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Abstract: Seasonal autoregressive (SAR) models have many applications in different fields, such as
economics and finance. It is well known in the literature that these models are nonlinear in their
coefficients and that their Bayesian analysis is complicated. Accordingly, choosing the best subset of
these models is a challenging task. Therefore, in this paper, we tackled this problem by introducing
a Bayesian method for selecting the most promising subset of the SAR models. In particular, we
introduced latent variables for the SAR model lags, assumed model errors to be normally distributed,
and adopted and modified the stochastic search variable selection (SSVS) procedure for the SAR
models. Thus, we derived full conditional posterior distributions of the SAR model parameters in
the closed form, and we then introduced the Gibbs sampler, along with SSVS, to present an efficient
algorithm for the Bayesian subset selection of the SAR models. In this work, we employed mixture–
normal, inverse gamma, and Bernoulli priors for the SAR model coefficients, variance, and latent
variables, respectively. Moreover, we introduced a simulation study and a real-world application to
evaluate the accuracy of the proposed algorithm.

Keywords: SAR models; SSVS procedure; posterior analysis; mixture–normal
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1. Introduction

Seasonal autoregressive (SAR) time series models are widely used in different fields
such as economics and finance to fit and forecast time series that are characterized by
seasonality [1]. As it is well known, time series modeling starts with the specification of
the model order, followed by estimation, diagnostic checks, and forecasting [2]. Therefore,
the model specification phase is important, since all other modeling phases depend on its
accuracy. In most real-world applications, the number of time series lags incorporated in a
proposed time series model for an underlying time series is unknown, and this number of
time series lags in this case is known as the model order, which needs to be specified or
estimated based on the given time series data and its assumed probability distribution [3].

Although the time series model order is usually unknown, a maximum value of this
order can be assumed, and different methods can be introduced to select the best subset
to have a parsimonious model. Traditional subset selection methods include information
criteria, such as the Akaike information criterion (AIC) [4] and the corrected AIC (AICc) [5].
These traditional selection methods use exhaustive searches based on parameter estimation
and order selection. Many researchers have used these methods for subset selection in
autoregressive (AR) time series models, including McClave [6], Penm and Terrell [7],
Thanoon [8], Sarkar and Kanjilal [9].

However, it is very computationally expensive to apply these traditional methods
to complicated models with high orders, such as the SAR models and other time series
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models with multiple seasonalities [10,11]. Accordingly, other subset selection procedures
based on Markov chain Monte Carlo (MCMC) methods have been proposed for reducing
the computational cost and efficiently selecting the best subset of time series models. Some
researchers have adopted the stochastic search variable selection (SSVS) procedure, which
was introduced by George and McCulloch [12], for selecting the best subset of linear
regression models to be applied to the subset selection of time series models. Chen [13]
proposed the Gibbs sampler, along with the SSVS procedure, to select the best subset of AR
models. This work has been extended by different researchers to other time series models.
So et al. [14] extended it for the subset selection of AR models with exogenous variables,
and Chen et al. [15] extended it for the subset selection of threshold ARMA models.

On the other hand, the Bayesian analysis of the SAR model is complicated, because the
likelihood function is a nonlinear function of the SAR model coefficients, and, accordingly,
its posterior density is analytically intractable. Different approaches have been introduced
to facilitate this analysis, including Markov chain Monte Carlo (MCMC)-based approxi-
mations [16]. Barnett et al. [17,18] applied MCMC methods to estimate SAR and ARMA
models based on sampling functions for partial autocorrelations. Ismail [19,20] applied the
Gibbs sampler to introduce the Bayesian analysis of SAR and SMA models. Ismail and
Amin [16] applied the Gibbs sampler to present the Bayesian estimation of seasonal ARMA
(SARMA) models, and, recently, Amin [1] used the same approach to introduce the Bayesian
prediction of SARMA models. For modeling time series with multiple seasonalities, Amin
and Ismail [21] and Amin [22,23] applied the Gibbs sampler to introduce the Bayesian
estimation of double SAR, SMA, and SARMA models. Recently, Amin [24,25] applied the
Gibbs sampler to introduce the Bayesian analysis of double and triple SAR models.

From a real-world application perspective, it is crucial to introduce an efficient
Bayesian method for selecting the best subset of the SAR models, with the aim to ob-
tain a parsimonious SAR model. However, most of the existing work has focused only
on the Bayesian estimation and the prediction of SAR processes, and none of them has
tried to tackle this problem of selecting the best subset of the SAR models. Therefore, in
this paper, we aim to fill this gap and enrich real-world applications of the SAR models by
introducing a Bayesian method for subset selection of these models based on modifying
the SSVS procedure and adopting the Gibbs sampler. In particular, we first introduce
latent variables for the nonseasonal and seasonal SAR model lags, assume that the SAR
model errors are normally distributed, and employ mixture–normal, inverse gamma, and
Bernoulli priors for the SAR model coefficients, variance, and latent variables, respectively.
We then derive full conditional posteriors of the SAR model parameters in the closed form,
and we apply the Gibbs sampler, along with SSVS, to develop an efficient algorithm for
the best subset selection of the SAR models. In order to evaluate the performance of the
proposed algorithm, we conduct a simulation study and a real-world application.

The remainder of this paper is organized as follows: We summarize the SAR models
and related Bayesian concepts in Section 2. We then introduce the posterior analysis and
proposed algorithm for the Bayesian best subset selection of the SAR models in Section 3.
In Section 4, we present and discuss simulations and the real-world application of the
proposed Bayesian subset selection algorithm. Finally, we conclude this work in Section 5.

2. Seasonal Autoregressive (SAR) Models and Bayesian Concepts

A mean deleted time series {zt} is generated by a seasonal autoregressive model of
order p1 and p2, and is designated as SAR(p1)(p2)s if it satisfies [2]:

φ1(B)φ2(Bs)zt = εt, (1)

where the SAR errors {εt} are assumed to follow a normal distribution with a mean zero and
variance of σ2, s is the seasonal period, and B is an operator defined as Brzt = zt−r. φ1(B) =(

1− φ11B− φ12B2 − . . .− φ1p1 Bp1
)

and φ2(Bs) =
(
1− φ21Bs − φ22B2s − . . .− φ2p2 Bp2s)

are the nonseasonal and seasonal autoregressive polynomials with orders p1 and p2, respec-



Mathematics 2023, 11, 2878 3 of 13

tively. Also, φ1 =
(
φ11, φ12, . . . , φ1p1

)T and φ2 =
(
φ21, φ22, . . . , φ2p2

)T are the nonseasonal
and seasonal autoregressive coefficients, respectively.

We can expand the SAR model (1) and write it as follows:

zt =
p1

∑
i=1

φ1izt−i +
p2

∑
j=1

φ2jzt−js −
p1

∑
i=1

p2

∑
j=1

φ1iφ2jzt−i−js + εt. (2)

With the objective of simplifying the Bayesian analysis, we write the SAR model (2) in a
matrix notation as follows:

y = Xβ + E, (3)

where y = (z1, z2, . . . , zn)
T , E = (ε1, ε2, . . . , εn)

T , and X is an n × m matrix, i.e., m =
(1 + p1)(1 + p2)− 1, with the tth row defined as:

Xt =
(
zt−1, . . . , zt−p1 , zt−s, zt−s−1, . . . , zt−s−p1 , . . . . . . , zt−p2s, zt−p2s−1, . . . , zt−p2s−p1

)
, (4)

and β is the coefficient vector, which is defined as the following:

β =
(
φ11, . . . , φ1p1 , φ21,−φ11φ21, . . . ,−φ1p1 φ21, . . . . . . , φ2p2 ,−φ11φ2p2 , . . . ,−φ1p1 φ2p2

)T . (5)

The products of the coefficients, i.e., φ1iφ
′
2js, are part of the SAR model, and, accord-

ingly, this model is a nonlinear function of φ1 and φ2, thereby leading to complications in
its Bayesian analysis.

As we mentioned in the introduction, one of the main challenges of time series analysis
is specifying the value of the SAR model order p1 and p2, since these values are unknown
and depend on the stochastic structure of the time series under study. Thus, we assume
that the maximum value of the SAR model order is known, and we adopt and modify
the SSVS procedure for the Bayesian best subset selection of the SAR model. Accordingly,
we first introduce a latent variable for each coefficient of the SAR model, i.e., δij for φij
∀j = 1, . . . , pi and i = 1, 2, where δij equals to one when the corresponding time series lag
to φij is selected, and it equals to zero otherwise. We then represent the prior distribution
on each SAR model coefficient φij using a mixture–normal distribution that is defined as:

φij|δij ∼ (1− δij)N(0, τ2
ij) + δijN(0, c2

ijτ
2
ij), (6)

and

p(δij = 1) = 1− p(δij = 0) = Pij ∀ij. (7)

Thus, the prior distribution of φ1 and φ2 can be presented as a multivariate normal
distribution that is defined as follows:

φi|δi ∼ Npi (0, Mδi Wi Mδi ) ∀i = 1, 2, (8)

where δi = (δi1, . . . , δipi )
T , Mδi is a diagonal matrix, i.e., Mδi = diag[bi1τi1, . . . , bipi τipi ] with

bij = 1 if δij = 0 and bij = cij if δij = 1, and Wi is a prior correlation matrix. Here, Mδi is
specified in such a way to be a scaling of the prior covariance matrix to satisfy the prior
specification in (6). In particular, we chose τi1, . . . , τipi to be small, and, therefore, the φijs
associated with δij = 0 would likely be close to zero. In addition, we chose ci1, . . . , cipi to
be large enough to make c2

ijτ
2
ij highly greater than τ2

ij; thus, the φij associated with δij = 1
would tend to have a high variation and likely be away from zero, and the corresponding
time series lags were selected as the best subset SAR model. For more information about
setting these constants in the SSVS procedure, we refer to George and McCulloch [12].
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As a prior distribution of σ2, we specify an inverse gamma distribution that is
defined as:

σ2|δi ∼ IG
(

ν

2
,

νλ

2

)
. (9)

Using the marginal distribution of the δijs given in (7), we can write the joint prior
distribution of δi as:

ζ(δi) =
pi

∏
j=1

Pδi j
ij (1− Pij)

(1−δij) ∀i = 1, 2. (10)

It is worth noting that the uniform prior of δi, i.e., ζ(δi) = 2−pi ∀i = 1, 2, is a special case,
since each time series lag has the same probability to be selected.

The likelihood function of the SAR model (3) with normally distributed errors can be
presented as:

L(φ1, φ2, σ2 | y) ∝ (σ2)−
n
2 exp

{
− 1

2σ2 ETE
}

= (σ2)−
n
2 exp

{
− 1

2σ2 (y− Xβ)T(y− Xβ)

}
. (11)

We can obtain the joint posterior distribution of the SAR models by simply multiplying
the prior distributions given in (8)–(10) by the likelihood function given in (11), which can
be presented as:

ζ
(

φ1, φ2, σ2, δ1, δ2 | y
)

∝
2

∏
i=1

pi

∏
j=1

Pδi j
ij (1− Pij)

(1−δij)(σ2)−(
n+ν

2 +1)×

exp

{
− 1

2σ2

[
νλ + σ2

2

∑
i=1

φT
i (Mδi Wi Mδi )φi+ (12)

(y− Xβ)T(y− Xβ)
]}

.

3. Bayesian Subset Selection of the SAR Models

The introduction of the Bayesian subset selection of the SAR models is based on poste-
rior analysis; however, the joint posterior (12) of the SAR model parameters is a nonlinear
function of the coefficients φ1 and φ2. Accordingly, this joint posterior is analytically
intractable, and, thus, the marginal posterior of each parameter cannot be analytically
derived in closed forms. One of the solutions that can be applied to tackle this problem
and ease the Bayesian subset selection of the SAR models is introducing the Gibbs sampler
to approximate the required marginal posteriors of these models. In this section, we first
derive the conditional posterior distributions of the SAR model as a requirement to employ
the Gibbs sampler, and we then introduce our proposed algorithm for the Bayesian subset
selection of the SAR models.

3.1. Conditional Posteriors of the SAR Models

As we introduced in our previous work [1,10], deriving the conditional posterior
of each SAR model parameter can be simply done from the joint posterior (12) by first
combining related terms to that parameter and then integrating out all unrelated terms.
Following the same approach, we derive here the full conditional posteriors of the SAR
parameters, i.e., φ1, φ2, σ2, δ1, and δ2, that are required to adopt the Gibbs sampler, along
with SSVS for selecting the best subset of the SAR models.
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We rewrite the SAR model (3) as the following:

y = Zφ1 φ1 + Lφ1 φ2 + E. (13)

We substitute (13) in the joint posterior (12), and we then complete the square in the
exponent with respect to φ1 and integrate out all unrelated terms to obtain the conditional
posterior of φ1 given φ2, σ2, δ1, δ2, and y to be Np1(µ

?
φ1

, V?
φ1
), where:

µ?
φ1

=

[(
σ−2ZT

φ1
Zφ1 + (Mδ1W1Mδ1)

−1
)−1(

σ−2ZT
φ1

(
y− Lφ1 φ2

))]
, and

V?
φ1

=
(

σ−2ZT
φ1

Zφ1 + (Mδ1W1Mδ1)
−1
)−1

, (14)

where Zφ1 is a n× p1 matrix with the (t, i) element Zφ1ti
= zt−i −∑

p2
j=1 φ2jzt−i−js, and Lφ1

is a n× p2 matrix with the tth row Lφ1t
=
(
zt−s, zt−2s, . . . , zt−p2s

)
.

In the same way, we rewrite the SAR model (3) as the following:

y = Zφ2 φ2 + Lφ2 φ1 + E. (15)

We substitute (15) in the joint posterior (12), and we then complete the square in the
exponent with respect to φ2 and integrate out all unrelated terms to obtain the conditional
posterior of φ2 given φ1, σ2, δ1, δ2, and y to be Np2(µ

?
φ2

, V?
φ2
), where:

µ?
φ2

=

[(
σ−2ZT

φ2
Zφ2 + (Mδ2W2Mδ2)

−1
)−1(

σ−2ZT
φ2

(
y− Lφ2 φ1

))]
, and

V?
φ2

=
(

σ−2ZT
φ2

Zφ2 + (Mδ2W2Mδ2)
−1
)−1

, (16)

where Zφ2 is an n× p2 matrix with the (t, j) element Zφ2tj
= zt−js −∑

p1
i=1 φ1izt−i, and Lφ2 is

an n× p1 matrix with the tth row Lφ2t
=
(
zt−1, zt−2, . . . , zt−p1

)
.

Moreover, from the joint posterior (12), we easily derive the conditional posterior
of σ2 given φ1, φ2, δ1, δ2, and y to be an inverse gamma IG( n+ν

2 , λ?

2 ), where λ? = νλ +

(y− Xβ)T(y− Xβ).
Now, in order to simplify the deriving conditional posteriors of latent variables, we

need to first simplify the notations. In particular, for the jth latent variable in the ith vector,
we refer to other latent variables as δi(−j) ∀j = 1, . . . , pi, and i = 1, 2. In addition, for the ith

latent variable vector, we refer to other latent variable vectors as δ(−i). Accordingly, we
derive the conditional posterior of each latent variable δij given φ1, φ2, σ2, δi(−j), δ(−i), and
y to be a Bernoulli distribution with a probability that is defined as follows:

p(δij = 1 | φ1, φ2, σ2, δi(−j), δ(−i), y) =
aij

aij + bij
∀ij, (17)

where aij = Pij × ζ(φi | φ(−i), σ2, δi(−j), δ(−i), y, δij = 1), and bij = (1 − Pij) × ζ(φi |
φ(−i), σ2, δi(−j), δ(−i), y, δij = 0).

3.2. Proposed Algorithm for Bayesian Subset Selection of the SAR Models

Based on the work of the previous subsection, the required conditional posteriors of
the SAR parameters are available, and we are accordingly able to adopt the SSVS and Gibbs
sampler to propose an algorithm for the Bayesian subset selection of the SAR models.

We can implement our proposed algorithm for the Bayesian subset selection of the
SAR models in the following steps:

1. Set a maximum value for the SAR model order as (p1, p2).
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2. Apply the OLS method to estimate the SAR(p1)(p2)s model, and set these estimates as
initial values for the Gibbs Sampler—{φ0

1, φ0
2, (σ2)0, δ0

1 , δ0
2}.

3. Set the Gibbs sampler simulation design, which includes the number of simulations,
burn-in, and thinning.

4. Set r as the current simulation and simulate the conditional posteriors as the following:

• δr
1j ∼ ζ

(
δr

1j | y, φr−1
1 , φr−1

2 , (σ2)r, δr
1(−j), δr

2

)
= Bin

(
1,

a1j
a1j+b1j

)
, ∀j = 1, . . . , p1.

• δr
2j ∼ ζ

(
δr

2j | y, φr−1
1 , φr−1

2 , (σ2)r, δr
2(−j), δr

1

)
= Bin

(
1,

a2j
a2j+b2j

)
, ∀j = 1, . . . , p2.

• φr
1 ∼ ζ

(
φr

1 | y, φr−1
2 , (σ2)r−1, δr

1, δr
2

)
= N(µ?

φ1
, V?

φ1
),

• φr
2 ∼ ζ

(
φr

2 | y, φr
1, (σ2)r−1, δr

1, δr
2
)
= N(µ?

φ2
, V?

φ2
),

• (σ2)r ∼ ζ
(
(σ2)r | y, φr

1, φr
2, δr

1, δr
2
)
= IG

(
n+ν?

2 , λ?

2

)
.

In this rth simulation, the generated values together construct the rth value of the
Markov chain, i.e., {φr

1, φr
2, (σ2)r, δr

1, δr
2}.

5. Repeat step (4) until all the required Gibbs sampler simulations have been conducted.
6. Apply the burn-in and thinning processes for the simulated Markov chain and monitor

the convergence using autocorrelations, Raftery and Lewis diagnostics [26], and
Geweke diagnostics [27]. For more information about these convergence diagnostics,
see LeSage [28] and Amin [1,10].

7. Once the convergence of the simulated Markov chain is confirmed, select the best SAR
subset that corresponds to a value of latent variables with the highest frequency in
the simulated Markov chain, and also (whenever it is needed) compute the Bayesian
estimates of the SAR parameters directly using the sample averages of these simula-
tion outputs.

4. Simulations and Real Application

In this section, we introduce a simulation study and a real-world application for the
proposed Bayesian algorithm for selecting the best subset selection for the SAR models,
wherein we aim to evaluate its accuracy and applicability.

4.1. Simulation Study

We performed simulations from four SAR models using a simulation design that is
presented in Table 1. The parameters of these SAR models were selected to cover different
seasonality patterns, without any bias to select specific models or parameters. In particular,
the first two SAR models are examples of SAR(2)(1)12, the third SAR model is an example
of SAR(1)(2)12, and the fourth SAR model is an example of SAR(2)(2)12.

Table 1. Simulation design.

Model φ11 φ12 φ21 φ22 s σ2

I 0.5 0.3 0.4 - 12 1.0
II 1.5 −0.9 0.6 - 12 1.0
III 0.6 - 0.5 0.4 12 1.0
IV 1.5 −0.9 0.5 0.4 12 1.0

We first generated 1000 time series from each SAR model with different sizes, from
100 to 500 with an increment of 100, and we then applied the proposed Bayesian algorithm
for selecting the best subset of the SAR model, as described in Section 3.2.

We set the Gibbs sampler simulation design as follows:
The number of Gibbs sampler simulations equaled 11,000, the burn-in equaled 1000,

and thinning level equaled 10. In addition, we set the maximum order value of the SAR
model (2) to be three, i.e., pi = 5 ∀i = 1, 2. Using Gibbs sampler draws, we computed
the frequency values for each latent variable to find the best subset of the SAR model as
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a value with the highest frequency. Also, whenever it is needed, we can easily compute
Bayesian estimates of the SAR model parameters as the following summary statistics: mean,
standard deviation, and (2.5th, 97.5th) percentiles of draws as a 95% credible interval. We
evaluated the accuracy of our proposed Bayesian algorithm for the best subset selection of
the SAR models by simply computing the percentage of correctly selected best subset SAR
models. In addition, for the sake of comparison, we used the traditional subset selection
methods, including the AIC and AICc, to select the best subset of the simulated SAR models
and also computed their percentage of correctly selected best subset SAR models. We can
illustrate in some detail how our proposed algorithm works for the best subset selection of
the SAR models by presenting all the results of the Gibbs sampler draws for only one time
series of size n = 300 generated from Model I. For this generated time series, we display
the Bayesian subset selection results in Table 2 and the estimation results in Table 3.

As can be seen from Table 2, for the nonseasonal latent variables δ1, the values
(1, 1, 0, 0, 0) had the highest frequency among all the possible values, with a percentage
of about 71.4%, and, for the seasonal latent variables δ2, the values (1, 0, 0, 0, 0) had the
highest frequency, with a percentage of about 60%. Therefore, for this generated time series,
the algorithm selected SAR(2)(1)12 as the best subset, which was the same as the true SAR
model used to generate the time series, which highlights the accuracy of our proposed
algorithm for the subset selection of SAR models. On the other hand, even though the
estimation of the SAR models was not our objective in this work, the Bayesian estimates
of the SAR parameters presented in Table 3 were very close to their true values in the
simulated SAR models.

All of these results were only based on the time series generated from Model I, and, in
the following, we present and discuss all the simulation study results. Since our objective
in this work was the Bayesian best subset selection of the SAR models, we only display
the simulation results for the Bayesian subset selection of all the simulated SAR models,
and the Bayesian estimation results are not of our interest here. In particular, in Table 4,
we show the percentage of correctly selected best subset SAR models using our proposed
Bayesian algorithm and the traditional subset selection methods, i.e., the AIC and AICc.

Table 2. Bayesian subset selection results for one time series generated from Model I.

Non-Seasonal Latent Variables Seasonal Latent Variables

δ1 Freq Percent δ2 Freq Percent

(1,1,0,0,0) 714 71.4 (1,0,0,0,0) 589 58.9

(1,1,1,0,0) 100 10.0 (1,0,1,0,0) 114 11.4

(1,1,0,0,1) 90 9.0 (1,0,0,0,1) 90 9.0

(1,1,0,1,0) 83 8.3 (1,0,0,1,0) 87 8.7

(1,0,0,0,0) 47 4.7 (1,1,0,0,0) 87 8.7

(1,1,1,1,0) 16 1.6 (1,0,0,1,1) 26 2.6

(1,1,1,0,1) 15 1.5 (1,0,1,1,0) 20 2.0

(1,1,0,1,1) 14 1.4 (1,1,0,0,1) 19 1.9

(1,0,0,0,1) 6 0.6 (1,0,1,0,1) 18 1.8

(1,0,1,0,0) 5 0.5 (1,1,1,0,0) 17 1.7

(1,0,0,1,0) 4 0.4 (1,1,0,1,0) 17 1.7

(1,0,1,1,0) 2 0.2 (1,0,1,1,1) 5 0.5

(1,0,0,1,1) 2 0.2 (1,1,1,1,0) 4 0.4

(0,1,0,0,1) 1 0.1 (1,1,1,0,1) 4 0.4

(1,0,1,0,1) 1 0.1 (1,1,0,1,1) 3 0.3
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Table 3. Bayesian estimates results for one time series generated from Model I.

Parameter Actual µ? σ L U

φ11 0.5 0.432 0.063 0.303 0.556

φ12 0.3 0.287 0.072 0.129 0.417

φ13 0.0 0.000 0.053 −0.108 0.104

φ14 0.0 −0.003 0.050 −0.100 0.093

φ15 0.0 −0.018 0.046 −0.114 0.065

φ21 0.4 0.401 0.061 0.285 0.518

φ22 0.0 0.017 0.052 −0.078 0.119

φ23 0.0 −0.040 0.054 −0.155 0.063

φ24 0.0 −0.008 0.053 −0.112 0.096

φ25 0.0 −0.036 0.054 −0.139 0.066

σ2 1.0 1.071 0.086 0.906 1.244
? µ and σ: posterior mean and standard deviation; L and U: lower and upper 95% credible interval limits.

Table 4. Percentage of correctly selected best subset SAR models for the simulation study.

n SSVS AIC AICc SSVS AIC AICc

Results for Model I Results for Model II

100 46.5 52.9 59.3 83.8 59.0 70.8
200 83.8 68.1 74.9 96.7 61.9 67.5
300 93.4 67.7 72.7 98.7 61.1 64.6
400 98.3 69.0 73.0 99.6 58.7 61.6
500 99.3 67.9 71.0 99.9 59.7 61.5

Results for Model III Results for Model IV

100 68.8 66.5 70.9 55.3 47.8 50.6
200 95.5 72.3 78.2 90.1 59.1 67.9
300 98.6 69.4 74.4 94.5 58.5 63.0
400 99.8 70.5 74.8 96.8 60.9 62.9
500 99.9 69.1 71.8 98.3 61.1 64.9

From Table 4, we can state general conclusions:

• First, for our proposed algorithm, the larger the size of the time series, the higher the
percentage of correctly selected subset SAR models that were obtained, which implies
that the proposed Bayesian subset selection is a consistent estimator of the best subset
of the SAR models. However, this was not the case for the traditional subset selection
methods, where the simulation results showed that they are inconsistent estimators.

• Second, for small time series sizes, i.e., n = 100, our proposed algorithm had compa-
rable accuracy to those of the traditional subset selection methods. However, once
the time series size became larger, our proposed algorithm had substantially higher
accuracy than those of the traditional subset selection methods. For instance, when the
time series size n = 300, our proposed algorithm had a percentage of correctly selected
subset SAR models of at least 93%, compared to 75% at most for the traditional subset
selection methods.

• Third, the accuracy of our proposed algorithm was almost the same across all the
simulated SAR models, which indicates the robustness of our proposed algorithm
against the different stochastic behaviors of time series exhibiting seasonal patterns.

In general, all these simulation results confirm that the traditional subset selection
methods do not completely fail to select the best subset of SAR models, but they are
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inconsistent estimators, and their best subset selection was achieved mostly with a low
accuracy. On the other hand, the proposed Bayesian algorithm for the subset selection of
the SAR models was a consistent estimator with a high accuracy of best subset selection.

4.2. Real Application

In this subsection, we evaluate the applicability of our proposed Bayesian subset
selection algorithm to real-time series. We conducted the Bayesian subset selection of
the SAR models with real-world time series exhibiting seasonal patterns. This real-time
series that we considered in our application is the monthly Federal Reserve Board (FRB)
production index, with data starting from January 1948 to December 1978. For more details
about this time series, see, for example, Amin [1].

We present the FRB production index time series in Table 5 and visualize this real-time
series in Figure 1. As can be seen from Figure 1a, the FRB production index is nonstationary.
We tried to stationarize the time series by applying the first (nonseasonal) difference, as
visualized in Figure 1a, but still, the differenced time series was not stationary in the
seasonal component. Accordingly, we employed both nonseasonal and seasonal differences
to stationarize it, as visualized in Figure 1c. Therefore, we applied our proposed algorithm
of Bayesian subset selection to the stationary differenced FRB production index, not the
nonstationary raw data, with the same Gibbs sampler setting used in our simulation study.
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Figure 1. Cont.
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Figure 1. Plots of FRB production index time series. (a) FRB production index. (b) Nonseasonal
differenced FRB production index. (c) Nonseasonal and seasonal differenced FRB production index.

Table 5. FRB production index time series.

Year 1 2 3 4 5 6 7 8 9 10 11 12

1948 40.6 41.1 40.5 40.1 40.4 41.2 39.3 41.6 42.3 43.2 41.8 40.5

1949 40.0 40.1 39.3 38.5 37.7 37.9 36.0 39.0 40.0 39.2 39.0 38.8

1950 39.8 40.3 41.6 42.6 43.0 44.7 43.4 48.3 48.7 50.0 48.3 48.2

1951 48.5 49.6 50.0 49.4 48.6 49.1 45.5 48.0 49.1 49.5 48.9 48.2

1952 49.0 50.1 50.4 49.1 48.3 48.4 44.9 50.6 53.4 54.5 54.5 53.6

1953 54.2 55.6 56.3 55.8 55.8 55.9 53.2 55.8 55.5 55.8 53.2 51.0

1954 51.3 52.0 51.8 51.2 51.3 51.9 48.8 51.3 52.3 53.5 53.6 53.4

1955 54.7 56.2 57.5 57.9 58.4 59.1 55.8 58.6 60.1 61.9 61.3 60.4

1956 60.5 61.1 61.2 61.6 60.7 61.0 55.2 60.4 62.6 63.8 62.6 62.0

1957 62.0 63.5 63.6 62.3 61.8 63.1 59.4 62.8 63.0 62.6 60.4 57.8

1958 57.0 56.4 55.8 54.7 55.0 57.6 59.4 58.7 60.7 61.3 62.1 60.8

1959 61.9 63.8 65.2 66.4 67.2 68.5 62.9 63.3 64.5 64.6 63.6 65.9

1960 67.8 68.2 68.0 67.5 67.3 67.5 63.4 65.6 66.6 66.9 64.5 61.7

1961 62.0 62.7 63.5 65.1 66.1 68.0 64.6 67.9 69.5 71.1 70.5 69.4

1962 68.9 71.0 72.1 72.4 72.4 73.4 69.7 71.9 74.7 75.0 73.6 71.8

1963 72.4 74.7 75.7 76.4 77.1 78.6 73.4 75.5 78.9 80.2 78.7 76.5

1964 77.5 79.8 80.2 81.5 81.9 83.2 78.3 81.3 84.6 83.9 84.5 83.4

1965 84.8 87.0 88.8 88.8 89.5 91.7 86.7 89.4 92.4 94.5 93.0 91.4

1966 92.7 95.3 97.3 97.1 97.8 100.0 93.8 97.2 101.7 102.8 100.0 97.5

1967 98.1 99.1 99.0 99.6 98.7 100.9 94.4 99.6 102.7 103.4 103.1 101.4

1968 101.8 104.5 105.6 104.9 106.5 109.3 102.5 105.5 109.6 110.1 109.6 106.2

1969 107.3 110.4 111.6 110.6 110.5 114.0 107.3 111.6 115.1 115.1 112.0 108.3

1970 106.5 109.1 109.4 108.8 108.6 110.8 104.5 108.0 110.4 108.0 105.1 104.1

1971 105.5 108.3 108.6 108.8 109.5 112.5 105.4 108.8 113.5 113.9 111.6 108.5

1972 111.5 115.6 116.8 118.7 118.4 121.8 114.2 120.5 125.5 126.8 125.2 121.8
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Table 5. Cont.

Year 1 2 3 4 5 6 7 8 9 10 11 12

1973 122.7 128.1 128.8 128.6 129.6 133.0 126.4 130.3 134.8 135.3 132.9 126.7

1974 126.3 129.8 130.8 129.9 131.7 135.3 127.3 131.4 135.5 133.1 125.5 114.9

1975 111.8 113.0 111.8 113.0 113.8 119.2 114.5 121.4 125.9 125.4 123.8 119.8

1976 122.2 128.3 128.6 128.7 130.0 133.2 126.5 131.7 134.3 133.8 132.1 128.3

1977 128.8 133.6 135.7 136.2 137.2 141.5 134.1 138.2 142.4 142.7 139.5 134.9

1978 134.8 139.6 141.4 144.2 144.2 148.8 141.9 146.9 152.0 152.6 149.7 145.0

We present the Bayesian subset selection results of the SAR models for the differenced
FRB production index in Table 6, and we also display the estimation results in Table 7. As
can be seen from Table 6, for the nonseasonal latent variables δ1, the values (1, 0, 0, 0, 0)
had the highest frequency among all the possible values with a percentage of about 45.3%.
For the seasonal latent variables δ2, the values (1, 1, 1, 1, 0) had the highest frequency with
a percentage of about 37.5%, but another set of values (1, 1, 1, 0, 0) had a very similar
frequency with a percentage of about 36%. Thus, in this case, we had to look at the
estimation results to check the significance of the SAR model coefficients using the 95%
credible interval to decide between these two subsets of the SAR model. As we can see
from Table 7, for the nonseasonal AR coefficients, only the first coefficient, i.e., φ11, was
significant, and all other nonseasonal AR coefficients were insignificant. On the other
hand, for the seasonal AR coefficients, the first three coefficients, i.e., φ21, φ22, and φ23, were
significant, which supported the selection of (1, 1, 1, 0, 0), not (1, 1, 1, 1, 0). Therefore, for
the differenced FRB production index, the SAR(1)(3)12 was selected as the best subset of
the SAR model. For the sake of comparison, we also applied the AIC and AICc to select the
best subset, and the results show that both methods selected the same subset, SAR(2)(4)12,
which was very close to our algorithm selection.

Table 6. Bayesian subset selection results for the differenced FRB production index.

Nonseasonal Latent Variables Seasonal Latent Variables

δ1 Freq Percent δ2 Freq Percent

(1,0,0,0,0) 453 45.3 (1,1,1,1,0) 375 37.5

(1,0,0,1,0) 115 11.5 (1,1,1,0,0) 358 35.8

(1,1,0,0,0) 113 11.3 (1,1,0,0,0) 109 10.9

(1,0,0,0,1) 102 10.2 (1,1,1,0,1) 58 5.8

(1,0,1,0,0) 59 5.9 (1,1,1,1,1) 55 5.5

(1,0,0,1,1) 32 3.2 (1,1,0,1,0) 20 2.0

(1,1,0,0,1) 24 2.4 (1,1,0,0,1) 20 2.0

(1,1,1,0,0) 20 2.0 (1,1,0,1,1) 5 0.5

Table 7. Bayesian estimates results for the differenced FRB production index.

Parameter µ σ L U

φ11 0.309 0.065 0.178 0.430

φ12 0.073 0.057 −0.027 0.188

φ13 −0.006 0.051 −0.116 0.090

φ14 0.062 0.055 −0.043 0.179

φ15 −0.064 0.052 −0.177 0.031
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Table 7. Cont.

Parameter µ σ L U

φ21 −0.692 0.070 −0.827 −0.549

φ22 −0.614 0.089 −0.786 −0.441

φ23 −0.274 0.105 −0.475 −0.072

φ24 −0.132 0.092 −0.334 0.018

φ25 0.026 0.057 −0.089 0.135

σ2 1.387 0.108 1.196 1.609

5. Conclusions

In this paper, we developed a Bayesian subset selection of the SAR models based on
the SSVS procedure and Gibbs sampler. By introducing latent variables for the nonseasonal
and seasonal SAR model lags, we adopted and modified the SSVS procedure to select the
best subset SAR model. We employed mixture–normal, inverse gamma, and Bernoulli
priors for the SAR model coefficients, variance, and latent variables, respectively. By
deriving full conditional posteriors of the SAR model parameters in the closed form, we
introduced the Gibbs sampler along with SSVS to present an efficient algorithm for the
subset selection of the SAR models. We performed a simulation study and a real application
to evaluate the accuracy of the proposed algorithm, and the results of the simulation study
confirmed its accuracy, while the results of the real application showed its applicability
to select the best subset of the SAR model for real time series with seasonality. As part of
future work, we plan to extend this work to select the best subset of time series models
with multiple seasonalities, as introduced in [11], and also to select the best subset of
multivariate autoregressive models, i.e., vector autoregressive models.
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