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Abstract: Analytic and asymptotic properties of the generalized Student and generalized Lomax
distributions are discussed, with the main focus on the representation of these distributions as scale
mixtures of the laws that appear as limit distributions in classical limit theorems of probability
theory, such as the normal, folded normal, exponential, Weibull, and Fréchet distributions. These
representations result in the possibility of proving some limit theorems for statistics constructed from
samples with random sizes in which the generalized Student and generalized Lomax distributions
are limit laws. An overview of known properties of the generalized Student distribution is given,
and some simple bounds for its tail probabilities are presented. An analog of the ‘multiplication
theorem’ is proved, and the identifiability of scale mixtures of generalized Student distributions
is considered. The normal scale mixture representation for the generalized Student distribution is
discussed, and the properties of the mixing distribution in this representation are studied. Some
simple general inequalities are proved that relate the tails of the scale mixture with that of the mixing
distribution. It is proved that for some values of the parameters, the generalized Student distribution
is infinitely divisible and admits a representation as a scale mixture of Laplace distributions. Necessary
and sufficient conditions are presented that provide the convergence of the distributions of sums
of a random number of independent random variables with finite variances and other statistics
constructed from samples with random sizes to the generalized Student distribution. As an example,
the convergence of the distributions of sample quantiles in samples with random sizes is considered.
The generalized Lomax distribution is defined as the distribution of the absolute value of the random
variable with the generalized Student distribution. It is shown that the generalized Lomax distribution
can be represented as a scale mixture of folded normal distributions. The convergence of the
distributions of maximum and minimum random sums to the generalized Lomax distribution is
considered. It is demonstrated that the generalized Lomax distribution can be represented as a scale
mixture of Weibull distributions or that of Fréchet distributions. As a consequence, it is demonstrated
that the generalized Lomax distribution can be limiting for extreme statistics in samples with random
size. The convergence of the distributions of mixed geometric random sums to the generalized Lomax
distribution is considered, and the corresponding extension of the famous Rényi theorem is proved.
The law of large numbers for mixed Poisson random sums is presented, in which the limit random
variable has a generalized Lomax distribution.
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1. Introduction
1.1. History of the Problem and Motivation

The t-distribution, which is more often called the Student distribution, was proposed
in 1908 in the fundamental paper [1] by William Sealy Gosset published in Biometrika under
the pseudonym ‘Student’. Originally, this distribution played only a technical role in the
so-called theory of errors. In the paper [2], R. Fisher gave a detailed description of the
application of the Student distribution in problems related to the statistical analysis of
normal samples. However, when, in the middle of the 20th century, it was noticed that
the distributions of various financial data (e.g., increments of stock prices) do not meet
the normal model and have noticeably heavier tails with power-type decreases, some
specialists turned to the Student distribution as a heavy-tailed alternative to the normal
distribution. Now, the Student distribution is one of the most popular models for economic
and financial data [3]. In the paper [4], an attempt was made to explain the adequacy of
the Student model from the viewpoint of limit theorems of probability theory, and it was
demonstrated that, in descriptive statistics, this distribution can be used as an asymptotic
approximation since it appears as the limit law for statistics constructed from samples
when the sample size obeys the negative binomial distribution.

In recent years, many generalizations of the Student distribution have been proposed,
including those that are purely analytic [5] and purely artificial [6]. A comprehensive
review of generalizations of the Student distribution was presented in [3]. Unfortunately,
many generalizations are in some sense formal, not-so-well theoretically justified, and
are based on the reasons of convenience of fitting to particular data. In the present paper,
primary attention is paid to the generalization of the Student distribution that is based on
the representation of a so-distributed random variable as a quotient of two independent ran-
dom variables. The numerator in this quotient is the random variable with the exponential
power distribution, whereas the denominator is the power of a gamma-distributed random
variable with identical shape and scale parameters. This generalization is due to Mcdonald
and Newey [7] (see also [8,9]), who noticed that the generalized Student distribution as
defined can be obtained as the scale mixture of a power exponential distribution where the
mixing law is the inverse generalized gamma distribution. The scale mixture representation
opens the way to construct rather simple asymptotic settings in which the appropriately
defined generalized Student distribution appears as a limit law. Consequently, the general-
ized Student distribution obtains a theoretic foundation as an asymptotic approximation.
Apparently, it is this property that makes the generalized Student distribution an attractive
model for financial data [10–13]. This approach is also very promising for the construction
of multivariate and asymmetric generalizations, e.g., see [14].

Since heavy-tailed distributions are widely encountered in many practical problems,
they are under serious theoretic study. For example, there are developments in the context
of the Tsallis entropy that result in power-law distributions and fractional differential oper-
ators. In both cases, we also have a connection with stable distributions and Lévy processes
(see, e.g., [15]). Although stable Lévy processes with power-type tails have very serious
theoretic grounds, they are not so easily statistically treated because, with four rather trivial
exceptions, stable densities cannot be represented in terms of elementary functions. Simple
representations for the generalized Student densities make them promising alternatives to
stable laws. Moreover, the analytic properties (e.g., the infinite divisibility) of the general-
ized Student distributions and limit theorems for sums of independent random variables
with the generalized Student distributions as the limit laws presented below, together with
the functional limit theorems for compound Cox processes proved in [16], guarantee the
possibility to construct a Lévy process (more exactly, a subordinated Wiener process) whose
finite-dimensional distributions are of the generalized Student type.

Another benefit of the approach based off the scale mixture representation is that it
makes it possible to easily trace the relationship of the generalized Student distribution
with the generalized Lomax distribution, which is a popular power-type heavy-tailed
model that was used in many applied problems after it was introduced in [17], where
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it was used to analyze business failure data. The Lomax distribution appeared to be a
convenient heavy-tailed alternative to exponential, gamma, and Weibull distributions [18].
Possible applications of the Lomax distribution and its generalizations involve many fields,
from modelling business records [19] to reliability and lifetime testing [20]. An extensive
bibliography can be found in [21]. Various generalizations of the Lomax distribution were
used in [22–26] and many other studies; see the extensive bibliography in [21].

In accordance with the approach that is used in the present paper, the generalized
Lomax distribution is just the distribution of the absolute value of a random variable
with the generalized Student distribution. This definition makes it possible to study
the important analytic properties of the so-generalized Lomax distribution, such as its
infinite divisibility, identifiability, and mixture representability. In turn, these properties
open the way to proving limit theorems in rather simple asymptotic settings in which the
generalized Lomax distribution appears to be the limit law. These limit theorems may serve
as a theoretical foundation for the adequacy of the generalized Lomax distribution as an
asymptotic approximation in descriptive statistics and an explanation of the excellent fit of
this distribution to real data in many cases.

In the present paper, we study analytic and asymptotic properties of the generalized
Student and generalized Lomax distributions, paying main attention to the representation
of these distributions as scale mixtures of the laws that appear as limit distributions in
classical limit theorems of probability theory, such as the normal, folded normal, exponen-
tial, Weibull, and Fréchet distributions. These representations result in the possibility of
proving some limit theorems for statistics constructed from samples with random sizes in
which the generalized Student and generalized Lomax distributions are limit laws. Unlike
the conventional analytical approach used in most papers on generalized Student or gen-
eralized Lomax distributions, in the present paper, we use a kind of ‘arithmetic’ way of
reasoning within the space of random variables. According to this approach, instead of
the operation of scale mixing distributions, we consider the operation of multiplication
of random variables, provided the multipliers are independent. Nevertheless, speaking
of random variables, we actually deal with their distributions. This approach makes the
reasoning substantially simpler, the proofs shorte, and reveals some general features of the
distributions under consideration.

The paper is organized as follows. Section 1.2 contains auxiliary definitions and in-
troduces some basic properties of the distributions involved in the subsequent reasoning.
In Section 2.1, an overview of known the properties of the generalized Student distribution
is given, and some simple bounds for its tail probabilities are presented; furthermore,
an analog of the ‘multiplication theorem’ is proved, and the identifiability of scale mixtures
of generalized Student distributions is considered. In Section 2.2, the normal scale mixture
representation for the generalized Student distribution is discussed, and the properties of
the mixing distribution in this representation are studied. In particular, in order to study the
tail probabilities of the mixing distributions, some simple general inequalities are proved
here that relate the tails of the scale mixture with those of the mixing distribution. It is
proved here that for some values of the parameters, the generalized Student distribution
is infinitely divisible and admits a representation as a scale mixture of Laplace distribu-
tions. In Section 2.3, necessary and sufficient conditions are presented that provide the
convergence of the distributions of sums of a random number of independent random
variables with finite variances to the generalized Student distribution. Section 2.4 presents
necessary and sufficient conditions that provide the convergence of the distributions of
‘asymptotically normal’ statistics constructed from samples with random sizes to the gener-
alized Student distribution. As an example, the convergence of the distributions of sample
quantiles in samples with random sizes is considered. Section 3.1 contains the definition
and basic properties of the generalized Lomax distribution. In Section 3.2, it is shown that
the generalized Lomax distribution can be represented as a scale mixture of the folded
normal distribution (the distribution of the maximum of the standard Wiener process on
the unit interval). In Section 3.3, the convergence of the distributions of maximum and
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minimum random sums to the generalized Lomax distribution is considered. In Section 3.4,
it is demonstrated that the generalized Lomax distribution can be represented as a scale
mixture of Weibull distributions or as a mixture of Fréchet distributions. These representa-
tions make it possible to demonstrate in Section 3.5 that the generalized Lomax distribution
can be limiting for extreme statistics in samples with a random size. Finally, in Section 3.6,
the convergence of the distributions of mixed geometric random sums to the generalized
Lomax distribution is considered, and the corresponding extension of the famous Rényi
theorem is proved.

1.2. Auxiliary Definitions and Notation

All the random variables are assumed to be defined on one and the same probability
space (Ω,A, P).

The product of independentrandom elements will be denoted by the symbol ◦. The sym-

bols d
= and =⇒ will stand for the coincidence of distributions and convergence in distribu-

tion, respectively. The symbol � marks the end of the proof. The indicator function of a set
A will be denoted IA(z): if z ∈ A, then IA(z) = 1; otherwise, IA(z) = 0.

A random variable with the standard exponential distribution will be denoted W1,
as follows:

P(W1 < x) =
[
1− e−x]I[0, ∞)(x).

For x > 0 and r > 0, the (lower) incomplete gamma function will be denoted as
Γ(r; x):

Γ(r; x) =
∫ x

0
zr−1e−zdz.

Let Γ(r) def
= Γ(r; ∞) be the ‘usual’ Euler’s gamma function.

A random variable having a gamma distribution with a shape parameter r > 0 and a
scale parameter λ > 0 will be denoted as Gr,λ, where

P(Gr,λ < x) =
∫ x

0
g(z; r, λ)dz, with g(x; r, λ) =

λr

Γ(r)
xr−1e−λxI[0, ∞)(x),

Obviously, in this notation, G1,1 is a random variable with the standard exponential distri-
bution G1,1 = W1.

A generalized gamma distribution is an absolutely continuous distribution defined by
the density

ggr,α,µ(x) =
|α|µr

Γ(r)
xαr−1e−µxαI[0, ∞)(x)

with α ∈ R, µ > 0, and r > 0. A random variable with the density ggr,α,µ(x) will be denoted
as Gr,α,µ. It is easy to see that

Gr,α,µ
d
= G1/α

r,µ
d
= µ−1/αG1/α

r,1
d
= µ−1/αGr,α,1. (1)

Let γ > 0. The distribution of the random variable Wγ:

P
(
Wγ < x

)
=
[
1− e−xγ]I[0, ∞)(x),

is called the Weibull distribution with a shape parameter γ. It is easy to see that

W1/γ
1

d
= Wγ

d
= G1,γ,1. (2)

The random variable W−1
α is said to have an inverse Weibull or Fréchet distribution,

as follows:
P(W−1

α < x) = P(Wα ≥ 1
x ) = exp{x−α}, x ≥ 0.
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The standard normal distribution function and its density will be denoted by Φ(x)
and φ(x), where

φ(x) =
1√
2π

e−x2/2, Φ(x) =
∫ x

−∞
φ(z)dz,

respectively. A random variable with the standard normal distribution will be denoted
by X.

A random variable with the strictly stable characteristic function

gα,θ(t) = exp
{
− |t|α exp

{
− iπθα

2
signt

}}
, t ∈ R, (3)

where 0 < α ≤ 2, |θ| ≤ θα = min{1, 2
α − 1}, will be denoted by Sα,θ . The probability

density of the random variable Sα,θ will be denoted by Sα,θ . For the properties of stable
distributions with characteristic functions (3), see, e.g., [15,27,28].

It is easy to see that S2,0
d
=
√

2X.
If θ = 1 and 0 < α ≤ 1, the corresponding strictly stable random variable takes only

nonnegative values. If α = 1 and θ = ±1, then the corresponding stable distributions are
degenerate in ±1, respectively. All the other strictly stable distributions are absolutely
continuous. There are no explicit representations for stable distributions in terms of ele-
mentary functions with four exceptions: the normal distribution (α = 2, θ = 0), the Cauchy
distribution (α = 1, θ = 0), the Lévy distribution (α = 1

2 , θ = 1) and the distribution
symmetric to the Lévy law (α = 1

2 , θ = −1). Expressions for stable densities in terms of
generalized Meijer G-functions (Fox functions) can be found in [29,30].

According to the ‘multiplication theorem’ (see, e.g., Theorem 3.3.1 in [27]), for any
admissible pair of parameters (α, θ) and any α′ ∈ (0, 1], the product representation

Sαα′ ,θ
d
= S1/α

α′ ,1 ◦ Sα,θ

holds. In particular, for any α ∈ (0, 2],

Sα,0
d
=
√

2Sα/2,1 ◦ X,

that is, any symmetric strictly stable distribution is a scale mixture of the normal distributions.
Let α > 0. The symmetric exponential power distribution is an absolutely continuous

distribution defined by its Lebesgue probability density

pα(x) =
α

2Γ( 1
α )
· e−|x|α , −∞ < x < ∞. (4)

To simplify the notation and calculation, here and in what follows, we will use a single
parameter α in Representation (4) since this parameter is, in some sense, characteristic of
and determines the shape of the distribution (4). With α = 1, Relationship (4) defines the
classical Laplace distribution as

p1(x) = 1
2 e−|x|, x ∈ R

with zero mean and a variance of 2. With α = 2, Relationship (4) defines the normal
(Gaussian) distribution with a zero mean and a variance of 1

2 . Any random variable with a
probability density pα(x) will be denoted by Qα.

The class of distributions (4) was introduced and studied in 1923 in the paper [31] by
M. T. Subbotin. For more details concerning the properties of exponential power distribu-
tions, see [32,33] and the references therein.

It is easy to make sure that

|Qα|α
d
= G1/α,1. (5)
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In our further reasoning, we will exploit the following properties of exponential power
distributions. For convenience, we present them as lemmas.

Lemma 1 (e.g., see [32]). For δ > −1, we have

E|Qα|δ =
α

Γ( 1
α )

∫ ∞

0
xδe−xα

dx =
Γ( δ+1

α )

Γ( 1
α )

.

Lemma 2 ([32]). Let α ∈ (0, 2], α′ ∈ (0, 1]. Then,

Qαα′
d
= Qα ◦U−1/α

α,α′ , (6)

where Uα,α′ is a random variable such that if α′ = 1, then Uα,α′ = 1 for any α ∈ (0, 2], and if
0 < α′ < 1, then Uα,α′ is absolutely continuous with a probability density

uα,α′(x) =
α′Γ( 1

α )

Γ( 1
αα′ )
·

sα′ ,1(x)
x1/α

· I(0,∞)(x).

Corollary 1 ([34]). Any symmetric exponential power distribution with α ∈ (0, 2] is a scale
mixture of normal laws:

Qα
d
=
√

1
2 U−1

2,α/2 ◦ X.

Corollary 2 (e.g., see [32]). Any symmetric exponential power distribution with α ∈ (0, 1] is a
scale mixture of Laplace laws:

Qα
d
= U−1

1,α ◦Q1.

Lemma 3 ([32]). For any α ∈ (0, 1], the distribution of the random variable U−1
2,α/2 is a mixed

exponential:

U−1
2,α/2

d
= 4U−2

1,α ◦W1.

Recall that a distribution function F(x) whose characteristic function is denoted f (t)
is infinitely divisible if, for each n ∈ N, there exists a characteristic function fn(t) such that
f (t) = f n

n (t) and t ∈ R. In terms of random variables (if the probability space (Ω,A, P) is
rich enough), this means that for each n ∈ N, there exist independent identically distributed
random variables Yn,1, Yn,2, . . . , Yn,n such that a random variable Y whose distribution
function is F(x) admits the representation Y = Yn,1 + Yn,2 + . . . + Yn,n. The property of
infinite divisibility is very important in some problems. For example, infinite divisible
distributions exist, and only they can be limiting for sums of independent asymptotically
negligible (in particular, identically distributed) random variables (see [35]. Moreover, this
is crucial in the construction of Lévy processes (see, e.g., [15,16]).

Corollary 3 ([32]). For any α ∈ (0, 1], the distribution of the random variable U−1
2,α/2 is infinitely

divisible.

In the present paper, we consider the generalizations of the Student and Lomax
distributions.

The Student distributionwas introduced in [1] and is defined as the distribution of the
random variable

Tr
d
= X ◦ G−1/2

r,r ,
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where r > 0 is the shape parameter usually called ‘the degrees of freedom’. The probability
density of the Student distribution, up to scale and location transformation, has the form

fr(x) =
Γ(r + 1

2 )√
πrΓ(r)

(
1 +

x2

r

)−(r+1/2)
, x ∈ R.

The Lomax distribution, also called the Pareto Type II distribution, was introduced
in [17]. The probability density of the Lomax distribution, up to scale and location transfor-
mation, has the form

f ∗r (x) =
r

(1 + x)r+1 , x ≥ 0,

where r > 0 is the shape parameter.

2. The Generalized Student Distribution
2.1. The Definition and Elementary Properties of the Generalized Student Distribution

Let α ∈ (0, 2] and r ∈ R be such that αr ≥ 1. Assume that the random variables Qα

and Gr,r are independent. Consider the random variable Tr,α, defined as the product

Tr,α
def
= Qα ◦ G−1/α

r,r . (7)

The distribution of the random variable Tr,α will be called a generalized Student
distribution with parameters α and r. (It should be noted that in [14], instead of − 1

α ,
the exponent of Gr,r is − 1

2 , which does not restrict generality but leads to more complicated
notation).

Find the probability density function fr,α(x) of Tr,α. Since Qα and Gr,r are independent,
by the Fubini theorem, we have

fr,α(x) =
αrr

2Γ(r)Γ( 1
α )

∫ ∞

0
u1/αe−u|x|α ur−1e−rudu =

=
αrr

2Γ(r)Γ( 1
α )(r + |x|α)r+1/α

∫ ∞

0
ur+1/α−1e−udu =

=
αΓ(r + 1

α )

2r1/αΓ(r)Γ( 1
α )

(
1 +
|x|α

r

)−(r+1/α)
=

α

2r1/αB(r, 1
α )

(
1 +
|x|α

r

)−(r+1/α)
, x ∈ R. (8)

Here and in what follows, B(a, b) is the beta-function:

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

, a > 0, b > 0.

It is easily seen that with α = 2, the generalized Student distribution turns into the
classical Student distribution up to the re-parametrization. If, in addition, r = 1, the
generalized Student distribution is a Cauchy distribution.

When α = 1, the generalized Student distribution turns into a two-sided Lomax
distribution.

We see that the family of generalized Student distributions is wide enough and
contains popular power-type-tailed laws.

Moreover, this family is flexible enough since it contains distributions with various
shapes of their vertices. Consider this variety in more detail. First, from (8), it follows that
the densities of all the generalized Student distributions are finite:

max
x

fr,α(x) = fr,α(0) =
αB(r, 1

α )

2r1/α
.
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Second, consider the behavior of the derivative of the density fr,α(x) in the neigh-
borhood of zero. Since fr,α(x) is symmetric, it suffices to consider x > 0. For such x,
we have

d
dx

fr,α(x) = −
α2B(r, 1

α )xα−1

2r1/α

(
1 +

xα

r

)−(r+1)
.

Therefore, if α > 1, then

lim
x→0+

d
dx

fr,α(x) = 0;

that is, the vertex of fr,α(x) is smooth and rather flat.
If α = 1, then

lim
x→0+

d
dx

fr,α(x) = − α2

2r1/αB(r, 1
α )

;

that is, the vertex of fr,α(x) looks like a non-zero angle.
If α < 1, then

lim
x→0+

d
dx

fr,α(x) = −∞;

that is, in this case, the vertex of fr,α(x) is ‘infinitely’ sharp.
The two last cases noticeably differ from the traditional Student density shape.
As is demonstrated by the two following statements, when r increases, the tails of a

generalized Student distribution become less heavy, so that finally, a generalized Student
distribution turns into an exponential power distribution.

Proposition 1. The following asymptotic relationship holds:

lim
r→∞

sup
x

∣∣∣ fr,α(x)− αe−|x|
α

2Γ( 1
α )

∣∣∣ = 0. (9)

Proof. Note that the relationships

lim
r→∞

(
1 +
|x|α

r

)r
= e|x|

α
and lim

r→∞

Γ(r + 1
α )

r1/αΓ(r)
= 1

imply the point-wise convergence of the densities. Since the limit exponential power
density function is monotone on each semi-axis, as well as bounded and continuous, by the
Dini theorem, the convergence is uniform in x ∈ R.

This property of the generalized Student distributions can be mathematically for-
mulated in terms of distribution functions as well. For α ∈ (0, 2] and r > 0, denote
Fr,α(x) = P(Tr,α < x), x ∈ R,

Hα(x) def
= P(Qα < x) =


1
2
+

Γ( 1
α ; xα)

2Γ( 1
α )

, x ≥ 0,

1
2
−

Γ( 1
α ; |x|α)

2Γ( 1
α )

, x < 0.

Corollary 4. For any α ∈ (0, 2], as r → ∞, the distribution functions of the random variables Tr,α
converge to the exponential power distribution function Hα(x) uniformly in x ∈ R:

lim
r→∞

sup
x
|Fr,α(x)− Hα(x)| = 0.

Proof. This statement follows from Proposition 4 by the Lebesgue-dominated convergence
theorem and the Dini theorem mentioned above.
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Another way of proving this result is as follows. Let [a] and {a}, correspondingly,
denote the integer part and the fractional part of a real number a. Represent r as r =
[r] + {r}. Then, the random variable Gr,r can be represented as

Gr,r
d
= 1

r Gr,1
d
=

1
r

[r]

∑
j=1

G1,1 +
G{r},1

r
.

As r → ∞, the first summand on the right-hand side of this relation almost surely converges
to 1 by the strong law of large numbers, whereas the second summand almost surely
converges to zero. This means that Gr,r −→ 1 almost surely converges to 1. Now, by the
Slutsky theorem [36] (see also [37], Sect. 20.6), it follows from the definition of Tr,α that
Tr,α =⇒ Qα. Since the limit function Hα(x) is monotone, bounded, and continuous, by the
Dini theorem, the convergence of distribution functions is uniform in x ∈ R.

Now consider the moments of the generalized Student distribution.

Proposition 2. For any δ ∈ (−1, αr)

E|Tr,α|δ = EG−δ/α
r,r · E|Qα|δ =

rδ/αΓ(r− δ
α )Γ(

δ+1
α )

Γ(r)Γ( 1
α )

.

Proof. This relationship follows from (7) and Lemma 1.

The distribution function of Tr,α, in general, cannot be expressed in terms of elementary
functions. The integral of fr,α(x) can be written (e.g., see [38], item 3.194) in terms of the
hypergeometric function 2F1(·, ·, ·, ·) (e.g., see [38], item 9.111):

Fr,α(x) =


1
2
+

αx
2r1/αB(r, 1

α )
2F1
(
r + 1

α , 1
α ; 1 + 1

α ;− xα

r
)
, x ≥ 0,

1
2
− α|x|

2r1/αB(r, 1
α )

2F1
(
r + 1

α , 1
α ; 1 + 1

α ;− |x|
α

r
)
, x < 0.

Nevertheless, we can obtain very simple two-sided bounds for the tail probabilities
of Tr,α.

Proposition 3. For any x > 0, we have

rr−1

B(r, 1
α )xαr

· xαr+1

(r + xα)r+1/α
≤ P(|Tr,α| ≥ x) ≤ rr−1

B(r, 1
α )xαr

.

Proof. For any x > 0, we obviously have

P(|Tr,α| ≥ x) = 2
∫ ∞

x
fr,α(y)dy =

α

r1/αB(r, 1
α )

∫ ∞

x

(
1 +
|y|α

r

)−(r+1/α)
dy. (10)

For the integral on the right-hand side of (10), we easily obtain the following lower bound:∫ ∞

x

(
1 +
|y|α

r

)−(r+1/α)
dy = rr+1/α

∫ ∞

x

( r
yα

+ 1
)−(r+1/α) dy

yαr+1 ≥

≥ rr+1/αxαr+1

(r + xα)r+1/α

∫ ∞

x

dy
yαr+1 =

rr+1/α−1

αxαr · xαr+1

(r + xα)r+1/α
. (11)
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The upper bound for this integral is obvious:∫ ∞

x

(
1 +
|y|α

r

)−(r+1/α)
dy = rr+1/α

∫ ∞

x

( r
yα

+ 1
)−(r+1/α) dy

yαr+1 ≤

≤ rr+1/α
∫ ∞

x

dy
yαr+1 =

rr+1/α−1

αxαr . (12)

Now, the desired statement easily follows from (11), (12), and (10).

Since

lim
x→∞

xαr+1

(r + xα)r+1/α
= 1, (13)

we immediately obtain the following statement.

Corollary 5. The tailprobabilities of Tr,α satisfy the following asymptotic relation:

lim
x→∞

xαrP(|Tr,α| ≥ x) =
rr−1

B(r, 1
α )

.

Lemma 2 was proved in [32] with the application of the ‘multiplication theorem’ for
stable distributions (Theorem 3.3.1 in [27]). Therefore, this lemma can be regarded as a ‘mul-
tiplication theorem’ for exponential power distributions. This lemma can be used to establish
a kind of an analog of ‘multiplication theorem’ for generalized Student distributions.

Proposition 4. For any 0 < α ≤ β ≤ 2 and any r > 1
β , we have

G−1/β
r,r ◦ Tr,α

d
= G−1/α

r,r ◦ Tr,β ◦U−1/β
β,α/β.

Proof. The assertion of Lemma 2 can be rewritten as

Qα
d
= Qβ ◦U−1/β

β,α/β.

Now, the desired statement follows from the definition of Tr,α.

One more representation of a random variable with the generalized Student distribu-
tion is possible.

Proposition 5. The following relationship holds:

Tr,α
d
= r1/αQα ◦ |Q1/r|−1/αr.

Proof. According to (5), we have

Gr,r
d
= 1

r Gr,1
d
= 1

r |Q1/r|1/r,

whence follows the desired result.

Now consider the property of the identifiability of scale mixtures of generalized
Student distributions. Recall the definition of the identifiability of scale mixtures. Let T be a
random variable with the distribution function FT(x) and let V1 and V2 be two nonnegative
random variables. The family of scale mixtures of FT is said to be identifiable if the equality

T ◦V1
d
= T ◦V2 implies V1

d
= V2.
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Proposition 6. For any fixed α ∈ (0, 2] and r > 1
α , the family of scale mixtures of generalized

Student distributions is identifiable; that is, if V1 and V2 are two nonnegative random variables,

then the equality Tr,α ◦V1
d
= Tr,α ◦V2 implies V1

d
= V2.

Proof. In [32], it was proved that the family of scale mixtures of exponential power distri-
butions is identifiable. Hence, if V1 and V2 are two nonnegative random variables, then

the equality Tr,α ◦ V1
d
= Tr,α ◦ V2 implies V1 ◦ G−1/α

r,r
d
= V2 ◦ G−1/α

r,r or, which is the same,

Gr,1 ◦ V−α
1

d
= Gr,1 ◦ V−α

2 . As was proved in [39], the family of scale mixtures of gamma

distributions is identifiable. Hence, the last relationship implies V−α
1

d
= V−α

2 or V1
d
= V2,

which is the same.

2.2. Mixture Representation for the Generalized Student Distribution and Related Topics
2.2.1. Normal Mixture Representation

Proposition 7. For any α ∈ (0, 2] and any r > 1
α the generalized Student distribution is a scale

mixture of normal distributions:

Tr,α
d
=
√

Dr,α ◦ X, (14)

where
Dr,α

def
= 1

2
(
U2,α/2 ◦ G2/α

r,r
)−1 d

= 1
2
(
U2,α/2 ◦ Gr,α/2,r

)−1,

so that
P(Tr,α < x) =

∫ ∞

0
Φ
( x
√

y

)
dP(Dr,α < y). (15)

This statement directly follows from (7) and Corollary 1.
In accordance with Lemma 2, for α ∈ (0, 2), the probability density u∗2,α/2(x) of the

random variable U−1
2,α/2 has the form

u∗2,α/2(x) =
α
√

π

2Γ( 1
α )
·

sα/2,1(
1
x )

x3/2 , x > 0.

If α = 2, then the distribution of U−1
2,α/2 is degenerate at Point 1.

The generalized gamma probability density ggr,α/2,r(x) of the random variable G2/α
r,r

has the form
ggr,α/2,r(x) =

rr

Γ(r)
uα(r+1)/2−2e−ruα/2

, x > 0.

Therefore, the mixing random variable Dr,α in (15) has the probability density

qr,α(x) =
rrα
√

2π

Γ( 1
α )Γ(r)x3/2

∫ ∞

0
sα/2,1

( 2
ux
)
uα(r+1)/2−5/2e−ruα/2

du, x > 0.

This expression is cumbersome and can hardly be used either for the purpose of
clarifying the analytic and asymptotic properties of the mixing distribution or its statistical
analysis. However, as will be shown in the next subsection, it is possible to obtain rather
accurate (asymptotic) two-sided bounds for the tail probability of the distribution of Dr,α.

2.2.2. The Properties of the Mixing Distribution And Inequalities for the Tail Probabilities

Proposition 8. There exist finite positive constants C = C(r, α) and C = C(r, α) such that for
any δ ∈ (0, 1)

lim inf
x→∞

xαr/2+δP(Dr,α ≥ x) ≥ C (16)

and
lim sup

x→∞
xαr/2P(Dr,α ≥ x) ≤ C. (17)
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For example, as C and C, one can take

C =
rr−1

B(r, 1
α )

, C =
rr−1

2B(r, 1
α )[1−Φ(1)]

.

Roughly speaking, Proposition 8 states that the distribution of the mixing random
variable Dr,α in Proposition 4 has the power-type tails decreasing such that O(x−αr/2) as
x → ∞.

In order to prove this proposition, we need to formulate and prove some general
inequalities relating the tails of a scale mixture with that of the mixing distribution. These
inequalities will be formulated as lemmas.

Lemma 4. Let Y be a random variable with a symmetric distribution. Let U be a positive random
variable. Then, for any x > 0 and u > 0,

P(|Y ◦U| > x) ≥ P
(
|Y| > x

u

)
P(U > u).

Proof. Denote the distribution function of Y as F(x). Then, for any x > 0 and u > 0, due
to the monotonicity of F, we have

P(|Y ◦U| > x) = 2
∫ ∞

0

[
1− F

( x
y

)]
dP(U < y) ≥ 2

∫ ∞

u

[
1− F

( x
y

)]
dP(U < y) ≥

≥ 2
[
1− F

( x
u

)] ∫ ∞

u
dP(U < y) = P

(
|Y| > x

u

)
P(U ≥ u).

Now, if we set Y = X (that is, F = Φ), U =
√

Dr,α, and u = xε with arbitrary ε ∈ [0, 2],
then for any x > 0, Proposition 2, Lemma 4, and Proposition 3 yield the bound

rr−1

B(r, 1
α )xαr

≥ P(|Tr,α| > x) ≥ P(Dr,α ≥ xε)P(|X| ≥ x1−ε/2). (18)

Additionally, if ε = 2, then (18), in turn, implies

xαrP(Dr,α ≥ x2) ≤ rr−1

2B(r, 1
α )[1−Φ(1)]

, (19)

thus proving (17).
Lemma 4 generalizes a result of [40].

Lemma 5. Let Y be a random variable independent of a positive random variable U. Then, for any
x > 0 and δ ∈ (0, 1),

P(|Y ◦U| ≥ x) ≤ P(|Y| ≥ x1−δ) + P(U ≥ xδ)P(|Y| < x1−δ) =

= P(|Y| ≥ x1−δ)P(U < xδ) + P(U ≥ xδ) ≤ P(|Y| ≥ x1−δ) + P(U ≥ xδ).

Proof. It is not difficult to verify that for any δ ∈ (0, 1),{
ω : ln |Y(ω)|+ ln U(ω) ≥ ln x

}
⊆
{

ω : ln |Y(ω)| ≥ (1− δ) ln x
}
∪
{

ω : ln U(ω) ≥ δ ln x
}

.

Therefore,

P(|Y ◦U| ≥ x) = P(ln |Y ◦U| ≥ ln x) = P(ln |Y|+ ln U ≥ ln x) ≤

≤ P
(
{ln |Y| ≥ (1− δ) ln x} ∪ {ln U ≥ δ ln x}

)}
=
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= P(ln |Y| ≥ (1− δ) ln x) + P(ln U ≥ δ ln x)− P(ln |Y| ≥ (1− δ) ln x) · P(ln U ≥ δ ln x) ≤

= P(|Y| ≥ x1−δ) + P(U ≥ xδ)− P(|Y| ≥ x1−δ) · P(U ≥ xδ)
}
=

= P(|Y| ≥ x1−δ) + P(U ≥ xδ)P(|Y| < x1−δ) = P(|Y| ≥ x1−δ)P(U < xδ) + P(U ≥ xδ) ≤

≤ P(|Y| ≥ x1−δ) + P(U ≥ xδ).

The lemma is proved.

It should be noted that in Lemma 5, no conditions were imposed on the distribution
of the random variable Y.

Now, if we set Y = X (that is, F = Φ) and U =
√

Dr,α, then for any x > 0 and
ε ∈ (0, 2), Proposition 4 and Lemma 5 yield the bound

P(|Tr,α| > x) ≤ P(|X| ≥ x1−ε/2) + P(Dr,α ≥ xε),

which is valid for any ε ∈ (0, 2). Hence, in turn, it follows that

P(Dr,α ≥ xε)

P(|Tr,α| > x)
≥ 1− P(|X| ≥ x1−ε/2)

P(|Tr,α| > x)
. (20)

It is well-known that for any y > 0,

P(|X| ≥ y) ≤
√

2√
πy

exp
{
− y2

2

}
. (21)

From the left inequality of Proposition 3 and (21), it follows that for any ε ∈ (0, 2),

lim
x→∞

P(|X| ≥ x1−ε/2)

P(|Tr,α| > x)
≤
√

2B(r, 1
α )√

πrr−1 · lim
x→∞

(r + xα)r+1/αxε/2−2 exp
{
− x2−ε

2

}
= 0.

Hence, with the account of (13), from (20) and the left inequality of Proposition 3, it
follows that for any ε ∈ (0, 2)

lim inf
x→∞

xαrP(Dr,α ≥ xε) ≥ rr−1

B(r, 1
α )

,

thus proving (35). Thus, Proposition 8 is completely proved. �

Proposition 9. If α ∈ (0, 1] and r > 1
α , then the random variable Dr,α has the mixed exponential

distribution
Dr,α

d
= 2

(
G1/α

r,r ◦U1,α
)−2 ◦W1.

Proof. From Corollary 1, Lemma 3, and the definition of the generalized Student distribu-
tion, we obtain the representation

Tr,α
d
= Qα ◦ G−1/α

r,r
d
=

√
2
(
G1/α

r,r ◦U1,α
)−2 ◦W1 ◦ X.

Now the desired result follows from the identifiability of scale mixtures of normal
distributions (see, e.g., [39]).

Corollary 6. For α ∈ (0, 1]∪ {2} and any r > 1
α , the generalized Student distribution is infinitely

divisible.

Proof. According to Proposition 6, for α ∈ (0, 1] in Representation (14), the scaling (mixing)
distribution is mixed exponential and, hence, in accordance with the result of [41], infinitely
divisible. In turn, if the mixing distribution in a normal scale mixture is infinitely divisible,
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then, in accordance with [42], Ch. XVII, Sect. 3, the normal scale mixture is infinitely
divisible itself.

In the case that α = 2, the infinite divisibility of the generalized Student distribution
(in this case, the conventional Student distribution) for any r > 0 was proved in [43].

Proposition 10. If α ∈ (0, 1] and r > 1
α , then the generalized Student distribution is a scale

mixture of the Laplace laws,

Tr,α
d
= Yr,α ◦Q1,

where
Yr,α

d
=
(
G1/α

r,r ◦U1,α
)−1.

Proof. This statement follows from Corollary 2 and the definition of the random variable
Tr,α.

2.3. Convergence of the Distributions of Random Sums to the Generalized Student Law

In applied probability, it is a convention, probably based on some topics of [35],
that to make sure that a probability distribution can serve as a well-justified model of a
real phenomenon, one should construct a limit setting where this distribution is a limit
distribution or asymptotic approximation (say, a scheme of maximum or summation of
random variables). The existence of such a limit setting with specific conditions providing
the convergence to the assumed distribution can provide a better understanding of real
mechanisms that generate observed statistical regularities.

The representation for the generalized Student distribution as a scale mixture of
normals obtained in Proposition 4 opens the way for the construction in this section of
an ‘if and only if’ version of the random-sum central limit theorem with the generalized
Student distribution as the limit law.

Consider independent not necessarily identically distributed random variables X1, X2,
. . . with EXi = 0 and 0 < σ2

i = EX2
i < ∞, i ≥ 1. For n ∈ N, denote

Sn = X1 + . . . + Xn, B2
n = σ2

1 + . . . + σ2
n .

Assume that the random variables X1, X2, . . . satisfy the Lindeberg condition such that
for any τ > 0,

lim
n→∞

1
B2

n

n

∑
i=1

∫
|x|≥τBn

x2dP(Xi < x) = 0. (22)

It is well-known that under these assumptions,

P
(
Sn < Bnx

)
=⇒ Φ(x)

(this is the classical central limit theorem due to Lindeberg).
Let N1, N2, . . . be a sequence of integer-valued nonnegative random variables defined

on the same probability space so that for each n ∈ N, the random variable Nn is independent
of the sequence X1, X2, . . .. Denote SNn = X1 + . . . + XNn . For definiteness, in what follows,
we assume that ∑0

j=1 = 0. In what follows, the convergence will be meant as n→ ∞.
Recall that a random sequence N1, N2, . . . is said to be infinitely increasing in probabil-

ity if P(Nn ≤ m) −→ 0 for any m ∈ (0, ∞).
Let {dn}n≥1 be an infinitely increasing sequence of positive numbers.
The following version of the central limit theorem for random sums is the base for the

proof of the main result of this section.

Lemma 6 ([44]). Assume that the random variables X1, X2, . . . and N1, N2, . . . satisfy the condi-
tions specified above. In particular, let the Lindeberg condition (22) hold. Moreover, let Nn → ∞ in
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probability. The distribution functions of appropriately normalized random sums SNn converge to
some distribution function F(x),

P
(SNn

dn
< x

)
=⇒ F(x),

if and only if there exists a distribution function H(x) satisfying the conditions

H(0) = 0, F(x) =
∫ ∞

0
Φ
( x
√

y

)
dH(y), x ∈ R,

and P(B2
Nn

< xd2
n) =⇒ H(x).

Proof. This statement is a particular case of a result proved in [44]; also see Theorem 3.3.2
in [45].

The main result of this section is the following statement presenting necessary and
sufficient conditions for the convergence of the distributions of random sums of independent
random variables with finite variances to the generalized Student distribution.

Proposition 11. Let α ∈ (0, 2], r > 1
α . Assume that the random variables X1, X2, . . . and

N1, N2, . . . satisfy the conditions specified above. In particular, let the Lindeberg condition (22) hold.
Moreover, let Nn → ∞ in probability. Then, the distributions of the normalized random sums SNn

converge to the generalized Student law with parameters r and α; that is,

SNn

dn
=⇒ Tr,α

with some dn > 0, dn → ∞, if and only if

B2
Nn

d2
n

=⇒ Dr,α
d
= 1

2
(
U2,α/2 ◦ Gr,α/2,r

)−1. (23)

Proof. This statement is a direct consequence of Lemma 4 with H(x) = P(Dr,α < x) and
Proposition 4.

Note that if the random variables X1, X2, . . . are identically distributed, then σi = σ,
i ∈ N, and the Lindeberg condition holds automatically. In this case, it is reasonable to take
dn = σ

√
n. Hence, from Proposition 11, in this case, it follows that for the convergence

SNn

σ
√

n
=⇒ Tr,α

to take place, it is necessary and sufficient that

Nn

n
=⇒ Dr,α. (24)

It should be especially noted that despite the requirement that the summands in the sum
have finite variances, the resulting generalized Student distribution in Proposition 11 may
have arbitrarily heavy tails. The parameters of the limit-generalized Student distribution are
entirely defined by the asymptotic behavior of the random index Nn (see Relationship (24)).

One more remark concerns the curious form of the random variable Dr,α due to which
the realization of Conditions (23) and (24) in practical situations may seem doubtful. How-
ever, in many practical problems, the flow of informative events producing observations
can be successfully modelled by a doubly stochastic Poisson process (also called a Cox
process). Such a process is defined as a Poisson process with stochastic intensity.
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Namely, a doubly stochastic Poisson process is a stochastic point process of the form

N(t) def
= Π(L(t)), where Π(t), where t ≥ 0, is a homogeneous Poisson process with unit

intensity, and the stochastic process L(t), where t ≥ 0, is independent of Π(t) and possesses
the following properties: L(0) = 0, P(L(t) < ∞) = 1 for any t > 0, and the sample paths
of L(t) do not decrease and are right-continuous. In this context, the Cox process N(t) is
said to be lead by the process L(t). For more details concerning Cox and more general
subordinated processes, see, e.g., [46–48].

In real problems, the process L(t) characterizing the cumulative intensity of the flow
of informative events depends on many factors whose influence is hardly predictable, and
it is quite likely that the statistical regularities in its behavior can be approximated by the

distribution of the random variable Dr,α. Now, if Nn
def
= N(n), then for Condition (24) to

hold, it is necessary and sufficient that n−1L(n) =⇒ Dr,α [49]. This means that actually,
Conditions (23) and (24) are not as artificial as it may seem at the first sight.

2.4. Convergence of the Distributions of Statistics Constructed from Samples with Random Sizes to
the Generalized Student Distribution

In practice, rather often, the data are collected or registered during a certain period
of time so that the sequence (flow) of informative events, each of which brings the next
observation, is a random point process. Hence, the number of available observations may
be unknown until the termination of the process of their registration. Therefore, the number
of accumulated observations (sample size) should also be treated as a (random) obser-
vation. This means that the problems and results of the classical mathematical statistics,
in which the size of the available sample is usually assumed to be deterministic, deals with
conditional distributions given the concrete value of the sample size. In the asymptotic
settings, this value plays the role of an infinitely increasing known parameter. However, the
asymptotic behavior of the (unconditional) distributions of statistics constructed from sam-
ples with random sizes noticeably differs from that of the distributions of statistics in the
classical case, which are actually conditional distributions given the particular value of the
sample size. For a more detailed motivation for the consideration of statistics constructed
from samples with random sizes, see, e.g., [32].

The randomness of the sample size usually leads to the limit distributions for the
corresponding statistics being heavy-tailed, even in situations where the conditional distri-
butions of the same statistics given a non-random sample size are asymptotically normal;
see, e.g., [4,45,50].

Consider a traditional setting of mathematical statistics. As in the preceding section,
consider the random variables N1, N2, . . . , X1, X2, . . . defined on one and the same proba-
bility space so that for each n ≥ 1, the random variable Nn takes only natural values and
is independent of the ‘observations’ X1, X2, . . . . Let tn = tn(X1, . . . , Xn) be a statistic, that
is, a measurable function of X1, . . . , Xn. For every n ≥ 1 and ω ∈ Ω, define the random
variable tNn = tNn(ω)(ω) as

tNn = tNn(ω)

(
X1(ω), . . . , XNn(ω)(ω)

)
.

A statistic tn is said to be asymptotically normal if there exist δ > 0 and θ ∈ R such that

P
(
δ
√

n
(
tn − θ

)
< x

)
=⇒ Φ(x). (25)

Lemma 7 ([51]). Assume that Nn −→ ∞ in probability and the statistic tn is asymptotically
normal in the sense of (25). A distribution function F(x) such that

P
(
δ
√

n
(
tNn − θ

)
< x

)
=⇒ F(x),



Mathematics 2023, 11, 2890 17 of 27

exists if and only if there exists a distribution function H(x) satisfying the conditions

H(0) = 0, F(x) =
∫ ∞

0
Φ
(
x
√

y
)
dH(y), x ∈ R, P(Nn < nx) =⇒ H(x).

The following theorem presents necessary and sufficient conditions for the conver-
gence of the distributions of statistics, which are suggested to be asymptotically normal in
the traditional sense but are constructed from samples with random sizes, to the generalized
Student distribution.

Proposition 12. Let α ∈ (0, 2], r > 1
α . Assume that the random variables X1, X2, . . . and

N1, N2, . . . satisfy the conditions specified above. Moreover, let Nn → ∞ in probability and let the
statistic tn be asymptotically normal in the sense of (25). Then, the distribution of the statistic tNn

constructed from samples with random sizes Nn converges to the generalized Student law Fr,α(x);
that is,

P
(
δ
√

n
(
tNn − θ

)
< x

)
=⇒ Fr,α(x),

if and only if
Nn

n
=⇒ D−1

r,α
d
= 2U2,α/2 ◦ Gr,α/2,r. (26)

Proof. This statement is a direct consequence of (14) and Lemma 7 with H(x) = P(D−1
r,α < x).

As an example of an application of Proposition 12, consider the following statement
establishing necessary and sufficient conditions for the sample quantiles to have the gener-
alized Student asymptotic distribution.

In addition to the notation introduced above, for each n ∈ N, let X(1), X(2), . . . , X(n) be
order statistics constructed from the sample X1, X2, . . . , Xn so that X(1) ≤ X(2) ≤ . . . ≤ X(n).
Assume that the common distribution of Xj is absolutely continuous and denote the
corresponding probability density as p(x). Let q ∈ (0, 1). The quantile of order q of the
random variable X1 will be denoted ξq. For a fixed n ∈ N, define the sample quantile as
X([nq]+1), where [a] stands for the integer part of a real number a. The following Lemma is
a particular case of a result from [52].

Lemma 8. Assume that the density p(x) is differentiable in the neighborhood of ξq and p(ξq) 6= 0.
Then, as n→ ∞,

p(ξq)√
q(1− q)

·
√

n
(
X([nq]+1) − ξq

)
=⇒ X.

This statement means that the sample quantile X([nq]+1) is asymptotically normal in
the sense of (25) with δ = p(ξq)/

√
q(1− q) and θ = ξq.

In [4], an example was presented of the convergence of the distributions of some
statistics constructed from samples with random sizes to the classical Student distribution.
In that paper, it was assumed that the sample size had a negative binomial distribution.
Here, we will present a generalization of this result. As is known, the negative binomial
distribution considered in [4] is a mixed Poisson distribution with a mixing gamma distri-
bution. A random variable N with a negative binomial distribution can be represented as
N = Π(Gr,λ), where r > 0, λ > 0, and Π(t) is the Poisson process with the unit intensity
independent of the gamma-distributed random variable Gr,λ. Here, we will use the same
construction and assume that for each n ∈ N, the random sample size Nn has the mixed
Poisson distribution of the form

Nn = Π(nD−1
r,α ). (27)

With α = 2 the random variable D−1
r,α obviously turns into Gr,r so that, as in this case,

we deal with the negative binomially distributed sample size considered in [4].
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Corollary 7. Let α ∈ (0, 2] where r > 1
α . Let the random variable Nn be defined as (27) and

be independent of the sequence X1, X2, . . . for each n ∈ N. Then, the distribution of the sample
quantiles constructed from samples with random sizes Nn converges to the generalized Student law
Fr,α(x); that is,

P
( p(ξq)√

q(1− q)
·
√

n
(
X([qNn ]+1) − ξq

)
< x

)
=⇒ Fr,α(x).

Proof. It is easy to verify that the random variables Nn defined as (27) satisfy Condition (26)
so that the desired result follows from Proposition 12.

It should be noted that in Proposition 12 and Corollary 6, a non-random normalization
and centering was used for the statistics constructed from samples with random sizes.
This was performed because a reasonable approximation to the distribution of the basic
statistics can be constructed only if both centering and normalizing values are non-random.
Otherwise (that is, if normalization is random depending on the random sample size),
the approximate asymptotic distribution function becomes random itself. For example,
random normalization makes the problem of the evaluation of significance levels from the
asymptotic distribution of the test statistic senseless.

3. Generalized Lomax Distribution
3.1. Definition and Basic Properties of the Generalized Lomax Distribution

The distribution of the random variable

|Tr,α|
d
= |Qα| ◦ G−1/α

r,r

will be called a generalized Lomax distribution. When α = 1, this distribution is known as
Lomax distribution. In general, with an arbitrary α ∈ (0, 2], the distribution of |Tr,α| can just
as well be called folded generalized Student or one-sided generalized Student distribution.
However, in what follows, we will keep to the term generalized Lomax distribution.

From (8), it is easy to see that the probability density f ∗r,α(x) of the generalized Lomax
distribution has the form

f ∗r,α(x) =
α

r1/αB(r, 1
α )

(
1 +

xα

r

)−(r+1/α)
, x ≥ 0.

Recall that here, α ∈ (0, 2] and r > 0 so that αr > 1.
The expression for the moments of the generalized Lomax distribution is given by

Proposition 2.

Proposition 13. For α ∈ (0, 1] and r > 1
α , the generalized Lomax distribution is mixed exponential.

Proof. Since |Q1|
d
= W1, from Proposition 10, it directly follows that

|Tr,α|
d
=
(
U1,α ◦ G1/α

r,r
)−1 ◦W1. (28)

Corollary 8. For α ∈ (0, 1] and r > 1
α , the generalized Lomax distribution is infinitely divisible.

Proof. The statement follows from Proposition 13 and the result of [41], according to which
it is sufficient that F is mixed exponential in order for a distribution function F(x) such that
F(0) = 0 to be infinitely divisible.
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Proposition 14. For α ∈ (0, 2] and r > 1
α , the scale mixtures of generalized Lomax distributions

are identifiable; that is, if V1 and V2 are two nonnegative random variables, then the equality

|Tr,α| ◦V1
d
= |Tr,α| ◦V2 implies V1

d
= V2 .

Proof. The proof is similar to that of Proposition 6.

The generalized Lomax distribution can be just as well defined in terms of only (gen-
eralized) gamma distributions or only exponential power distributions, as is demonstrated
in the following statement implied by Relationship (5).

Proposition 15. For α ∈ (0, 2] and r > 1
α , the following relationships hold:

|Tr,α|
d
=
(
r|Qα| ◦ |Q1/r|−1/r)1/α d

=
(
rG1/α,1 ◦ |Q1/r|−1/r)1/α d

=

d
=
(
G1/α,r ◦ |Q1/r|−1/r)1/α d

=
(
G1/α,r ◦ G−1

r,1
)1/α. (29)

3.2. Generalized Lomax Distribution as a Scale Mixture of Folded Normal Distributions

From Proposition 7, we obviously obtain the following statement.

Corollary 9. For any α ∈ (0, 2] and any r > 1
α , the generalized Lomax distribution is a scale

mixture of folded normal distributions:

|Tr,α|
d
=
√

Dr,α ◦ |X|, (30)

where
Dr,α

def
= 1

2
(
U2,α/2 ◦ G2/α

r,r
)−1 d

= 1
2
(
U2,α/2 ◦ Gr,α/2,r

)−1,

so that
P(|Tr,α| < x) = 2

∫ ∞

0
Φ
( x
√

y

)
dP(Dr,α < y)− 1. (31)

Moreover, if α ∈ (0, 1], then Dr,α
d
= 2W1 ◦

(
U1,α ◦ G1/α

r,r
)−2.

3.3. Convergence of the Distributions of Maximum and Minimum Random Sums to the
Generalized Lomax Distribution

In this section, it will be demonstrated that the generalized Lomax distribution can be
the limit law for maximum sums of a random number of independent random variables
(maximum random sums), minimum random sums, and absolute values of random sums.

In addition to the notation Sn = X1 + . . . + Xn introduced in Section 2.3, for n ∈ N,
denote Sn = max1≤i≤n Si, where Sn = min1≤i≤n Si. The random variables X1, X2, . . .
will be assumed to satisfy the Lindeberg condition (22). It is well-known that under
these assumptions, not only does P

(
Sn < Bnx

)
=⇒ Φ(x) (see Section 2.3), but also

P
(
Sn < Bnx

)
=⇒ 2Φ(x)− 1, x ≥ 0, and P

(
Sn < Bnx

)
=⇒ 2Φ(x), x ≤ 0.

Let, as usual, N1, N2, . . . be a sequence of nonnegative random variables such that
for each n ∈ N the random variables Nn, X1, X2, . . . are independent. For n ∈ N, let
SNn = X1 + . . . + XNn , SNn = max1≤i≤Nn Si, and SNn = min1≤i≤Nn Si (for definiteness,
assume that S0 = S0 = S0 = 0). Let {dn}n≥1 be an arbitrary infinitely increasing sequence
of positive numbers. Here, the convergence is meant as n→ ∞.

Lemma 9 ([44]). Assume that the random variables X1, X2, . . . and N1, N2, . . . satisfy the con-
ditions specified above. In particular, let the Lindeberg Condition (22) hold and let Nn → ∞ in
probability. Then, the distributions of normalized random sums weakly converge to some distribu-
tion; that is, there exists a random variable Y such that d−1

n SNn =⇒ Y if and only if there exists a

nonnegative random variable U such that Y d
=
√

U ◦ X and if any of the following conditions holds:
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(i) d−1
n |SNn | =⇒ |Y|;

(ii) There exists a random variable Y such that d−1
n SNn =⇒ Y;

(iii) There exists a random variable Y such that d−1
n SNn =⇒ Y;

(iv) There exists a nonnegative random variable U such that d−2
n B2

Nn
=⇒ U.

Moreover,

P
(
Y < x

)
= 2EΦ

(
xU−1/2), x ≤ 0; P

(
Y < x

)
= P

(
|Y| < x

)
= 2EΦ

(
xU−1/2)− 1, x ≥ 0.

Lemma 9 and Corollary 8 imply the following statement.

Proposition 16. Let α ∈ (0, 2]. Assume that the random variables X1, X2, . . . and N1, N2, . . .
satisfy the conditions specified above. In particular, let the Lindeberg Condition (22) hold. Moreover,
let Nn → ∞ in probability. Then the following five statements are equivalent:

d−1
n SNn =⇒ Tr,α; d−1

n SNn =⇒ |Tr,α|; d−1
n SNn =⇒ −|Tr,α|;

d−1
n |SNn | =⇒ |Tr,α|; d−2

n B2
Nn

=⇒ Dr,α.

3.4. Generalized Lomax Distribution as a Mixed Weibull Distribution (with 1 ≤ α ≤ 2) and as a
Mixed Fréchet Distribution (with 0 < α ≤ 1)

In addition to the auxiliary information presented in the Introduction, in this section,
we will need some more definitions and auxiliary results.

In the paper [53], it was shown that any gamma distribution with a shape parameter
no greater than one is mixed exponential. Namely, the density g(x; r, µ) of a gamma
distribution with 0 < r < 1 can be represented as

g(x; r, µ) =
∫ ∞

0
ze−zx p(z; r, µ)dz,

where

p(z; r, µ) =
µr

Γ(1− r)Γ(r)
·
I[µ, ∞)(z)
(z− µ)rz

. (32)

Moreover, a gamma distribution with a shape parameter r > 1 cannot be represented
as a mixed exponential distribution.

In [54], it was proved that if r ∈ (0, 1), µ > 0, and Gr, 1 and G1−r, 1 are independent
gamma-distributed random variables, then the density p(z; r, µ) defined by (32) corre-
sponds to the random variable

Zr,µ =
µ(Gr, 1 + G1−r, 1)

Gr, 1

d
= µZr,1

d
= µ

(
1 + 1−r

r R1−r,r
)
, (33)

where R1−r,r is a random variable with the Snedecor–Fisher distribution defined by the
probability density

f (x; 1− r, r) =
(1− r)1−rrr

Γ(1− r)Γ(r)
·

I(0, ∞)(x)
xr[r + (1− r)x]

. (34)

In other words, if r ∈ (0, 1), then

Gr, µ
d
= Z−1

r, µ ◦W1. (35)

In [32], it was proved that if α ≥ 1, then the one-sided EP distribution is a scale mixture
of Weibull distributions:

|Qα|
d
= Z−1/α

1/α, 1 ◦Wα. (36)
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Recall that the random variable W−1
α is said to have an inverse Weibull or Fréchet

distribution:
P(W−1

α < x) = P(Wα ≥ 1
x ) = exp{x−α}, x ≥ 0.

From (5) and Gleser’s result (35), we obtain the following statement.

Proposition 17. (i). If 1 < α ≤ 2 and 1
α < r < 1, then the generalized Lomax distribution is a

scale mixture of Fréchet distributions:

|Tr,α|
d
= |Qα| ◦ Z1/α

r,r ◦W−1
α

d
=
(
G1/α,r ◦ Zr,1

)1/α ◦W−1
α . (37)

(ii). If 1 < α ≤ 2 and r > 1
α , then the generalized Lomax distribution is a scale mixture of Weibull

distributions:
|Tr,α|

d
=
(
Z1/α,1 ◦ Gr,r

)−1/α ◦Wα. (38)

Proof. Relationship (37) follows from Proposition 15 and (35). Relationship (38) follows
from Proposition 15, (36), and (2) with γ = α.

3.5. Some Limit Theorems for Extreme Order Statistics in Samples with Random Sizes

Proposition 17 states that the generalized Lomax distributions with α ≥ 1 can be
represented as scale mixtures of the Weibull distribution or as scale mixtures of the Fréchet
distribution. In other words, Relationship (38) can be expressed in the following form: for
any x ≥ 0,

P(|Tr,α| < x) =
∫ ∞

0
(1− e−zxα

)dP(Z1/α,1 ◦ Gr,r < z), (39)

whereas Relationship (37) can be rewritten as

P(|Tr,α| < x) =
∫ ∞

0
e−zx−α

dP(Zr,1 ◦ G1/α,r < z). (40)

At the same time, in the case that 0 < α ≤ 1, Relationship (28) can be written in the form

P(|Tr,α| < x) =
∫ ∞

0
(1− e−zx)dP(U1,α ◦ G1/α

r,r < z). (41)

As is well known, all the parent distributions in these mixtures can be limiting for
extreme-order statistics.

From (39) and (40), it follows that the generalized Lomax distribution with α ≥ 1
can appear as a limit distribution in limit theorems for extreme-order statistics in samples
with random sizes. To illustrate this, we will consider the limit setting dealing with the
max-compound and min-compound doubly stochastic Poisson processes.

Recall that the definition of a doubly stochastic Poisson process (Cox process) was
given in Section 2.3.

Now, let N(t), where t ≥ 0, be the a doubly stochastic Poisson process (Cox process)
lead by the process L(t). Let T1, T2, . . . be the jump points of the process N(t). Consider
a marked Cox point process {(Ti, Xi)}i≥1, where X1, X2, . . . are independent identically
distributed random variables independent of the process N(t). Most studies dealing with
the point process {(Ti, Xi)}i≥1 deal with a traditional compound Cox process S(t) defined
for each t ≥ 0 as the sum of all marks Xi of the points Ti of the marked Cox point process
that do not exceed the time t. In S(t), the compounding operation is summation. In many
applied problems, of no less importance are the other functions of the marked Cox point
process {(Ti, Xi)}i≥1: the so-called max-compound Cox process or min-compound Cox
process that differ from S(t) in that the compounding operation of summation is replaced
by the operation of taking the maximum or minimum of the marking random variables,
respectively. The analytic and asymptotic properties of max-compound and min-compound
Cox processes were considered in [55–57].
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Let N(t) be a Cox process. The process M(t) defined as

M(t) =

−∞, if N(t) = 0,

max
1≤k≤N(t)

Xk, if N(t) ≥ 1,

where t ≥ 0, is called a max-compound Cox process.
The process m(t) defined as

m(t) =

+∞, if N(t) = 0,

min
1≤k≤N(t)

Xk, if N(t) ≥ 1,

where t ≥ 0, is called a min-compound Cox process.
The common distribution function of the random variables Xj will be denoted F(x).

In what follows, we will use the conventional notation

lext(F) = inf{x : F(x) > 0}, rext(F) = sup{x : F(x) < 1}.

Lemma 10. Assume that there exists a positive infinitely increasing function d(t) and a positive
random variable L such that

L(t)
d(t)

=⇒ L (42)

as t → ∞. Let us also assume that lext(F) > −∞ and the distribution function PF(x) ≡
F
(
lext(F)− x−1) satisfies the condition that there exists a number γ > 0 such that for any x > 0

lim
y→∞

PF(yx)
PF(y)

= x−γ. (43)

Then, there exist functions a(t) and b(t) such that

P
(m(t)− a(t)

b(t)
< x

)
=⇒ H(x)

as t→ ∞, where

H(x) =


∫ ∞

0
(1− e−zxγ

)dP(L < z), x ≥ 0,

0, x < 0.

Moreover, the functions a(t) and b(t) can be defined as

a(t) = lext(F), b(t) = sup
{

x : F(x) ≤ 1
d(t)

}
− lext(F). (44)

Proof. This lemma can be proved in the same way as Theorem 2 in [55] dealing with max-
compound Cox processes using the fact that

min{X1, . . . , XN(t)} = −max{−X1, . . . ,−XN(t)}.

Proposition 18. Let 0 < α ≤ 1, r > 1
α . Assume that there exists a positive infinitely increasing

function d(t) such that condition (42) holds with

L d
= U1,α ◦ G1/α

r,r .
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Let us also assume that lext(F) > −∞ and the distribution function PF(x) ≡ F
(
lext(F)−

x−1) satisfies Condition (43) with γ = 1. Then, there exist functions a(t) and b(t) such that

m(t)− a(t)
b(t)

=⇒ |Tr,α| (45)

as t→ ∞. Moreover, the functions a(t) and b(t) can be defined by (44).

Proof. This statement directly follows from Lemma 10 with the account of (41).

Proposition 19. Let 1 ≤ α ≤ 2, where r > 1
α . Assume that there exists a positive infinitely

increasing function d(t) such that Condition (42) holds with

L d
= Z1/α,1 ◦ Gr,r.

Let us also assume that lext(F) > −∞ and the distribution function PF(x) ≡ F
(
lext(F)−

x−1) satisfies Condition (43) with γ = α. Then, there exist functions a(t) and b(t) such that

m(t)− a(t)
b(t)

=⇒ |Tr,α| (46)

as t→ ∞. Moreover, the functions a(t) and b(t) can be defined by (44).

Proof. This statement directly follows from Lemma 10 with the account of (39).

Lemma 11. Assume that there exist a positive infinitely increasing function d(t) and a nonnegative
random variable L such that Condition (42) holds. Let us also assume that rext(F) = ∞ and there
exists a positive number γ such that

lim
y→∞

1− F(yx)
1− F(y)

= x−γ (47)

for any x > 0. Then, there exist a positive function b(t) and a distribution function H1(x) such
that

P
(M(t)

b(t)
< x

)
=⇒ H1(x)

as t→ ∞. Moreover,

H1(x) =


0, x < 0,∫ ∞

0
e−zx−γ

dP(L < z), x ≥ 0,

and the function b(t) can be defined as

b(t) = inf
{

x : 1− F(x) ≤ 1
d(t)

}
. (48)

Proposition 20. Let 1 ≤ α ≤ 2, r > 1
α . Assume that there exists a positive infinitely increasing

function d(t) such that Condition (42) holds with

L d
= Zr,1 ◦ G1/α,r.

Let us also assume that rext(F) = ∞ and Condition (47) holds with γ = α. Then, there exists
a positive function b(t) such that

M(t)
b(t)

=⇒ |Tr,α| (49)

as t→ ∞. Moreover, the function b(t) can be defined by (48).
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Proof. This statement directly follows from Lemma 10 with the account of (40).

It is very simple to give examples of processes satisfying the conditions described
in Propositions 18 and 19. Let L(t) ≡ Ut and d(t) ≡ t, where t ≥ 0, where U is a
positive random variable. Then, choosing an appropriately distributed U, we can provide
the validity of the corresponding condition for the convergence of L(t)/d(t). Moreover,
the parameter t may not have the meaning of physical time. For example, it may be some
location parameter of L(t), so that the statements of this section concern the case of the
large mean intensity of the Cox process.

3.6. Convergence of the Distributions of Mixed Geometric Random Sums to the Generalized Lomax
Distribution And Extensions of the Rényi Theorem

In the preceding section, we made sure that the generalized Lomax distribution
can be limiting for extreme-order statistics in samples of random sizes. Here, it will be
demonstrated that this distribution can also be used as an asymptotic approximation for
the distributions of sums of independent random variables.

According to Proposition 13, if α ∈ (0, 1] and r > 1
α , then the generalized Lomax

distribution is mixed exponential. According to Corollary 7, it is infinitely divisible and
hence, by the Lévy–Khintchin theorem, can be limiting for sums of independent random
variables in the double array limit scheme under the condition of the uniform negligibility
of summands.

However, the classical summation scheme is far from the only summation model
within which the generalized Lomax distribution can be an asymptotic distribution. To be
sure of this, consider two limit settings dealing with mixed geometric and mixed Pois-
son random sums. In both of these settings, we will deal with versions of the law of
large numbers for random sums where, unlike the classical situation, the limit may be
random [45].

First, consider mixed geometric random sums.
Let p ∈ (0, 1) and let Vp be a random variable having a geometric distribution with

the parameter p: P(Vp = k) = p(1− p)k−1, k = 1, 2, . . . . This means that

P(Vp > m) =
∞

∑
k=m+1

p(1− p)k−1 = (1− p)m

for any m ∈ N. Let (πn)n≥1 be a sequence of positive random variables taking values in
the interval (0, 1), and, moreover, for each n ≥ 1 and all p ∈ (0, 1), the random variables
πn and Vp are independent.

For each n ∈ N, let Nn = Vπn . Hence,

P(Nn > m) =
∫ 1

0
(1− z)m dP(πn < z) (50)

for any m ∈ N. The distribution of the random variable Nn will be called πn-mixed geometric
(for more details, see [58]).

Let X1, X2, . . . be a sequence of independent identically distributed random variables
such that the expectation EX1 exists. Assume that EX1 ≡ a 6= 0. According to the
Kolmogorov strong law of large numbers, this condition implies that

1
na

n

∑
j=1

Xj −→ 1 (51)

almost surely as n→ ∞.
For n ∈ N, let Sn = X1 + · · ·+ Xn. Let Nn be a random variable with a πn-mixed

geometric distribution (50). Assume that for each n ∈ N, the random variable Nn is inde-
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pendent of the sequence X1, X2, . . . . Our nearest aim is to study the asymptotic behavior of
the random sum SNn as n→ ∞.

Lemma 12 ([58]). Assume that the random variables X1, X2, . . . satisfy Condition (51). Let for
each n ∈ N the random variable Nn have a πn-mixed geometric distribution (50) and be independent
of the sequence X1, X2, . . . . Assume that there exists a positive random variable N such that

nπn =⇒ N

as n→ ∞. Then
SNn

n
=⇒ aN−1 ◦W1 (n→ ∞).

Proposition 21. Let α ∈ (0, 1] and r > 1
α . Assume that the random variables X1, X2, . . .

satisfy Condition (51). Let for each n ∈ N the random variable Nn have a πn-mixed geometric
distribution (50) and be independent of the sequence X1, X2, . . . . Assume that

nπn =⇒ U1,α ◦ G1/α
r,r (52)

as n→ ∞. Then,
lim

n→∞
sup
x≥0

∣∣P(SNn < na · x)− P(|Tr,α| < x)
∣∣ = 0.

Proof. By Lemma 12 with N d
= U1,α ◦ G1/α

r,r and (28), Condition (52) implies

SNn

na
=⇒

(
U1,α ◦ G1/α

r,r
)−1 ◦W1

d
= |Tr,α|. (53)

Now it remains for us to refer to the Dini theorem, according to which, since the distribution
function of the limit random variable is continuous, convergence in distribution (53) implies
the uniform convergence of the distribution functions.

Proposition 21 is an example of extension of the famous Rényi theorem on the asymp-
totic behavior of the distributions of geometric sums (or rarefied renewal processes) [59]
to the case of mixed geometric sums. In turn, the Rényi theorem can be regarded as an
example of the law of large numbers for geometric random sums.

Now, we turn to mixed Poisson random sums. For each n ∈ N, define the random
variable Nn as Nn = Π(Ln), where Π(t), with t ≥ 0, is the Poisson process with unit inten-
sity and Ln is a positive random variable independent of the process Π(t). The distribution
of Nn is a mixed Poisson distribution, as follows:

P(Nn = k) =
1
k!

∫ ∞

0
e−uukdP(Ln < u), k = 0, 1, 2, . . . (54)

Proposition 22. Let α ∈ (0, 2] and let r > 1
α . Assume that the random variables X1, X2, . . . satisfy

Condition (51). Let for each n ∈ N the random variable Nn have a mixed Poisson distribution (54).
Then,

lim
n→∞

sup
x
|P(SNn < na · x)− P(|Tr,α| < x)

∣∣ = 0

if and only if
Ln

n
=⇒ Dr,α

d
= 1

2
(
U2,α/2 ◦ Gr,α/2,r

)−1.

Proof. This statement is the direct consequence of Theorem 1 in [60] and the Dini theorem
mentioned above.
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