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Abstract: A mathematical model is proposed to simulate the fully hydro-mechanical coupling of
two-phase cement-based slurry migration in saturated deformable geomaterials from microscopic
to macroscopic scale. The mass conservation equations and the momentum balance equations for
cement-based slurry and geomaterials are derived based on the thermodynamically constrained
averaging theory (TCAT). The Galerkin discretization of the governing equations of hydro-mechanical
coupling are developed by the isogeometric analysis (IGA) integrated with the Bézier extraction
operator, and the numerical calculation is implemented with the generalized backward Euler method.
The presented modeling is verified by comparison of the numerical calculation with the experimental
tests, and the pore fluid pressure of the stratum and the slurry concentration of cement-based slurry
migration in saturated deformable geomaterials are discussed. The modeling presented provides
an effective alternative method to simulate cement-based slurry migration and explore isothermal
multiphase coupled problems.

Keywords: cement-based slurry; geomaterials; TCAT; isogeometric analysis; Bézier extraction operator
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1. Introduction

Slurry grouting is a widely adopted technology in geotechnical engineering for re-
ducing the permeability or/and improving the mechanical characteristics of geomaterials
such as soils or rocks. Cement-based slurries are regarded as a suspension of cement
particles with additional components such as bentonite and stabilizing and dispersing
agents in water, which have been widely used in grouting in view of their lower cost and
environmental pollution compared to chemical slurries.

The geomaterials are porous media, and the cement-based slurries are a two-phase
fluid. Therefore, the essence of cement-based slurry grouting in geomaterials is that the
water and suspended solid particles within the slurries are transported in porous media.
When the cement-based slurry is grouted into the geomaterials, the migration of suspended
slurry particles takes place by the advection, diffusion, and dispersion. A fraction of the
suspended slurry particles deposit and accumulate on the surface of the solid skeleton of
geomaterials, which blocks the transport channels within the geomaterials and gradually
terminates the further permeation of the cement-based slurry. The permeability of the geo-
materials is significantly reduced; more seriously, the increasing pore fluid pressure leads
to the deformation of the solid skeleton or even to the failure of the injected geomaterials.

With the aim of further clarifying the migration laws and improving the effectiveness
of the cement-based slurry grouting in geomaterials, the researchers performed mostly
one-dimensional cement-based slurry grouting experiments under certain conditions such
as grouting pressure, grouting rate, and grouting concentration in the laboratory [1–3].
However, three-dimensional or in situ tests are more suitable for evaluating cement-based
slurry grouting implemented in fieldworks [4]. Scholars have proposed many numerical
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analysis [5–8] or analytical methods [9–15] to explore the migration mechanism of cement-
based slurry grouting in geomaterials. The common disadvantage of these models is that
they cannot reflect the hydro-mechanical dynamic coupling between the force acting on
the solid skeleton of geomaterials and the migration of suspended slurry particles.

As mentioned above, the cement-based slurry grouting in geomaterials is a mechanics
problem of multiphase porous media, which is usually analyzed by the hybrid mixture
theory (HMT) [16]. However, the thermodynamics postulated in the HMT loses the connec-
tion between the microscale and macroscale. Thus, the thermodynamically constrained
averaging theory (TCAT) [17] was developed to formulate the macroscale mechanical
models for multiphase porous media consistent with microscale thermodynamics and
physical properties using the averaging theories. The TCAT approach has been introduced
primarily in deriving hydrological models such as single or multiphase fluid flow and
species or heat transportation in porous media [17–20] and revealing multiphysics problems
such as hygro-thermal coupling in concrete [16] and the growth or necrosis of biological
tissues [21,22] involving diffusion, advection, dispersion, adsorption, chemical reactions,
phase changes, temperature changes, and other phenomenon.

Moreover, numerical methods are usually used to solve the governing equations for
mechanics problems of multiphase porous media such as finite element method (FEM) [5–7].
However, FEM mesh geometry replaces real geometry with piecewise polynomial approx-
imation, and mesh refinement in local scale and high computational cost are required
for achieving high-precision analysis results. Fortunately, isogeometric analysis (IGA)
presented by Hughes et al. [23] changes this situation using the same basis functions such
as B-splines, and NURBS, or T-splines employed in CAD to express the real geometry of ob-
jects, thereby eliminating the mesh in FEM, realizing direct interaction between numerical
analysis and CAD, simplifying the refinement process, reducing the computational costs,
and improving the solution accuracy. The IGA has been widely used to simulate various
mechanics and engineering problems, for example, structural analysis [24], fluid mechan-
ics [25], solid mechanics [26], and the THM-coupled process in porous media [27–30].
Recently, Borden et al. [31] and Scott et al. [32] proposed that the basis functions for B-
splines, NURBS, and T-splines in IGA consisted of the linear Bernstein polynomials using
a Bézier extraction operator; this transformation enables the element structure of IGA
to be the same as the element structure of FEM, and the IGA procedure is implemented
by FEM program. Therefore, the Bézier extraction operator arouses particular interest in
geo-mechanical simulation [33–35].

This study presents mathematical modeling that can efficiently simulate the hydro-
mechanical fully dynamic coupled migration of two-phase cement-based slurry grouting
in saturated deformable geomaterials from the microscale to the macroscale. The proposed
mathematical modeling uses the thermodynamically constrained averaging theory (TCAT)
to establish the governing equations for two-phase cement-based slurry and geomaterials,
the IGA with Bézier extraction is applied for Galerkin discretization of the governing
equations, and the solution is implemented with the generalized backward Euler method.

The layout of this manuscript is arranged as follows. The derivation of the mass
conservation equations, momentum balance equations and supplementary equations is
presented in Section 2. The Bézier extraction operator is introduced, and the discretization
for the governing equations and the solving process are given in Section 3. The accuracy of
the proposed modeling was verified by comparison with a cement-based slurry grouting
experiment, and the pore fluid pressure and the slurry concentration are discussed in
Section 4. The conclusions are expressed in Section 5.

2. Governing Equations for Cement-Based Slurry Grouting

The macroscopic mass conservation equations and momentum balance equations for
simulation two-phase cement-based slurry grouting in saturated deformable geomaterials
with the TCAT procedure are presented.
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2.1. Mass Conservation Equations

The solid phase of geomaterials s comprises the solid skeleton with mass fraction ωss

and the growing slurry particles attached to the surface of solid skeleton with mass fraction
ωas. The sum of the mass fractions of two constituents of solid phase is equal to 1.

ωas + ωss = 1 (1)

Assuming that the diffusion between the two constituents of the solid phase does not
occur, based on the basic mass conservation principles of TCAT theory [17], the macroscopic
mass conservation equations for the slurry particles attached to the surface of solid skeleton
and the solid skeleton read, respectively, are

∂(φsρsωas)

∂t
+∇ · (φsρsωasνs)−∑

f→as
M = 0 (2)

∂(φsρsωss)

∂t
+∇ · (φsρsωssνs) = 0 (3)

where φs is the volume fraction of solid phase, ρs is the density of solid phase, νs is the

velocity of solid phase, and ∑
f→as
M is the sum mass transport of slurry particles attached to

the surface of solid skeleton.
Combine Equations (2) and (3) to yield the macroscopic mass conservation equation

for the solid phase of geomaterials:

∂(φsρs)

∂t
+∇ · (φsρsνs)−∑

f→as
M = 0 (4)

Expand Equation (2) using the product rule, then substitute into Equation (4) to
achieve an alternative mass conservation equation for the slurry particles attached to the
surface of solid skeleton:

φsρs ∂ωas

∂t
+ φsρsνs∇ωas − (1−ωas)∑

f→as
M = 0 (5)

The slurry phase f comprises the water in slurry with mass fraction ωwf and the
decreasing suspended slurry particles with mass fraction ωsf. The sum of the mass fractions
of two constituents of slurry phase is equal to 1.

ωwf + ωsf = 1 (6)

The macroscopic mass conservation equations for the water solvent and the suspended
slurry particles within slurry are, respectively

∂
(

φ f ρ f ωwf
)

∂t
+∇ ·

(
φ f ρ f ωwfνwf

)
= 0 (7)

∂
(

φ f ρ f ωsf
)

∂t
+∇ ·

(
φ f ρ f ωsfν f

)
+∇ ·

(
φ f ρ f ωsfusf

)
+ ∑

sf→s
M = 0 (8)

where φ f is the volume fraction of slurry phase in geomaterials, ρ f is the density of slurry

phase, ν f is the velocity of slurry phase, νwf is the velocity of water within slurry, ∑
sf→s
M is

the sum mass transport of suspended slurry particles sf attached to the solid skeleton, and

usf is the diffusion velocity of suspended slurry particles sf.
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Similar to the solid phase of geomaterials, the summation of Equations (7) and (8) sets
the macroscopic mass conservation equation for the slurry phase as

∂
(

φ f ρ f
)

∂t
+∇ ·

(
φ f ρ f ν f

)
+ ∑

sf→s
M = 0 (9)

Expanding Equation (8) with the product rule, then substituting it into Equation (9),
obtains an alternative equation for the suspended slurry particles in slurry phase:

φ f ρ f ∂ωsf

∂t
+ φ f ρ f ν f∇ωsf +∇ ·

(
φ f ρ f ωsfusf

)
+
(

1−ωsf
)
∑

sf→s
M = 0 (10)

Obviously, ∑
sf→s
M = ∑

f→as
M = ∑

sf→as
M .

2.2. Momentum Balance Equations

For the slow-flowing slurry in geomaterials, the momentum due to inertia is negligi-
ble [1,9–12]. Meanwhile, the momentum exchange owing to the mass transfer of slurry to
solid phase is also considered small and is neglected, having the same order of magnitude
as the inertial momentum terms. The basic momentum balance equation for an arbitrary
phase α in the TCAT framework simplifies to [17,22]

−∇ · (φαtα)− φαραgα − ∑
κ∈=cα

κ→α
T = 0 (11)

where gα is the body force of phase α, tα is the stress tensor of phase α, and ∑
κ∈=cα

κ→α
T is the

interaction force between phase α and adjacent interface of phase κ.
The stress tensor of slurry phase f is [17,22]

t f = −p f I (12)

where p f is the slurry pressure and I is the unit tensor.
The momentum balance equation, Equation (10), for the slurry phase changes to

φ f
(
∇p f − ρ f g f

)
+ R f ·

(
ν f − νs

)
= 0 (13)

where R f is the resistance to slurry flow in geomaterials.
Let K f = k/µ = ε f 2/R f ; Equation (13) is expressed as a form of Darcy’ law

K f
(
∇p f − ρ f g f

)
+ φ f

(
ν f − νs

)
= 0 (14)

in which k is the intrinsic permeability of geomaterials, and µ is the dynamic viscosity
of slurry.

The momentum balance equation, Equation (11), for the solid phase changes to

∇ ·
(

φsτs − αp f I
)
+ φsρsgs + φ f ρ f g f = 0 (15)

where α = 1− KT
KS

, KT is the bulk modulus of the solid phase, KS is the averaged bulk
modulus of the solid particles, for incompressible solid α = 1, φsτs is the effective stress
tensor, φsτs = Dsεs

e = Ds
(

εs − εs
p

)
, Ds is the constitutive matrix of the solid phase, εs

e is
the elastic strain of solid phase, εs is the total strain, and εs

p is the plastic strain.
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2.3. The Final Equations for Grouting

The macroscopic mass balance equation of slurry particles attached to the surface of
solid skeleton is(

1− φ f
)

ρs ∂ωas

∂t
+
(

1− φ f
)

εsρsνs∇ωas = (1−ωas)∑
sf→as

M (16)

The diffusive velocity is approximately calculated using Fick’s law

ωsfusf = −Dsf∇ωsf (17)

The macroscopic mass balance equation of suspended slurry particles in slurry phase
transforms to

φ f ρ f ∂ωsf

∂t
−∇ · (φ f ρ f Dsf∇ωsf) + φ f ρ f ν f∇ωsf = −

(
1−ωsf

)
∑

sf→as
M (18)

where Dsf is the effective dispersion tensor.
Combine Equations (4) and (9), then introduce Equation (14) to obtain

1− φ f

ρs
Dsρs

Dt
+

φ f

ρ f
Dsρ f

Dt
+∇νs − 1

ρ f ∇ ·
[
ρ f K f

(
∇p f − ρ f g

)]
+

(
1
ρ f −

1
ρs

)
∑

sf→as
M = 0 (19)

making βs =
1
ρs

Dρs

Dp f , β f =
1
ρ f

Dρ f

Dp f (20)

where βs, β f are the compressibility of the solid phase and the slurry phase, respectively.
Substitute the state equations, Equation (20), into Equation (19) to achieve

[(
1− φ f

)
βs + φ f β f

]Ds p f

Dt
+∇νs − 1

ρ f ∇ ·
[
ρ f K f

(
∇p f − ρ f g

)]
+

(
1
ρ f −

1
ρs

)
∑

sf→as
M = 0 (21)

The velocity of the solid phase is very slow, and the slurry pressure will spread quickly [17], so∣∣∣∣∣∂p f

∂t

∣∣∣∣∣� ∣∣∣νs∇p f
∣∣∣ (22)

Based on this approximation, the partial time derivative replaces the material deriva-
tive in Equation (21) and it changes to

[(
1− φ f

)
βs + φ f β f

]∂p f

∂t
+∇∂us

∂t
− 1

ρ f ∇ ·
[
ρ f K f

(
∇p f − ρ f g

)]
+

(
1
ρ f −

1
ρs

)
∑

sf→as
M = 0 (23)

Considering only that the solid phase is elastic, the momentum balance equation for
solid phase is

∇ ·
(

Ds
eεs

e − p f I
)
+
(

1− φ f
)

ρsg + φ f ρ f g = 0 (24)

The iterations within each time step are adapted to keep the coupling between the
governing equations in the solving process of the governing equations for two-phase
cement-based slurry grouting. Two computational steps are used in each coupling iteration:
the first is applied to obtain the mass fraction of suspended slurry particles ωsf and the
mass fraction of slurry particles attached to the solid skeleton ωas, the second to calculate
the slurry pressure ρ f and the displacement of the solid phase Us.

For each coupling iteration, firstly, solve Equation (16) to achieve the mass fraction
of slurry particles attached to the solid skeleton ωas, and solve Equation (18) to obtain the
mass fraction of the suspended slurry particles ωsf, then update the mass transport of the

slurry particles attached to the surface of the solid skeleton ∑
sf→s
M , the density of slurry
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ρ f and the density of the solid phase ρs; finally, combine Equations (23) and (24) to solve
for the fluid pressure p f and the displacement vector of solid phase Us. The calculation
procedure moves forward when the convergence is achieved within a time step.

3. Discretization and Solving
3.1. Bézier Extraction Operator

The essential difference between FEM and IGA is the geometric topology, the real
geometry is determined by the control points and the basis functions in IGA; however, the
mesh geometry replaces real geometry in FEM. The Bézier extraction operator employs
piecewise C0 Bernstein polynomial basis functions so that the B-splines or NURBS or
T-splines used in IGA are represented in FEM. The univariate Bézier extraction operator
is calculated by repeating all the internal knots of a non-decreasing knot vector until
the multiplicity is equal to the polynomial order of basis functions, which means the
control points and the basis functions do not determine the Bézier extraction operator that
decomposes the global basis functions in traditional IGA to the local mesh element.

The basis functions for B-spline with Bézier extraction can be realized locally for each
element with the equation [31]

Ne(ξ) = CeBe(ξ) (25)

where Ce is the local Bézier extraction operator matrix and the order of matrix is (p + 1)×
(p + 1); Be(ξ) is the Bernstein polynomial basis functions and Ne(ξ) is the basis function
for B-spline with local Bézier extraction.

The basis functions for NURBS with Bézier extraction can be determined in local mesh
element as

Re(ξ) =
1

Wb(ξ)
WeCeBe(ξ) (26)

where We is the diagonal matrix of local NURBS weights, Wb is the weight function with
Bézier extraction, Wb(ξ) = (we)TCeBe(ξ), we is the local NURBS weights, and Re(ξ) is the
basis function for NURBS with local Bézier extraction.

The local two-dimensional and three-dimensional Bézier extraction operator, respec-
tively, are calculated by

Ce = Cj
η ⊗ Ck

ς (27a)

Ce = Ci
ε ⊗ Cj

η ⊗ Ck
ς (27b)

where Ck
ς , Cj

η and Ci
ε are the elements of the local univariate Bézier extraction operator of ς,

η and ε direction, respectively, i = 1, 2, · · · , n, j = 1, 2, · · · , m, k = 1, 2, · · · , l, e = n×m× l.
Thus, the basis functions for the element are similar to that in traditional FEM, which

results in the conformation of the element stiffness matrix being almost the same as tradi-
tional FEM.

3.2. Discretization for Governing Equations

Suppose Ω and Γ show the domain and its continuous boundary of representative
elementary volume (REV) for the object, respectively. The boundary conditions on Γ include
Dirichlet conditions on ΓD and Neumann conditions on ΓN , which indicates Γ = ΓD ∪ ΓN .

The approximate solutions of field variables are expressed at a local element based on
Bézier extraction as

(Us)e =
Ne

∑
i=1

NU
i Ues

i

(
p f
)e

=
Ne

∑
i=1

Np
i pef

i

(ωas)e =
Ne

∑
i=1

Nωs
i ωeas

i

(
ωsf
)e

=
Ne

∑
i=1

Nω f
i ω

esf
i (28)
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where Ne is the number of control points at each local element; NU
i , Np

i , Nωs
i and Nω f

i are
the basis functions for the displacement of solid phase, fluid pressure, mass fraction of
slurry particles attached to solid skeleton and mass fraction of suspended slurry particles
at each control point i of local element, respectively; and Ues

i , pef
i , ωeas

i and ω
esf
i are the

corresponding values, respectively.
The strain at each control point of local element is obtained by

(εs)e =
Ne

∑
i=1

Nε
i Ues

i (29)

where Nε
i = ∇NU

i .
For a two-dimensional situation,

(Us)e =
[
us vs]T Ues

i =
[
us

i vs
i
]T

Nε
i =

 ∂NU
i

∂x 0 ∂NU
i

∂y

0 ∂NU
i

∂y
∂NU

i
∂x

T

For a three-dimensional spatial problem,

(Us)e =
[
use vse wse ]T Ues

i =
[
us

i vs
i ws

i
]T

Nε
i =


∂NU

i
∂x 0 0 ∂NU

i
∂y

∂NU
i

∂z 0

0 ∂NU
i

∂y 0 ∂NU
i

∂x 0 ∂NU
i

∂z

0 0 ∂NU
i

∂z 0 ∂NU
i

∂x
∂NU

i
∂y


T

The weak form of the linear momentum balance equation is achieved by integrating
the result function of Equation (24) and multiplying an arbitrary test function φu over the
domain of local element and is written as∫

Ωe
δφu ·

[
∇ ·

(
Dsεs

e − p f I
)
+
(

1− φ f
)

ρsg + φ f ρ f g
]
dΩe =

∫
Γe

trδφudΓe (30)

where tr is the boundary traction on ΓN .
Take the basis functions for the displacement NU as the arbitrary test function φu, and

then substitute this into the equation to result in Galerkin discretization:

M1Ues + M2 pef = Fu (31)

where
M1 =

∫
Ωe
∇NUTDe∇NUdΩe

M2 =
∫

Ωe
∇NUT(−I)NpdΩe

Fu =
∫

Γe
∇NUTtrdΓe −

∫
Ωe
∇NUT

[(
1− φ f

)
ρsg + φ f ρ f g

]
dΩe

The weak form of Equation (23) is derived by introducing an arbitrary function φp
and adopting a similar procedure, shown as

∫
Ωe

δφp ·
[[(

1− φ f
)

βs + φ f β f

] ∂p f

∂t
+∇ dUs

dt
− 1

ρ f ∇ ·
[
ρ f K f

(
∇p f − ρ f g

)]
+

(
1
ρ f −

1
ρs

)
∑

sf→as
M

]
dΩe =

∫
Γe

−q f

K f δφpdΓe (32)

where q f is the slurry flux on ΓN .
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Take the basis functions for fluid pressure NP as the arbitrary test function φp, the
Galerkin discretization form of Equation (23) is given as

M3

·
pef + M4

·
Ues + M5 pef = Ff (33)

where
M3 =

∫
Ωe

NpT
[(

1− φ f
)

βs + φ f β f

]
NPdΩe

M4 =
∫

Ωe
NpT∇NUdΩe

M5 =
∫

Ωe
−NpT

ρ f ∇ ·
(

ρ f K f∇NP
)

dΩe

Ff =
∫

Γe
NpT−q f

K f dΓe −
∫

Ωe
NpT

[
1
ρ f ∇ ·

(
ρ f K f ρ f g

)
−
(

1
ρ f −

1
ρs

)
∑

sf→as
M

]
dΩe

Using an arbitrary function φsf and adopting the integrating procedure, the weak form
of Equation (16) is defined as

∫
Ωe

δφsf ·
[

φ f ρ f ∂ωsf

∂t
−∇ · (φ f ρ f Dsf∇ωsf) + φ f ρ f ν f∇ωsf +

(
1−ωsf

)
∑

sf→as
M

]
dΩe =

∫
Γe

qsf

ρsf δφsfdΓe (34)

where qsf is the flux of suspended particles with slurry on ΓN .
The Galerkin discretization form of Equation (18) is derived by the basis functions for

the mass fraction of suspended slurry particles Nω f replacing the arbitrary function φsf:

M6

·
ωesf + M7ωesf = Fsf (35)

where
M6 =

∫
Ωe

NωfTφ f ρ f Nω f dΩe

M7 =
∫

Ωe
NωfT

[
φ f ρ f ν f∇Nω f −∇ · (φ f ρ f Dsf∇Nω f )− Nω f ∑

sf→as
M

]
dΩe

Fsf =
∫

Γe
NωfT qsf

ρsf dΓe −
∫

Ωe
NωfT∑

sf→as
M dΩe

Using an arbitrary function φas and adopting the integrating procedure, the weak form
of Equation (15) is shown:

∫
Ωe

δφas ·
[(

1− φ f
)

ρs ∂ωas

∂t
+
(

1− φ f
)

εsρsνs∇ωas − (1−ωas)∑
sf→as

M

]
dΩe =

∫
Γe

qas

ρas δφasdΓe (36)

where qas is the flux of suspended particles attached to the solid skeleton on ΓN .
The Galerkin discretization form of Equation (16) is written as

M8
·

ωeαs + M9ωeαs = Fas (37)

where
M8 =

∫
Ωe

NωsT
(

1− φ f
)

ρsNωsdΩe

M9 =
∫

Ωe
NωsT

[(
1− φ f

)
ρsνs∇Nωs + Nωs∑

sf→as
M

]
dΩe
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Fas =
∫

Γe
NωsT qas

ρas dΓe +
∫

Ωe
NωsT∑

sf→as
M dΩe

Summarize the Equations (31), (33), (35) and (37) into the coupled matrix


0 0 0 0

M4 M3 0 0
0 0 M6 0
0 0 0 M8




·
Ues

·
pef

·
ωesf

·
ωeαs

+


M1 M2 0 0
0 M5 0 0
0 0 M7 0
0 0 0 M9




Ues

pef

ωesf

ωeαs

 =


Fu
Ff
Fsf
Fas

 (38)

Equation (33) can simplify to

C
∂X
∂t

+ KX = F (39)

where X =

{
−
u

−
p f

−
ωs f

−
ωαs

}
is the unknown solution vector at each control point.

3.3. Solving Implementation

The change in rate of the unknown solution vector X is approximated with the back-
ward Euler method and written as

∂X
∂t
|n+1 =

Xn+1 − Xn

tn+1 − tn
(40)

The coupled matrix Equation (39) at time step tn+1 is given as

C
∂X
∂t

∣∣∣∣
n+1

+ K X|n+1 = Fn+1 (41)

Substitute Equation (40) into Equation (41) to obtain

[(tn+1 − tn)K + C]n+1Xn+! = Cn+1Xn + (tn+1 − tn)Fn+1 (42)

The residual R of Equation (39) at time step tn+1 is [34,36]

Rn+1 = [∆tK + C]n+1Xn+! − Cn+1Xn + ∆tFn+1 (43)

The increment of the unknown solution vector ∆Xi+1
n+1 is calculated using the Newton–

Raphson iteration scheme [36]

∂R
∂X

∣∣∣in+1 ∆Xi+1
n+1
∼= −Ri

n+1 (44)

where i is the iteration number, n is the time step, and ∂R
∂X is the Jacobian matrix.

Update the unknown solution vector X at time step tn+1 incrementally after each
iteration with

Xi+1
n+1 = Xi

n+1 + ∆Xi+1
n+1 (45)

4. Validation and Discussion

The performance of the proposed model is investigated through a one-dimensional
injection experiment with a sand column performed by Bouchelaghem et al. [1]. The
comparison between the pore-fluid-pressure distributions of experiment and proposed
model along the column is shown in Figure 1. The parameters in calculations with the
proposed mode are the same as the values of Bouchelaghem et al. [1].
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Figure 1. Computational iteration: step n + 1.

It can be seen from Figure 2 that while the pore fluid pressure in the sand column
changes quickly after starting the grouting, the evolution of pore fluid pressures is more
regular during the numerical simulations in the proposed model than in the experiments.
For the initial phase of slurry flow around t = 0–300 s, the numerical pressures show
excellent agreement with the experimental results, the discrepancies between them grow
away from the sand column basis after t > 300 s; the pore fluid pressures grow constantly
on numerical curves, while pressures undergo a temporary stagnation on experimental
curves preceding a constant increase. A possible explanation for this is that the deposition
rate is not uniform inside the sand column [1]. The proposed model presents the migration
process of cement-based slurry grouting well.

Figure 2. Comparison results between experiment and proposed model.
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It can be shown in Figure 3 that the filtration effects could be presented by the cumu-
lative mass deposition which does not start with slurry grouting. As the slurry migrates
through the sand column, the slurry viscosity decreases. The fluid viscosity variation is
predominant during the initial phase of grout propagation around t = 0–300 s, and the
viscosity effects are well reproduced by the proposed method, but are no longer effective
for t > 300 s. Filtration remains to cause pore-fluid-pressure variations and lasts as long as
deposition takes place. Filtration becomes the predominant process when the slurry grout
in the sand column and the cumulative mass deposition has reached a critical level, while
viscosity variation is no longer effective. In this respect, filtration and viscosity effects are
complementary with respect to each other.

Figure 3. Comparison calculated results between with and without filtration.

Figure 4 shows the pore pressure changes in different places in the sand column. At
t = 100 s, as part of the sand column is still filled with interstitial water, the pore fluid pres-
sure is divided into two distinct regions. The region near to the grouting point undergoes
a pressure increase rapidly, while the initial water pressure is still prevailing in the other
region of the column away from the grouting point. At t = 600 s, all the sand column is
filled with slurry, and the pore fluid pressure increase extends to the whole column.

Figure 4. Comparison results between experiment and calculated model at different places of
sand column.
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Best concordances between the proposed model and the experimental values appear in
the process where the viscosity effects are predominant and the region near to the grouting
point around z = 0–0.4 m during the initiation of filtration effects.

The slurry grouting begins at t = 30 s and fills the sand column at t = 300 s during the
laboratory experiments. As shown in Figure 5, a spreading of the forward concentration
and growing width of the transition zone occur in the migration progress.

Figure 5. Concentration curves of injected slurry at different times.

As shown in Figures 4 and 5, the pore fluid pressure within the grouted sand column
changes continuously when the slurry displaces the initial interstitial water; the pore
pressure increase follows the slurry front advance. At t = 300 s, the inflexion points present
on all the pressure curves indicate the presence of the slurry front at the top of the sample.

As seen in Figure 6, the slurry remains less concentrated towards the top of the sand
column than near to the grouting point, which is due to the deposition retaining particles
upstream, near the grouting point where the solid skeleton sites have been in constant
contact with the slurry suspension since the beginning of the grouting.

Figure 6. Concentration curves at different places of sand column.

5. Conclusions

A mathematical model combining TCAT theory and isogeometric analysis (IGA) for
the simulation of fully coupled hydromechanics of two-phase cement-based slurry grouting
in saturated deformable geomaterials from the microscopic to macroscopic is proposed. The
proposed modeling can be used not only for the two-phase cement-based slurry grouting
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but also for revealing multiphase isothermal problems by establishing governing equations
with TCAT theory as required.
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