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Abstract: In the present work, we prove a result concerning an ordering over intuitionistic fuzzy
pairs generated by the power mean (Mp) for p > 0. We also introduce a family of orderings over
intuitionistic fuzzy pairs generated by the weighted power mean (Mα

p) and prove that a similar result
holds for them. The considered orderings in a natural way extend the classical partial ordering and
allow the comparison of previously incomparable alternatives. In the process of proving these prop-
erties, we establish some inequalities involving logarithms which may be of interest by themselves.
We also show that there exists p > 0 for which a finite set of alternatives, satisfying some reasonable
requirements, some of which were not comparable under the classical ordering, has all its elements
comparable under the new ordering. Finally, we provide some examples for the possible use of these
orderings to a set of alternatives, which are in the form of intuitionistic fuzzy pairs as well as to
results from InterCriteria Analysis.
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1. Introduction

Decision making under uncertainty, especially when the data are represented by
intuitionistic fuzzy values or intuitionistic fuzzy interval values, has gained increasing
interest in recent decades [1–9]. Recent research has been concentrated on the reduction
in redundant information from the set of considered alternatives without affecting the
quality of the decision [10], finding approaches applicable to cases with incomplete or
missing evaluations [11], or finding approaches that are suitable for multi-attribute decision
making [12,13], while others were focused on investigating the relationships between
different possible orderings and their advantages and disadvantages [9,14–16].

Intuitionistic fuzzy pairs (IFPs) may be viewed as single-point intuitionistic fuzzy
sets (see [17]), all of which are associated with the same element. Different orderings were
defined over IFPs. The two classical ones are due to Atanassov [18] as well as Bustince
and Burillo [19] (the latter one was also studied in detail by E. Marinov [20]). In order to
select certain IFPs among some which are incomparable under the classical ordering of
Atanassov, another ordering has to be used. The approaches usually used either employ a
ranking function which produces a real-valued number, thus implying a linear order, or
some distance measure to 〈1, 0〉, which also provides a real-valued number as a result. Our
approach slightly differs from that, since we consider the families of partial orderings which
tend towards linear ordering as certain parameters grow. In a previous investigation, two of
the authors of the present work first introduced the component biased power mean-based
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ordering between IFPs, denoted by �µ;Mp [21]. It is, in a way, the natural generalization of
Atanassov’s classical ordering, which in terms of power mean, may be stated as �µ;M−∞ .

The main contributions of the current work are:

• The establishment of the fact that, for p > 0, if u �µ;Mp v, then u �µ;Mp+ε v, for any
ε > 0,

• The introduction of a new ordering—a first component biased weighted power mean-
based ordering �µ;Mα

p —which has the same property both for p > 0 and for any
β > α.

• Providing the necessary and sufficient conditions for the possibility to make any two
alternatives from a set of IFPs comparable under some of these orderings stated as
Proposition 1.

The considered families of orderings (�µ;Mp and �µ;Mα
p ), thus provide an opportunity

for a more flexible yet consistent way of comparing a larger selection of IFPs, which are
incomparable under the classical ordering. In terms of the orderings between the closed
subintervals of the unit interval introduced by Bustince et al. in [8], these families of
orderings may be considered admissible successive refinements of the partial order ≤2, as
p and/or α grows.

The paper is organized as follows: Section 2 provides the basic definitions and auxiliary
results which will be further used. Section 3 provides proofs of the properties of the
considered families of orderings. Section 4 establishes the necessary and sufficient condition
to make any two alternatives from a set of IFPs comparable under some of these orderings,
providing examples for the possible applications of the orderings based on that, as well
as a comparison with the results obtained by other existing orderings from the literature.
Section 5 provides a brief overview of the results and outlines future directions for research.

2. Preliminaries and Auxiliary Results

Here, we provide a concise description of the notions and auxiliary results that will be
required for the formulation and proof of our main results.

Definition 1 (cf. [22]). An intuitionistic fuzzy pair is an ordered couple of real non-negative
numbers 〈a, b〉, such that:

min(a, b) ≤ 1−max(a, b). (1)

This concept is important in practice since many methods implementing intuitionistic fuzzy
techniques generate estimates in the form of IFPs. One such example is the InterCriteria Analysis
(ICrA). For these estimates, the first component usually has a sense of validity, similarity, or
some form of agreement or parity, while the second component signifies falsity, distance, or
some form of disagreement or disparity, etc. When a choice between two IFPs is required, an
ordering (or an appropriate ranking method) must be used.

The classical partial ordering introduced by Atanassov (see [18]) is given by

Definition 2 (cf. [18,22]). For two IFPs: u = 〈u1, u2〉 and v = 〈v1, v2〉, we say that u is less or
equal to v, and we write:

u ≤ v,

iff {
u1 ≤ v1

u2 ≥ v2.
(2)

It is readily obvious that ≤ is only partial ordering, since it is transitive, reflexive, and
antisymmetric but there exist u and v, for which (2) is not satisfied. For instance, the pairs
〈0.35, 0.45〉 and 〈0.4, 0.5〉 are not comparable under classical ordering.

Other classical ordering worth mentioning is outlined as follows.
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Definition 3 (cf. [19,20]). For two IFPs: u = 〈u1, u2〉 and v = 〈v1, v2〉, we say that u precedes
v, and we write:

u � v,

iff {
u1 ≤ v1

u2 ≤ v2.
(3)

This ordering, called π-ordering by E. Marinov, is in some sense counterpart to classical
ordering. Indeed, excluding the cases of simultaneous equalities in (3) and (2), we have
that, if two elements are comparable under one of these orderings, they are incomparable
under the other.

Definition 4 ([23], p. 175). The power mean of two non-negative numbers x, y is given by:

Mp(x, y) =
(

xp + yp

2

) 1
p
. (4)

Special cases (obtained as a limit) of the power mean worth mentioning are the
following: M−∞(x, y) = min(x, y), M0(x, y) =

√
xy, M∞(x, y) = max(x, y).

The power mean has the following nice property [23] (p. 175):

Mp(x, y) ≤ Mq(x, y) for p ≤ q.

Definition 5 (cf. [23], p. 175). The power mean with the weight α of two non-negative numbers
x, y is given by:

Mα
p(x, y) = (αxp + (1− α)yp)

1
p , (5)

where α ∈ ( 1
2 , 1).

Definition 6 ([21]). Given two IFPs u = 〈u1, u2〉 and v = 〈v1, v2〉, we say that u is the first
component biased power mean-based with a value of p less or equal to v and write u �µ;Mp v if{

1− u1 ≥ 1− v1

Mp(1− u1, u2) ≥ Mp(1− v1, v2).
(6)

Definition 7. Given two IFPs u = 〈u1, u2〉 and v = 〈v1, v2〉, we say that u is the first component
biased power mean with a weight of α based on a value of p, which is less than or equal to v, and
write u �µ;Mα

p v if {
1− u1 ≥ 1− v1

Mα
p(1− u1, u2) ≥ Mα

p(1− v1, v2).
(7)

Remark 1. If we consider the IFP 〈a, b〉 as corresponding to the closed subinterval [b, 1− a], we
can see that the ordering ≤2 introduced in [8] as:

[b, 1− a] ≤2 [d, 1− c]⇔ b ≤ d ∧ 1− a ≤ 1− c.

is equivalent to (see Definition 2):
〈a, b〉 ≥ 〈c, d〉

Therefore, any refinement on partial order ≥ (from Definition 2) would also be a refinement
on ≤2 . As we shall further prove, 〈a, b〉 ≥ 〈c, d〉 implies 〈a, b〉 ≥µ;p 〈c, d〉, which in turn implies
〈a, b〉 ≥µ;q 〈c, d〉, for q ≥ p, we can thus introduce the successive admissible (partial) linear orders

[b, 1− a] ≤p
2 [d, 1− c]⇔ Mp(1− a, b) ≤ Mp(1− c, d) ∧ 1− a ≤ 1− c, (8)
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which, as p grows, refine the previous (partial) order (see Theorem 1 in Section 3). In the same line
of reasoning (see Theorem 2 in Section 3), we can introduce the family of admissible orderings which
are successive refinements of the ≤p

2 ordering as α approaches 1:

[b, 1− a] ≤p;α
2 [d, 1− c]⇔ Mα

p(1− a, b) ≤ Mα
p(1− c, d) ∧ 1− a ≤ 1− c. (9)

Further, we will make use of

Lemma 1. For any constant c ∈ ( 1
2 , 1) and for all t ∈ (0, 1− c), the following inequality is

fulfilled:
(2c− 1) ln(2c− 1) > (c− t) ln(c− t) + (c + t) ln(c + t). (10)

Proof. Consider the function

h(t) = (c− t) ln(c− t) + (c + t) ln(c + t)

defined for all t ∈ (−c, c).
It is increasing in the interval (0, c) since

h′(t) = ln
(

c + t
c− t

)
> 0.

and has a minimum for t = 0. Since, from the condition of Lemma 1, it follows that
1− c < c, we have for t ∈ [0, 1− c)

h(t) < h(1− c) = (2c− 1) ln(2c− 1).

We will also require the following

Lemma 2. Let a ∈ ( 1
2 , 1). Then, for all k ∈

(
1, a

1−a
)

and t ∈ (0, a− k(1− a)], it is true that

ka ln(a) + (k(1− a) + t) ln(k(1− a) + t) < t ln(t). (11)

Proof. We rewrite (11) as:

ka ln(a) + k(1− a) ln(k(1− a) + t) < t ln
(

t
k(1− a) + t

)
. (12)

The left-hand side (LHS) of (12) is obviously increasing with t. Let us consider the
right-hand side (RHS) and denote it by g(t). We will show that g(t) decreases with t on the
interval (0, a− k(1− a)]. We have

g′(t) =
k(1− a)

k(1− a) + t
+ ln

(
t

k(1− a) + t

)
Using the fact that, for t > 0,

ln
(

t
k(1− a) + t

)
<

t
k(1− a) + t

− 1,

when t
k(1−a)+t 6= 1, which is obviously true in our case, we obtain:

g′(t) < 0.

Hence, g decreases with t on the interval (0, a− k(1− a)]. Thus, we conclude that the
minimum value of g(t) on the interval (0, a− k(1− a)] is obtained for t = a− k(1− a).



Mathematics 2023, 11, 2893 5 of 15

Since the LHS of (12) is increasing with t, it will also reach its maximum value for
t = a− k(1− a). Hence, if we establish that

ka ln(a) + k(1− a) ln(k(1− a) + a− k(1− a)) = max(LHS)

< min(RHS) = (a− k(1− a)) ln
(

a− k(1− a)
k(1− a) + a− k(1− a)

) (13)

we will complete the proof. After simplification, this is equivalent to

k ln(a) < (a− k(1− a)) ln
(

a− k(1− a)
a

)
, (14)

which is equivalent to

ln(a) < a
1− k(1−a)

a
k

ln
(

1− k(1− a)
a

)
. (15)

Let us denote s = k(1−a)
a . Then, using the fact that

ln(a) ≤ a− 1,

we see that (15) is true if:
a− 1 <

a
k
(1− s) ln(1− s).

The last can be simplified to (since 1− a > 0):

−1 <
1− s

s
ln(1− s),

i.e., we need to establish that
s

1− s
> ln

(
1

1− s

)
.

However, since 1 > s > 0, we have

s
1− s

=
1

1− s
− 1 > ln

(
1

1− s

)
.

3. Main Results

We are now ready to formulate our main results.

Theorem 1. Let u = 〈u1, u2〉 and v = 〈v1, v2〉. If

u �µ;Mp v (16)

for some p > 0, then
u �µ;Mq v (17)

for all q > p.

Proof. From (1) and the first inequality of (6), we have 1− u1 ≥ 1− v1 ≥ v2. If u2 ≥ v2, the
statement of Theorem 1 is obviously valid. Furthermore, without loss of generality, we will
assume 1− u1 > 1− v1 > v2 > u2. Let us denote that 1− u1 = x, 1− u2 = z, v2 = t, u2 = y.

Thus, without loss of generality, we may assume that 1 > x > z > t > y > 0. The
statement of Theorem 1 is equivalent to the following:



Mathematics 2023, 11, 2893 6 of 15

If
xp + yp ≥ zp + tp, for p > 0, (18)

we have
xp+ε + yp+ε ≥ zp+ε + tp+ε (19)

for all ε > 0.
Without loss of generality, we can rewrite (18) as

qp ≥ up + wp − 1, (20)

where q = y
x , w = t

x , u = z
x and we have 0 < q < w < u < 1. In the same manner, (19) is

equivalent to
qp+ε ≥ up+ε + wp+ε − 1, (21)

Let us assume that up+ε + wp+ε − 1 > 0 (otherwise, the statement is obvious) and it is
true that

qp+ε0 < up+ε0 + wp+ε0 − 1 (22)

for some ε0 > 0.
From (20) and (22), it follows:

(up+ε0 + wp+ε0 − 1)
1

p+ε0 > (up + wp − 1)
1
p (23)

However, we will show that (23) is impossible, since

f (x) = (ux + wx − 1)
1
x

is monotonously decreasing as x grows.
Let us now consider the first derivative of f (x). We have

f ′(x) =
(ux + wx − 1)

1
x

x2(ux + wx − 1)
(ux ln(ux) + wx ln(wx)− (ux + wx − 1) ln(ux + wx − 1)).

The sign of f ′(x) depends on the sign of

ux ln(ux) + wx ln(wx)− (ux + wx − 1) ln(ux + wx − 1).

Putting c = ux+wx

2 , and from the fact that ux−wx

2 < 1− ux+wx

2 using Lemma 1, we
obtain that f ′(x) < 0, while ux + wx − 1 > 0. Hence, (23) is impossible as we have

f (p) > f (p + ε).

This result permits us to consider all ordering generated by p > 0 as a transition
from a partial to linear ordering, which is obtained (as a limit) for p = ∞. Due to (17), we
know that this ordering preserves the existing relations, i.e., they increase the number of
comparable elements in a consistent manner.

The introduction of the weight α allows us to fine-tune our orderings (while keeping
them consistent), shifting them closer to the linear order by providing a higher priority to
the first component.

Theorem 2. Let u = 〈u1, u2〉 and v = 〈v1, v2〉. Let α ∈ ( 1
2 , 1). Then, if

u �µ;Mα
p v (24)
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for some p > 0, we have
u �µ;Mα

q v (25)

for all q > p.

Proof. From (1) and the first inequality of (7), we have 1− u1 ≥ 1− v1 ≥ v2. If u2 ≥ v2, the
statement of Theorem 2 is obviously valid. Furthermore, without loss of generality, we will
assume 1− u1 > 1− v1 > v2 > u2. Let us denote 1− u1 = x, 1− u2 = z, v2 = t, u2 = y.

Thus, 1 > x > z > t > y > 0. The statement of Theorem 2 (in this case) is equivalent
to the following:

If
αxp + (1− α)yp ≥ αzp + (1− α)tp, for p > 0, (26)

then, we have
αxp+ε + (1− α)yp+ε ≥ αzp+ε + (1− α)tp+ε (27)

for all ε > 0.
Without loss of generality, we can rewrite (26) as

qp ≥ α

1− α
up + wp − α

1− α
, (28)

where q = y
x , w = t

x , u = z
x and we have 0 < q < w < u < 1. In the same manner, (27) is

equivalent to

qp+ε ≥ α

1− α
up+ε + wp+ε − α

1− α
, (29)

Let us assume that α
1−α up+ε + wp+ε − α

1−α > 0 (otherwise the statement is obvious)
and that it is true that

qp+ε0 <
α

1− α
up+ε0 + wp+ε0 − α

1− α
(30)

for some ε0 > 0.
From (28) and (30), it follows:(

α

1− α
up+ε0 + wp+ε0 − α

1− α

) 1
p+ε0

>

(
α

1− α
up + wp − α

1− α

) 1
p

(31)

However, we will show that (31) is impossible, since

η(x) =
(

α

1− α
ux + wx − α

1− α

) 1
x
.

is monotonously decreasing as x grows.
Let us consider the first derivative of η with respect to x

η′(x) =

(
α

1− α
ux + wx − α

1−α

) 1
x

x2
(

α
1−α ux + wx − α

1−α

) θ(x),

where

θ(x) =
α

1− α
ux ln(ux) + wx ln(wx)−

(
α

1− α
ux + wx − α

1− α

)
ln
(

α

1− α
ux + wx − α

1− α

)
.

The sign of η′(x), solely depends on θ(x), if α
1−α ux + wx − α

1−α > 0.
Putting k = α

1−α , a = ux, and using the fact that there exists t∗ ∈ (0, ux − (1− ux) α
1−α ]

for which (1− ux) α
1−α + t∗ = wx, by Lemma 2, we obtain that η′(x) < 0.
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Hence, (31) can never be true, since we have

η(p) > η(p + ε).

Corollary 1. Let u = 〈u1, u2〉 and v = 〈v1, v2〉. Let α1 ∈ ( 1
2 , 1), α2 ∈ (α1, 1). Then, if for some

p > 0,
u �

µ;M
α1
p

v (32)

it follows that
u �

µ;Mα2
p

v. (33)

4. Possible Applications of the Obtained Results

Proposition 1. Given a finite set of alternatives in the forms of IFPs, which does not contain the
alternative 〈0, 0〉 (corresponding to total indeterminacy or complete lack of information), there
always exists p > 0 and (or) α ≥ 1

2 for which the alternatives are fully ordered under �µ;Mp and
(or) �µ;Mα

p .

Proof. Without loss of generality, we may assume that the set is

{〈a1, b1〉, 〈a2, b2〉, 〈a3, b3〉, . . . , 〈an, bn〉} (34)

such that it is fulfilled ai ≤ aj, for all i ≤ j.
We will show that we can find p > 0 such that all IFPs in the set are comparable under

�µ;Mp . The elements for which ai = aj or bi ≥ bj, are already ordered under the classical
ordering, so without loss of generality, we will assume{

ai < aj

bi < bj.

In other words, we have 1− ai > 1− aj ≥ bj > bi. If, for a given i < j, we have
1− ai + bi ≥ 1− aj + bj, then 〈ai, bi〉 �µ;M1 〈aj, bj〉. Therefore, we will further assume that

(1− ai)− (1− aj) = aj − ai < bj − bi. (35)

We will show that, if (35) is true, there exists an integer n > 1 for which

(1− ai)
n − (1− aj)

n > bn
j − bn

i . (36)

To establish that fact, we observe that, from (35), it follows that we must have

1− aj

1− ai
>

bi
bj

. (37)

The validity of (37) is easily established when we observe that it is equivalent to:

(1− aj)(bj − bi) > bi((1− ai)− (1− aj)),

which is certainly true in view of 1− aj > bi and (35). We note that (36) is equivalent to

(1− ai)
n

bn
j

aj − ai

bj − bi
>

n−1
∑

k=0

bi
bj

n−1
∑

k=0

1−aj
1−ai

. (38)
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In view of (37), we see that the right-hand-side of (38) is decreasing as n grows, while
the left-hand side is certainly increasing as n grows. Thus, (38) will be evidently true when(

(1− ai)

bj

)n

>
bj − bi

aj − ai
.

Since 1−ai
bj

> 1, then for any positive constant c, there must exist a positive integer

n(c), such that (
(1− ai)

bj

)n(c)

> c,

and therefore, we established that (36) is valid for some n ≥ n
( bj−bi

aj−ai

)
. Thus, for the same

n, we have 〈ai, bi〉 �µ;Mn 〈aj, bj〉, since (36) implies

(
(1− ai)

n + bn
i

2

)n

>

(
(1− aj)

n + bn
j

2

)n

.

Therefore, after going through all possible pairs, taking the maximum of all n-s and
denoting it by nmax, we obtain a set of alternatives that is fully ordered with respect to
�µ;Mnmax

.
In view of Corollary 1, it is evident that similar reasoning may be applied with respect

to α, as we let it grow.

Remark 2. Note that nmax, introduced in the above proof, is clearly larger than the smallest value
of p, for which the full ordering is obtained. However, since we were only interested in establishing
the existence, and not concerned with the practical calculation of the said value, we would postpone
the question of finding the smallest value for another time.

Furthermore, to better illustrate the implications of Proposition 1, we will consider
two examples.

Example 1. Let us be given the set of alternatives:

{〈0.1, 0.8〉, 〈0.5, 0.4〉, 〈0.3, 0.7〉, 〈0.6, 0.3〉, 〈0.2, 0.4〉} (39)

The only IFPs here, which are not comparable under the classical ordering, are 〈0.2, 0.4〉 and
〈0.3, 0.7〉. We can easily see that:

〈0.2, 0.4〉 �µ;M5 〈0.3, 0.7〉

In fact, the value of p for which this ordering becomes true is p = 4.95292. Therefore, the set of
alternatives for p ≥ 4.95292 becomes linearly ordered under this power mean ordering and we have

〈0.1, 0.8〉 �µ;M5 〈0.2, 0.4〉 �µ;M5 〈0.3, 0.7〉 �µ;M5 〈0.5, 0.4〉 �µ;M5 〈0.6, 0.3〉 (40)

If we instead use the weighted power mean ordering, we can, by using α = 3
4 , achieve the same

result for p = 1, i.e.,

〈0.1, 0.8〉 �
µ;M

3
4
1

〈0.2, 0.4〉 �
µ;M

3
4
1

〈0.3, 0.7〉 �
µ;M

3
4
1

〈0.5, 0.4〉 �
µ;M

3
4
1

〈0.6, 0.3〉 (41)

Example 2. We consider the data used in [24], which we have processed using VisicrA software
v.0.9.1 (developed in Python by N. Ikonomov), as shown in Figure 1.

The InterCriteria Analysis provides an estimation in the forms of IFPs, regarding the relation-
ships between the different criteria. The factors considered in [24] are the following:
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• Poor work ethic in national labor force (PWE);
• Access to financing (ATF);
• Corruption (COR);
• Crime and theft (CAT);
• Foreign currency regulations (FCR);
• Government instability/coups (GIC);
• Inadequate supply of infrastructure (ISI);
• Inadequately educated workforce (IEW);
• Inefficient government bureaucracy (IGB);
• Inflation (INF);
• Insufficient capacity to innovate (ICI);
• Policy instability (PIN);
• Poor public health (PPH);
• Restrictive labor regulations (RLR);
• Tax rates (TRA);
• Tax regulations (TRE).

We only concentrate our attention on the couples PWE-ISI, PWE-COR, PWE-ICI, PWE-
PIN, PWE-ATF, PWE-IEW, PWE-TRE, PWE-RLR, PWE-IGB, and PWE-TRA, representing
the relationship of PWE to the various other factors related to the incentive to do business, which
InterCriteria Analysis evaluates as:

〈0.6478, 0.3251〉, 〈0.6158, 0.3571〉, 〈0.4483, 0.532〉, 〈0.3793, 0.5837〉, 〈0.4877, 0.4877〉,
〈0.7685, 0.2167〉, 〈0.367, 0.6034〉, 〈0.3276, 0.6527〉, 〈0.3744, 0.6084〉, 〈0.3399, 0.6453〉.
We can easily see that only two IFPs are incomparable by the classical ordering, namely those

corresponding to PWE-TRE and PWE-IGB, with values 〈0.367, 0.6034〉 and 〈0.3744, 0.6084〉.
However, it is not difficult to observe that 〈0.367, 0.6034〉 �µ;M1 〈0.3744, 0.6084〉; hence, we have
(under �µ;M1) the following order for the strength of the relations between the factors: PWE-RLR
�µ;M1 PWE-TRA �µ;M1 PWE-TRE �µ;M1 PWE-IGB �µ;M1 PWE-PIN �µ;M1 PWE-ICI �µ;M1

PWE-ATF �µ;M1 PWE-COR �µ;M1 PWE-ISI �µ;M1 PWE-IEW.

Figure 1. A view of the VisicrA software processing input data from [24].
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As can be seen from Example 2, our proposed orderings may be used over results from
InterCriteria Analysis to obtain a linear order among them. At any rate, whether it is always
appropriate to do so, and whether the considered orderings may infer counter-intuitive
or even wrong conclusions, is a matter of a future research. Here, we only established
the theoretical framework which permits enables us to implement this possibility in a
consistent manner.

Furthermore, we will compare the result of the application of our orderings to previ-
ously proposed ones. We require the following definitions:

Definition 8 (cf. [25,26]). For the IFP u = 〈u1, u2〉, its score S and accuracy H are given by:

S(u) = u1 − u2

H(u) = u1 + u2

Definition 9 (cf. [2]). For two u, v IFPs, the order �SH is defined as follows:

u �SH v⇔
{

S(u) < S(v)
S(u) = S(v) ∧ H(u) ≤ H(v)

(42)

Definition 10 (cf. [3]). For two u, v IFPs, the order �LH is defined as follows:

u �LH v⇔
{

L(u) < L(v)
L(u) = L(v) ∧ H(u) ≤ H(v)

(43)

where L(u) = 1−u2
1−u1+1−u2

.

Definition 11 (cf. [5]). For two u, v IFPs, the order �R is defined as follows:

u �R v⇔ R(u) ≥ R(v) (44)

where R(u) = 1
2 (1− u1)(1− u1 + 1− u2).

Definition 12 (cf. [6]). For two u, v IFPs, the order �Z is defined as follows:

u �Z v⇔ Z(u) ≤ Z(v) (45)

where Z(u) = 1
4 (1 + u1 − u2)(1 + u1 + u2).

Definition 13 (cf. [7]). For two u, v IFPs, the order �P is defined as follows:

u �P v⇔ P(u) ≤ P(v) (46)

where P(u) = 1−M2(1− u1, u2), with M2 defined by (4).

Definition 14 (cf. [9]). For two u, v IFPs, the order �M is defined as follows:

u �M v⇔ M(u) ≤ M(v) (47)

where M(u) =
√
(u1)2 + (1− u2)2 −

√
(1− u1)2 + (u2)2 +

√
(u1)2 + (u2)2.

Below, we present a comparison of the orderings over some IFPs.
In Table 1, �µ;Mp>i , signifies the smallest integer value for p after which the ordering is

valid. It can be seen that �µ;Mp ordering agrees well with most other orderings, specifically,
�M, �R, and �P (the second example shows the opposite ordering after p > 5, but for
cases where i ≤ 2, i.e., the two orderings are actually equivalent). Therefore, it seems to be
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possible to use the proposed orderings as an auxiliary tool, for instance, when a majority
voting regarding the correct ordering between two IFP alternatives is needed.

Table 1. IFPs compared under the considered orderings.

u v ≤ �SH �LH �R �Z �P �M �µ;Mp

〈0.367, 0.6034〉 〈0.3744, 0.6084〉 N/A �SH �LH �R �Z �P �M �µ;Mp>0

〈0.2, 0.4〉 〈0.3, 0.7〉 N/A �SH �LH �R �Z �P �M �µ;Mp>5

〈0.7, 0.3〉 〈0.4, 0.2〉 N/A �SH �LH �R �Z �P �M �µ;Mp>1

〈0.2, 0.8〉 〈0, 0.74〉 N/A �SH �LH �R �Z �P �M �µ;Mp>1

We conclude this section with a final example showing how our results may be utilized
for selection based on IFPs’ evaluations.

Example 3. Further, we consider the selection of traveling by airplane. We suppose there are three
feasible ways to travel from the starting destination to the target destination. The criteria that need
to be satisfied are as follows c1—convenience of air travel; c2—reliability of travel; c3—total time to
reaching final destination; and c4—total price of travel.

Convenience of travel signifies whether a flight is direct (as provided by suppliers s1 and s2), or
whether it is with a transfer flight from the same or allied company (i.e., the luggage is automatically
transferred)—as provided by supplier s3—or the second flight is provided by a different supplier, implying
that the passenger will need to claim their luggage and check it in again (s4). The reliability of travel
may be calculated by the number of executed flights and the number of canceled flights divided by all
planned flights in the previous month. The total time required to reach the final destination includes an
estimation of the expected duration of all flights with the use of some type of affordable public transport to
the city center from the final airport. Note that airports located farther from the city may have limited
means of transportation (or some may not be available after certain hour), as reflected in the IFPs’ values
of s3 and s4, which although are not provided by the suppliers themselves, are nonetheless affected by the
arrival times and the target airport, so it is fair to be attributed to them. The total price of travel includes
all possible travel expenses plus the price for some reasonable refreshments (offered as a free service by
suppliers s1, s2 and s3) as shown in Table 2.

We consider three types of travelers T1, T2, and T3 whose preferences may be represented by
the following weights:

T1(u) = 0.5c1 + 0.3c2 + 0.1c3 + 0.1c4 (48)

T2(u) = 0.3c1 + 0.4c2 + 0.1c3 + 0.2c4 (49)

T3(u) = 0.01c2 + 0.99c4 (50)

Table 2. Choosing to travel by airplane according to criteria estimated as IFPs.

c1 c2 c3 c4

s1 〈1, 0〉 〈0.8, 0.2〉 〈1, 0〉 〈0.7, 0〉

s2 〈1, 0〉 〈0.9, 0.1〉 〈1, 0〉 〈0.6, 0〉

s3 〈0.85, 0.1〉 〈0.95, 0.05〉 〈0.8, 0.1〉 〈0.8, 0〉

s4 〈0.4, 0.6〉 〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.9, 0.05〉

As one can readily observe, the orderings of the suppliers by the criteria are as follows:

c1 : s4 ≤ s3 ≤ s2 = s1 (51)

c2 : s4 ≤ s1 ≤ s2 ≤ s3 (52)

c3 : s4 ≤ s3 ≤ s2 = s1 (53)

c4 : s2 ≤µ;M0.7 s1 ≤µ;M0.7 s3 ≤µ;M0.7 s4 (54)
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In order to provide a meaningful comparison, let us, by analogy with Definition 13,
introduce:

PMµ, p(〈a, b〉) = 1−
(
(1− a)p + bp

2

) 1
p

fixing p = 0.7, we obtain for the maximum theoretical value of T1(u), T2(u), T3(u),
from (48)–(50) (by substituting the value of PMµ, 0.7, the best alternative among all suppli-
ers) to be:

T1(umax) = 0.5PMµ, 0.7(〈1, 0〉) + 0.3PMµ, 0.7(〈0.95, 0.05〉)
+ 0.1PMµ, 0.7(〈1, 0〉) + 0.1PMµ, 0.7(〈0.9, 0.05〉) = 0.977 (55)

T2(umax) = 0.3PMµ, 0.7(〈1, 0〉) + 0.4PMµ, 0.7(〈0.95, 0.05〉)
+ 0.1PMµ, 0.7(〈1, 0〉) + 0.2PMµ, 0.7(〈0.9, 0.05〉) = 0.9653 (56)

T3(umax) = 0.01PMµ, 0.7(〈0.95, 0.05〉) + 0.99PMµ, 0.7(〈0.9, 0.05〉) = 0.9265 (57)

By calculating the actual values for each supplier, we obtain:

T1(s1) = 0.9288; T1(s2) = 0.9551; T1(s3) = 0.9; T1(s4) = 0.57,

T2(s1) = 0.897; T2(s2) = 0.93028; T2(s3) = 0.9131; T2(s4) = 0.66041,

T3(s1) = 0.887; T3(s2) = 0.8518; T3(s3) = 0.9132; T3(s4) = 0.924.

Thus, according to the score PMµ, 0.7 corresponding to ≥µ;M0.7 , we can conclude that
the best choice for the T1 type passenger is a direct flight by s2, closely followed by a direct
flight by s1, and the best choice is also valid for the T2 type passenger; however, s3 is
preferred to s1 in this case. Only T3—a type 3 passenger—would choose s4 (based on the
best price), a choice extremely closely followed by s3.

Had we used the Z(〈a, b〉) ordering from Definition 12, we would have obtained
similar results to those shown in Table 3.

Table 3. Z-order for the considered example.

c1 c2 c3 c4

s1 1 0.8 1 0.7225

s2 1 0.9 1 0.64

s3 0.4143 0.95 0.8075 0.81

s4 0.4 0.7 0.7125 0.901875

However, for T2, the Z order asserts that s1 is better than s3. But in view of (52) and
the fact that the highest weight of T2 type passenger is focused on the reliability of travel, it
would seem that our ordering provides a more reasonable suggestion.

5. Conclusions

In the present work, we constructed new orderings depending on the weighted power
mean which allow us to compare a larger number of alternatives in the form of intuitionistic
fuzzy pairs in a consistent manner. We proved that these orderings approach the linear
ordering as the value of p grows to +∞, thus naturally allowing more intuitionistic fuzzy
pairs to become comparable, while preserving the already existing order. We illustrated the
possible application to a set of alternatives and to the results obtained from InterCriteria
Analysis. We also compared our proposed orderings with the ones mostly used and have
provided an example of their use. In future work, we will extend these approaches, if
possible, to constructing other orderings depending on different generalized means over
the intuitionistic fuzzy pairs, and we shall study their properties.
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