·) is the CDF of the standard normal distribution.
For the IP-GM-P model, it can be shown that the A(u) function in Equation (12) can

be written as

A(u) =
k

∑
j=1

{
rj(1− ρ1 − ρ2)

FN(τ2|µj, σ2
j )− FN(τ1|µj, σ2

j )

{
µj

[
Φ

(
u∗ − µj

σj

)
−Φ

(
τ1 − µj

σj

)]

+
σj√
2π

[
exp

{
−
(τ1 − µj)

2

2σ2
j

}
− exp

{
−
(u∗ − µj)

2

2σ2
j

}]}}
, (21)

where

u∗ = H−1
(

u− ρ1

1− ρ1 − ρ2

∣∣∣∣η), (22)

and H−1(u|η) is the quantile function of the Gaussian mixture. Since H(x|η) is an increas-
ing function, calculating u∗ is easy, for example by using bisection method.

Using Equations (20) and (21), the Lorenz curve and Gini index using IP-GM-P model
can be calculated using Equations (13) and (14), respectively. The integral ∫ 1−ρ2

ρ1 A(u) du in
Equation (14) requires a numerical method, for example the trapezoidal rule, to approxi-
mate it. The approximation is fast and easy as the integral is bounded.
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2.4. Statistical Methods for Complex Survey Data

In complex survey data, samples in the survey are given different weights depending
on the size of target population and the size of the samples collected. These weights,
when available, should be included in analysis to improve accuracy and to avoid bias
in the results [53]. To include sample weights in the parameter estimation of the model,
the pseudo-likelihood approach can be used.

Let xi be the income of ith household in the sample with weight wi and n be the sample
size. The weight is scaled such that the total weight is n using the following expression:

wi =
nw∗i

∑n
i=1 w∗i

(23)

where w∗i is the unscaled sample weight. Then, the pseudo-likelihood function of the data
can be written as

L̃ =
n

∏
i=1

[ f (xi|θ)]wi . (24)

Notice that if wi = 1 for all i, as seen in simple random sampling, then the pseudo-
likelihood function is the regular likelihood function. The maximum pseudo-likelihood
estimate can be defined as the parameters that results with the highest value for the
pseudo-likelihood function [54]:

θ̂ = arg max
θ

{
n

∏
i=1

[ f (xi|θ)]wi

}
. (25)

Unfortunately, due of the complexity of the 3PCP model, the analytical form of the
solution is not possible. In this paper, the mle2 function in bbmle R package is used
to estimate the parameters. This function uses the optim optimizer in R and gives the
numerical estimate for the values of parameters that maximize the log pseudo-likelihood.

To perform a goodness-of-fit test, the modified Kolmogorov–Smirnov (KS) test will
be used. The KS goodness-of-fit test is used to determine whether data fits the model by
comparing the empirical CDF with the theoretical CDF. If the p-value of the test is lower
than the significance level, then the null hypothesis that the model fits the data will be
rejected. Since the sample weights are included in the analysis, the test statistic for this test
is modified such that

Dn =
∑n

i=1 wi√
∑n

i=1 w2
i

max
x
|Fn(x)− F(x)|, (26)

where Fn(x) is the weighted empirical CDF and F(x) is the theoretical CDF. Observe that if
wi = 1 for all i, then Dn in the expression above reduces to the regular KS test statistic. It has
been shown that Dn in Equation (26) converges weakly to the KS distribution as n→ ∞ [55,56].

As for finding the best number of components, k, the pseudo-likelihood based BIC
values are used. The formula for this information criterion is as follows:

BIC = d log(n)− 2 log(L̂), (27)

where d is the number of parameters in the model and L̂ is the value of the pseudo-
likelihood function using the maximum pseudo-likelihood estimate. The model with the
lowest BIC values is more preferable. The consistency of the pseudo-likelihood-based BIC
has been established by Xu et al. [57].

3. Application to Income Distribution in Malaysia
3.1. Household Income Survey

The data used in this paper are from the Household Income and Basic Amenities
Survey (HIS & BA) conducted by the Department of Statistics Malaysia. Twice every
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five years, the Department of Statistics Malaysia would conduct this survey to collect
information related to the economic well-being of the citizens in Malaysia. In this paper,
the household income and its size will be used to study the changes in household income
in Malaysia. Five datasets are used: household income for the years 2007, 2009, 2012, 2014,
and 2016. These datasets are obtained from the Bank Data UKM through its agreement
with the Department of Statistics Malaysia. The data consist of at least 12,000 households
in each dataset. The monthly gross income, household size, and weight of each sample
in the data are used to model the income distribution by the 3PCP model and using the
pseudo-likelihood approach. The monthly gross income is first equivalized by dividing the
income by the square root of the household size. This square root equivalization is used
in many studies to take into account the household size when considering the economic
status of a household [58,59].

3.2. Application of the Model

The 3PCP models are applied to the HIS data. Originally, the 3PCP models with
lognormal, gamma, or Weibull distributions for the middle data are applied to the HIS
data. It is found that the inverse Pareto–lognormal–Pareto model with continuous but
not differentiable PDF fits all five datasets based on the KS test statistics and the lowest
BIC values as compared to other models. However, for some datasets, the estimated
values ρ̂1 and ρ̂2 are found to be too small, with the smallest value being 0.0054 followed
by 0.0074, which cannot be interpreted as proportion of poor and rich subpopulations,
respectively. The estimated proportions are also inconsistent throughout the five datasets.
This may occur because the lognormal distribution is already a good fit for some of the
data, without needing the inverse Pareto and Pareto distributions in the model.

This is where the semi-parametric IP-GM-P model can be useful to make sure the lower
and upper parts of the data are modelled by the inverse Pareto and Pareto distributions,
respectively. The IP-GM-P model used is specified such that its PDF is continuous but not
differentiable by specifying the values of ρ1 and ρ2 as in Equations (7) and (8). Adding the
differentiability condition to the IP-GM-P model causes the number of components in the
Gaussian mixture to increase just to make the PDF differentiable. While differentiability
condition is more realistic, it is not useful for the IP-GM-P model.

When applying the IP-GM-P model, the number of components k for each dataset is
first determined by using k = 1, 2, 3 and 4 and finding the value of k that gives the lowest
BIC value. It is found that k = 2 gives the lowest BIC value for HIS data for the years 2007,
2009, and 2012 whereas k = 3 gives the lowest BIC value for HIS data for the years 2014 and
2016. Table 1 shows the estimated values for α1, α2, ρ1, ρ2, τ1, and τ2 for IP-GM-P model.
The table also shows the p-values for the KS goodness-of-fit test. Based on the very large
p-values for all five datasets, the IP-GM-P model has successfully fit with all of them. This
is not unexpected because of the large number of parameters in the IP-GM-P model that
helps with fitting the model.

Table 1. Estimated parameter values for IP-GM-P model, together with the p-values for the KS
goodness-of-fit test.

Year α̂1 α̂2 ρ̂1 ρ̂2 τ̂1 τ̂2 p-Value

2007 3.2515 2.3674 0.0781 0.0757 464 4074 0.9782
2009 3.7424 2.3995 0.0615 0.0819 475 4431 0.9115
2012 4.4722 2.4513 0.0361 0.0996 518 4956 0.7948
2014 4.4227 2.6125 0.0296 0.0287 681 10179 0.9919
2016 4.5953 2.6405 0.0245 0.0597 759 8261 0.9306

3.3. Income Inequality Using IP-GM-P Model

The income inequality of the data can be measured using the values of α1 and α2,
as well as the Lorenz Curve and Gini index. Looking at the estimated values for ρ1 in Table 1,
the IP-GM-P model estimated that around 2.45% to 7.81% of the population belongs to the
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lower income group. Note that the estimated values also drop from 2007 to 2016. Here,
comparisons are made on the proportions and not the threshold parameters, as proportions
are unit-free. If comparisons were made using threshold parameters, the inflation effect
must be taken into consideration. Additionally, from the table, the estimated value for α1
generally increases from 3.25 in 2007 to 4.59 in 2016. Since the Gini index for the lower
data is inversely related to α1, these values indicate that in general, the level of income
inequality for the lower income group decreases from 2007 to 2016. Figure 2 shows the
changes in α1 and α2 from 2007 to 2016. From the figure, it can be inferred that the level of
income inequality for the lower income group decreases from 2007 to 2012 (as the value of
α1 increases), and does not change much from 2012 to 2016.
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Figure 2. The estimated values for α1 and α2 using the IP-GM-P model together with their 95%
confidence intervals.

For the upper income group, Table 1 shows that the estimated proportion of the upper
income group in the population is around 2.87% to 9.96%. There does not seem to be any
trend for the changes in ρ2. As for α2, the table shows that the its estimated value generally
increases from 2.37 in 2007 to 2.64 in 2016. The changes in α2 are also shown in Figure 2.
Similar to the lower income group, the increase of α2 indicates that the level of income
inequality for the upper income group decreases over the period of time.

Figure 3 shows the Lorenz curve for household income for all five datasets ob-
tained by using the IP-GM-P model. This Lorenz curve is obtained by substituting
Equations (20) and (21) into Equation (13). From the figure, it can be observed that the
Lorenz curve moves closer to the equality line from 2007 to 2016. Additionally, the Gini
index is obtained by substituting Equations (20) and (21) into Equation (14) and using the
trapezoidal rule to estimate the integral in Equation (14). It is found that the Gini index
obtained by using IP-GM-P model for HIS data for the years 2007, 2009, 2012, 2014, and 2016
are 0.4434, 0.4406, 0.4267, 0.4051, and 0.3929, respectively. The decrease in the Gini index
together with the increase in proximity of the Lorenz curve to the equality line suggest that,
overall, the level of income inequality in Malaysia decreased from 2007 to 2016.

3.4. Comparison with Official Poverty Rate

The proportions of household in the lower income group represented by the inverse
Pareto distribution in the IP-GM-P are compared to the official poverty incidences published
by the Department of Statistics Malaysia [60]. There are two types of poverty used by
the Department of Statistics Malaysia. The first type is the absolute poverty that includes
households with income lower than a minimum threshold called poverty line income.
According to the Department of Statistics Malaysia [61], the poverty line income is the
minimum income required for a household to satisfy the basic needs of its members that
has been identified through research conducted by the Economic Planning Unit, Prime
Minister’s Department and the Department of Statistics Malaysia in collaboration with
the United Nations Development Programme. The second type of poverty is the relative
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poverty defined as households with income less than half of the median household income
of the population.
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Figure 3. Lorenz curve for the household income data in Malaysia using IP-GM-P model.

Table 2 shows the percentage of household represented by the inverse Pareto dis-
tribution in the IP-GM-P model together with the official poverty incidences published
by the Department of Statistics Malaysia for the years 2007, 2009, 2012, 2014, and 2016.
Overall, the absolute poverty incidence decreases over the period of time and no trend can
be observed for the relative poverty incidence. It is also noted that the relative poverty
incidence is much higher as compared to the absolute poverty incidence.

Table 2. Percentages of lower income data explained by the inverse Pareto distribution and the
official poverty incidences in Malaysia.

Year IP-GM-P Absolute Poverty Incidence Relative Poverty Incidence

2007 7.81 3.6 17.4
2009 6.15 3.8 19.3
2012 3.61 1.7 19.2
2014 2.96 0.6 15.6
2016 2.45 0.4 1 15.9

1 Using 2005 method. This value is 7.6% if 2019 method is used.

Overall, Table 2 shows that the percentage of household income modelled by the
inverse Pareto distribution is between the absolute poverty incidence and relative poverty
incidence. Additionally, the percentage of household modelled by the inverse Pareto
distribution also decreases from 2007 to 2016, and the same can be observed for the absolute
poverty incidence. Figure 4 shows the relationship between the percentage of the lower
income group and the absolute and relative poverty incidences. Based on the figure, it can
be observed that the percentage of lower income group seems to be linearly related to the
absolute poverty incidence, with the high correlation coefficient. However, no relationship
can be observed between the percentage of the group and the relative poverty incidence.

Although the percentage of the lower income group is not exactly equal to any of the
two poverty incidences reported by the Department of Statistics Malaysia, there is a strong
relationship between this percentage and the absolute poverty incidence based on the high
correlation coefficient. This indicates that ρ1 in the IP-GM-P model may be related to the
absolute poverty incidence, and can be used to determine the absolute poverty incidence
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without the need to determine the poverty line income, which may require additional time
and cost.
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Figure 4. Comparison between ρ1 obtained from IP-GM-P model and the official poverty incidences.

4. Conclusions

This paper proposes the use of a three-part composite Pareto (3PCP) model to be
applied to the income distribution. The 3PCP model is a combination of inverse Pareto
distribution for the lower part of the data, Pareto distribution for the upper part of the
data, and another unspecified distribution for the middle part of the data. The general
form of the probability density function (PDF) as well as the constraints required for the
PDF to be continuous and differentiable are also given. Additionally, the Lorenz curve
and Gini index for the 3PCP model are given. For the middle part of the data, this paper
proposes to use a semi-parametric approach by using the Gaussian mixture distribution.
This inverse Pareto–Gaussian mixture-Pareto (IP-GM-P) distribution model has the benefit
that it allows lower and upper parts of the data to be described by the inverse Pareto and
Pareto distributions, respectively.

The main advantage of the 3PCP model is that the model divides the population
into three categories—the lower, middle, and upper income groups—and analyses them
simultaneously, unlike previous literature that analyses each group separately. Additionally,
the shape parameters in the Pareto and inverse Pareto distributions give insight on the
levels of income inequality in the upper and lower income groups, respectively. Knowing
how the income inequality changes in the lower and upper income groups may help policy
makers in making decisions. Additionally, it is found, at least for the Malaysian household
income, that the proportion of data following the inverse Pareto distribution is highly
correlated with the official absolute poverty incidence. Therefore, the 3PCP model can be
used to estimate the absolute poverty incidence in a country without having to find the
poverty line income, which can be difficult.

However there are some challenges to the 3PCP model. First, due to the model
complexity, the parameter estimation process can be difficult. In this paper, the parameters
are estimated numerically which may not give reliable results. In some cases, several initial
values were used to find the maximum likelihood estimates and there is no guarantee that
the numerically estimated values are the ones that maximize the likelihood. Additionally,
the lower, middle, and upper income groups derived from the 3PCP model may not
align with the definition used by the governments and policy makers. In many countries,
the income groups are defined by the quantiles, for example lower income earners are those
in the bottom 40% of the population. The classification based on the quantiles are easier to
be understood by the general public, compared to estimates found using the 3PCP model.



Mathematics 2023, 11, 2899 13 of 15

For future work, the performance of the 3PCP model must be assessed for other
countries and not just Malaysia. It would be interesting to see if the 3PCP model can
explain properties of income distribution in other countries. This paper focuses on the
household income in Malaysia due to data availability and to make comparison with
poverty incidence based on poverty line income. We expect the 3PCP model to fit income
distribution of other countries. Comparison on the proportions of data following the Pareto
and inverse Pareto distributions based on the 3PCP model can also be made for different
countries. Furthermore, the robustness of the 3PCP model may be explored further, but we
expect that the robustness of the 3PCP model to be similar to the Pareto distribution for
data with extreme outliers. Robust estimators for the 3PCP model may also be developed.
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