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Abstract: Almost contact complex Riemannian manifolds, also known as almost contact B-metric
manifolds, are, in principle, equipped with a pair of mutually associated pseudo-Riemannian metrics.
Each of these metrics is specialized as a Yamabe almost soliton with a potential collinear to the Reeb
vector field. The resulting manifolds are then investigated in two important cases with geometric
significance. The first is when the manifold is of Sasaki-like type, i.e., its complex cone is a holo-
morphic complex Riemannian manifold (also called a Kähler–Norden manifold). The second case
is when the soliton potential is torse-forming, i.e., it satisfies a certain recurrence condition for its
covariant derivative with respect to the Levi–Civita connection of the corresponding metric. The
studied solitons are characterized. In the three-dimensional case, an explicit example is constructed,
and the properties obtained in the theoretical part are confirmed.
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1. Introduction

The concept of Yamabe flow has been known since 1988, first introducted by R. S.
Hamilton [1,2] to construct metrics with constant scalar curvature.

A time-dependent family of (pseudo-)Riemannian metrics (g(t)) considered on a
smooth manifold (M) is said to evolve by Yamabe flow if g(t) satisfies the following evolu-
tion equation:

∂

∂t
g(t) = −τ(t)g(t), g(0) = g0,

where τ(t) denotes the scalar curvature corresponding to g(t).
A self-similar solution of the Yamabe flow on (M, g) is called a Yamabe soliton and is

determined by the following equation:

1
2
Lϑg = (τ − λ)g, (1)

where Lϑg denotes the Lie derivative of g along the vector field (ϑ) called the soliton
potential, and λ is the soliton constant (e.g., [3]). We denote this soliton as (g; ϑ, λ). In the
case that λ is a differential function onM, the solution is called a Yamabe almost soliton.

Many authors have studied Yamabe (almost) solitons on different types of manifolds
in recent years (see e.g., [4–10]). The study of this kind of flow and the corresponding
(almost) solitons has attracted the interest od mathematical physics because the Yamabe
flow corresponds to the fast diffusion of the porous medium equation [11].
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The author of [9] began the study of Yamabe solitons on almost contact complex
Riemannian manifolds (abbreviated as accR manifolds) called almost contact B-metric man-
ifolds. These manifolds are classified in [12] by G. Ganchev, V. Mihova, and K. Gribachev.

The pair of B metrics, which are related to each other by the almost contact structure,
determine the geometry of the investigated manifolds. In [9,10], I studied Yamabe solitons
obtained by contact conformal transformations for some interesting classes of manifolds.
In the former paper, the studied manifold was cosymplectic or Sasaki-like, and in the latter,
the soliton potential was torse-forming. Contact conformal transformations of an almost
contact B-metric structure transform the two B metrics, the Reeb vector field, and its dual
contact 1 form using this pair of metrics and a triplet of differentiable functions on the
manifold (see e.g., [13]). These transformations generalize the D-homothetic deformations
of the considered manifolds introduced in [14].

In the present work, instead of these naturally occurring transformed Yamabe solitons
involving the two B metrics, we use a condition for two Yamabe almost solitons for each of
the metrics. Again, one of the simplest types of non-cosymplectic manifolds among those
investigated, which is of interest to us, is precisely the Sasaki-like manifold introduced
in [15]. This means that a warped product of a Sasaki-like accR manifold with a positive
real axis gives rise to a complex cone, which is a Kähler manifold with a pair of Norden
metrics. Note that the intersection of the classes of Sasaki-like manifolds and cosymplectic
manifolds is an empty set. Different types of solitons on Sasaki-like manifolds were studied
in [9,16,17].

Another interesting type of the studied manifold with Yamabe solitons is (as in [9,10])
the object of consideration in the present article. This is the case when the soliton potential
is a torse-forming vertical vector field. Vertical means it has the same direction as the Reeb
vector field. Torse-forming vector fields are defined by a certain recurrence condition for
their covariant derivative regarding the Levi–Civita connection of the basic metric. These
vector fields were first defined and studied by K. Yano [18], then investigated by various
authors for manifolds with different tensor structures (e.g., [19–21]) and for the manifolds
studied e.g., in [10,16,17].

The present paper is organized as follows. After the present introduction to the topic,
in Section 2, we recall some known facts about the investigated manifolds. In Section 3,
we set ourselves the task of equipping the considered manifolds with a pair of associated
Yamabe almost solitons. In Section 4, we prove that there does not exist a Sasaki-like
manifold equipped with a pair of Yamabe almost solitons with the vertical potential
generated by each of the two fundamental metrics. A successful solution to the problem
posed in Section 3 is proposed in Section 5 in the case in which the vertical potentials of the
pair of Yamabe almost solitons are torse-forming. Section 6 provides an explicit example of
the smallest dimension of the type of manifold constructed in the previous section.

2. accR Manifolds

A differentiable manifold (M) of dimensions (2n + 1) and equipped with an almost
contact structure (ϕ, ξ, η) and a B metric (g) is called an almost contact B-metric manifold or
an almost contact complex Riemannian (abbr. accR) manifold and is denoted by (M, ϕ, ξ, η, g).
More concretely, ϕ is an endomorphism of the tangent bundle TM, ξ is a Reeb vector field,
η is its dual contact 1 form, and g is a pseudo-Riemannian metric of signature (n + 1, n)
satisfying the following conditions:

ϕξ = 0, ϕ2 = −ι + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,

g(ϕx, ϕy) = −g(x, y) + η(x)η(y),
(2)

where ι stands for the identity transformation on Γ(TM) [12].
In the latter equality and beyond, x, y, and z represent arbitrary elements of Γ(TM)

or vectors in the tangent space (TpM) ofM at an arbitrary point (p) inM.
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The following equations are immediate consequences of (2).

g(ϕx, y) = g(x, ϕy), g(x, ξ) = η(x), g(ξ, ξ) = 1, η(∇xξ) = 0,

where ∇ denotes the Levi–Civita connection of g.
The associated metric (g̃) of g onM is also a B metric and is defined by

g̃(x, y) = g(x, ϕy) + η(x)η(y). (3)

In [12], accR manifolds are classified with respect to the (0,3)-tensor F defined by

F(x, y, z) = g
(
(∇x ϕ)y, z

)
. (4)

It has the following basic properties:

F(x, y, z) = F(x, z, y) = F(x, ϕy, ϕz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ), (5)

F(x, ϕy, ξ) = (∇xη)y = g(∇xξ, y). (6)

The Ganchev–Mihova–Gribachev classification of the studied manifolds cited in Section 1
consists of eleven basic classes (Fi, i ∈ {1, 2, . . . , 11}) determined by conditions for F.

3. Pair of Associated Yamabe Almost Solitons

Let us consider an accR manifold ((M, ϕ, ξ, η, g)) with a pair of associated Yamabe
almost solitons generated by the pair of B metrics (g and g̃), i.e., (g; ϑ, λ) and (g̃; ϑ̃, λ̃),
which are mutually associated by the (ϕ, ξ, η) structure. Then, along with (1), the following
identity also holds:

1
2
Lϑ̃ g̃ = (τ̃ − λ̃)g̃, (7)

where ϑ̃ and λ̃ are the soliton potential and the soliton function, respectively, and τ̃ is the
scalar curvature of the manifold with respect to g̃. We suppose that the potentials ϑ and ϑ̃
are vertical, i.e., there exist differentiable functions (k and k̃ onM), such that we have

ϑ = kξ, ϑ̃ = k̃ξ, (8)

where k(p) 6= 0 and k̃(p) 6= 0 at every point p of M. We denote these potentials as (ϑ, k)
and (ϑ̃, k̃), respectively.

In this case, for the Lie derivatives of g and g̃ along ϑ and ϑ̃, respectively, we obtain
the following expressions:

(Lϑg)(x, y) = g(∇xϑ, y) + g(x,∇yϑ)

= dk(x)η(y) + dk(y)η(x) + k
{

g(∇xξ, y) + g(x,∇yξ)
}

,
(9)

(
Lϑ̃ g̃

)
(x, y) = g̃(∇̃xϑ̃, y) + g̃(x, ∇̃yϑ̃)

= dk̃(x)η(y) + dk̃(y)η(x) + k̃
{

g̃(∇̃xξ, y) + g̃(x, ∇̃yξ)
}

.
(10)

4. The Case When the Underlying accR Manifold Is Sasaki-like

The authors of [15], introduced a Sasaki-like manifold among accR manifolds. This
type of manifold is defined by the condition that its complex cone is a Kähler–Norden
manifold, i.e., the derived almost complex manifold (M×R−) equipped with a Norden
metric (r2g + η ⊗ η − dr2) for r ∈ R− to have a parallel complex structure. A Sasaki-like
accR manifold is determined by the following condition

(∇x ϕ)y = η(y)ϕ2x + g(ϕx, ϕy)ξ.
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Therefore, the fundamental tensor (F) of such a manifold has the following form:

F(x, y, z) = g(ϕx, ϕy)η(z) + g(ϕx, ϕz)η(y). (11)

Obviously, Sasaki-like accR manifolds form a subclass of the F4 class of the Ganchev–
Mihova–Gribachev classification. Moreover, the following identities are valid:

∇xξ = −ϕx, (∇xη)(y) = −g(x, ϕy),

R(x, y)ξ = η(y)x− η(x)y, ρ(x, ξ) = 2n η(x),

R(ξ, y)z = g(y, z)ξ − η(z)y, ρ(ξ, ξ) = 2n,

(12)

where R and ρ represent the curvature tensor and the Ricci tensor of∇, respectively, usually
defined as R = [∇,∇]−∇[ , ], and ρ is the result of the contraction of R by its first index [15].

If the considered accR manifold ((M, ϕ, ξ, η, g)) is Sasaki-like, due to the first equality
of (12), (9) takes the following form:

(Lϑg)(x, y) = dk(x)η(y) + dk(y)η(x)− 2kg(x, ϕy). (13)

We then input the result of (13) into (1) and obtain the following:

1
2
{dk(x)η(y) + dk(y)η(x)} − kg(x, ϕy) = (τ − λ)g(x, y). (14)

Replacing x and y with ξ in (14) yields

dk(ξ) = τ − λ. (15)

The trace of (14) in an arbitrary basis ({ei} (i = 1, 2, . . . , 2n + 1)) implies

dk(ξ) = (2n + 1)(τ − λ). (16)

Combining (15) and (16) leads to k = 0, which contradicts the conditions; therefore, we
find the following to be true:

Theorem 1. There does not exist a Sasaki-like manifold ((M, ϕ, ξ, η, g)) equipped with a g-
generated Yamabe almost soliton with a vertical potential.

Now, let us consider a similar situation but with respect to the associated B metric (g̃)
and the corresponding Levi–Civita connection (∇̃).

First, similarly to (4), we define the fundamental tensor (F̃) for g̃ as follows:

F̃(x, y, z) = g̃
((
∇̃x ϕ

)
y, z
)
.

Since g̃ is also a B metric like g, it is obvious that properties (5) and (6) also hold for F̃, i.e.,

F̃(x, y, z) = F̃(x, z, y) = F̃(x, ϕy, ϕz) + η(y)F̃(x, ξ, z) + η(z)F̃(x, y, ξ),

F̃(x, ϕy, ξ) = (∇̃xη)y = g̃(∇̃xξ, y). (17)

Then, the well-known Koszul formula is used for g̃, i.e.,

2g̃
(
∇̃xy, z

)
= x

(
g̃(y, z)

)
+ y
(

g̃(x, z)
)
− z
(

g̃(x, y)
)

+ g̃
(
[x, y], z

)
+ g̃
(
[z, y], x

)
+ g̃
(
[z, x], y

)
,
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After lengthy but standard calculations, we obtain the following relationship between F̃
and F [22]:

2F̃(x, y, z) = F(ϕy, z, x)− F(y, ϕz, x) + F(ϕz, y, x)− F(z, ϕy, x)

+ {F(x, y, ξ) + F(ϕy, ϕx, ξ) + F(x, ϕy, ξ)}η(z)

+ {F(x, z, ξ) + F(ϕz, ϕx, ξ) + F(x, ϕz, ξ)}η(y)

+ {F(y, z, ξ) + F(ϕz, ϕy, ξ) + F(z, y, ξ) + F(ϕy, ϕz, ξ)}η(x).

(18)

Lemma 1. For a Sasaki-like manifold ((M, ϕ, ξ, η, g)) with associated B metric g̃, the following
holds:

∇̃xξ = −ϕx. (19)

Proof. Due to (17) and (18), we obtain the following:

2g̃(∇̃xξ, y) = F(ϕ2y, ξ, x)− F(ξ, ϕ2y, x) + {F(ϕy, ξ, ξ) + F(ξ, ϕy, ξ)}η(x)

+ F(x, ϕy, ξ) + F(ϕ2y, ϕx, ξ) + F(x, ϕ2y, ξ).
(20)

In deriving the last equality, we use the properties in (2). We then apply the expression
of ϕ2 from (2) and some properties of F in this case. The first is F(ξ, ξ, x) = 0, which is
a consequence of (11), and the second is the general identity F(x, ξ, ξ) = 0, which comes
from (5). Thus, the relation in (20) simplifies to the following form:

2g̃(∇̃xξ, y) = F(ξ, x, y) + F(x, ϕy, ξ)− F(y, ϕx, ξ)− F(x, y, ξ)− F(y, x, ξ). (21)

Thereafter, we compute the various components in the above formula by exploiting the
fact that the given manifold is Sasaki-like, i.e., (11) is valid, and we obtain:

F(ξ, x, y) = 0, F(x, y, ξ) = g(ϕx, ϕy), F(x, ϕy, ξ) = −g(x, ϕy).

As a result, given the symmetry of g(x, ϕy) with respect to x and y, as well as (3), the
equality in (21) simplifies to the following form:

g̃(∇̃xξ, y) = −g̃(ϕx, y),

which is an equivalent expression of (19).

We now apply (19) to (10) and use (3) to obtain:(
Lϑ̃ g̃

)
(x, y) = dk̃(x)η(y) + dk̃(y)η(x)− 2k̃ g(ϕx, ϕy). (22)

We then substitute the expression from (22) into (7) and obtain the following:

1
2
{

dk̃(x)η(y) + dk̃(y)η(x)
}
− k̃ g(ϕx, ϕy) = (τ̃ − λ̃)g̃(x, y). (23)

Contracting (23), we infer
dk̃(ξ) + 2nk̃ = τ̃ − λ̃. (24)

On the other hand, we replace x and y in (23) with ξ and obtain

dk̃(ξ) = τ̃ − λ̃. (25)

Then, (24) and (25) imply k̃ = 0, which is not admissible for the potential; therefore, the
following holds:
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Theorem 2. There does not exist a Sasaki-like manifold ((M, ϕ, ξ, η, g)) equipped with a g̃-
generated Yamabe almost soliton with a vertical potential.

5. The Case of a Torse-Forming Vertical Potential

Let us recall a vector field (ϑ) on a (pseudo-)Riemannian manifold (M, g) called a
torse-forming vector field if the following identity is true:

∇xϑ = f x + γ(x)ϑ, (26)

where f is a differentiable function, and γ is a 1 form [18,23]. The 1 form γ is called the
generating form, and the function ( f ) is called the conformal scalar of ϑ [20].

Remark 1. Some special types of torse-forming vector fields have been considered in various studies.
A vector field (ϑ) determined by (26) is called:

- torqued if γ(ϑ) = 0 [21];
- concircular if γ = 0 [24];
- concurrent if f − 1 = γ = 0 [25];
- recurrent if f = 0 [26];
- parallel if f = γ = 0 (e.g., [27]).

Furthermore, if the potential (ϑ) is vertical, i.e., ϑ = k ξ, then (26) yields the following:

dk(x)ξ + k∇xξ = f x + k γ(x)ξ. (27)

Since η(∇xξ) vanishes identically, (27) implies the following:

dk(x) = f η(x) + k γ(x),

which, due to the nowhere-vanishing k, yields the following expression for the generating
form of ϑ:

γ(x) =
1
k
{dk(x)− f η(x)}. (28)

Then, the torse-forming vertical potential is determined by f and k, as denoted by ϑ( f , k).
Plugging (28) into (26), we obtain

∇xϑ = − f ϕ2x + dk(x)ξ, (29)

which, together with ∇xϑ = ∇x(k ξ) = dk(x)ξ + k∇xξ, yields the following form in the
considered case:

∇xξ = − f
k

ϕ2x. (30)

By virtue of (30), for the curvature tensor of g, we obtain

R(x, y)ξ = −
{

dh(x) + h2η(x)
}

ϕ2y +
{

dh(y) + h2η(y)
}

ϕ2x, (31)

where the following shorter notation is used for the function that is the coefficient in (30).

h =
f
k

. (32)
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As an immediate consequence of (31), we obtain the following expressions:

R(ξ, y)z = g(ϕy, ϕz) grad h− dh(z)ϕ2y + h2{η(z)y− g(y, z)ξ},

ρ(y, ξ) = −(2n− 1)dh(y)−
{

dh(ξ) + 2nh2
}

η(y),

ρ(ξ, ξ) = −2n
{

dh(ξ) + h2
}

.

Given (6) and (32), Equation (30) can be rewritten in the following form:

F(x, ϕy, ξ) = −h g(ϕx, ϕy). (33)

Bearing in mind that F(x, ξ, ξ) = 0, following from (5), the expression of (33) is equivalent
to the following equality:

F(x, y, ξ) = −h g(x, ϕy). (34)

Then, (9) and (1) imply

1
2
{dk(x)η(y) + dk(y)η(x)} − f g(ϕx, ϕy) = (τ − λ)g(x, y). (35)

Contracting (35) yields

dk(ξ) + 2n f = (2n + 1)(τ − λ), (36)

and substituting x = y = ξ into (35) yields

dk(ξ) = τ − λ. (37)

Then, combining (36) and (37) leads to an expression for the conformal scalar of ϑ as follows:

f = τ − λ. (38)

This means that the following statement is valid:

Theorem 3. Let an accR manifold ((M, ϕ, ξ, η, g)) be equipped with a Yamabe almost soliton
(g; ϑ( f , k), λ), where ϑ is a vertical torse-forming potential. Then, the scalar curvature (τ) of this
manifold is the sum of the conformal scalar ( f ) of ϑ and the soliton function (λ), i.e., τ = f + λ.

Equations (37) and (38) yield
f = dk(ξ). (39)

Substituting (39) into (32), we obtain the following expression of the function h:

h = d(ln k)(ξ).

Corollary 1. The potential (ϑ( f , k)) of any Yamabe almost soliton (g; ϑ, λ) on (M, ϕ, ξ, η, g) is a
torqued vector field.

Proof. According to (39) and (28), γ(ξ) vanishes. Hence, γ(ϑ) = 0 is true, i.e., the potential
(ϑ) is torqued, given Remark 1.

The authors of [16] showed that class F5 is the only basic class in the considered
classification of accR manifolds in which ξ or its collinear vector field can be torse-forming.
Furthermore, the general class of accR manifolds with a torse-forming ξ is F1 ⊕F2 ⊕F3 ⊕



Mathematics 2023, 11, 2870 8 of 12

F5 ⊕F10. Note that F5 manifolds are counterparts of β-Kenmotsu manifolds in the case of
almost contact metric manifolds. The definition of class F5 is expressed as follows [12]:

F(x, y, z) = − θ∗(ξ)

2n
{g(x, ϕy)η(z) + g(x, ϕz)η(y)}, (40)

where θ∗(·) = gijF(ei, ϕej, ·) with respect to the basis {e1, . . . , e2n, ξ} of TpM. Moreover, on
an F5 manifold, the Lee form (θ∗) satisfies the property θ∗ = θ∗(ξ)η.

Then, in addition to the component in (34), we have

F(ξ, y, z) = 0, ω = 0. (41)

Let the potential (ϑ̃) of the Yamabe almost soliton (g̃; ϑ̃, λ̃) also be torse-forming and
vertical, i.e.,

∇̃xϑ̃ = f̃ x + γ̃(x)ϑ̃, ϑ̃ = k̃ ξ.

Similarly, we obtain analogous equalities of (29) and (30) for g̃ and its Levi–Civita
connection (∇̃) in the following form:

∇̃xϑ̃ = − f̃ ϕ2x + dk̃(x)ξ, (42)

∇̃xξ = −h̃ ϕ2x, (43)

where

h̃ =
f̃
k̃

.

Moreover, we also have f̃ = dk̃(ξ) and h̃ = d(ln k̃)(ξ).
Thus, the following analogous assertions are valid.

Theorem 4. Let an accR manifold ((M, ϕ, ξ, η, g)) be equipped with a Yamabe almost soliton
(g̃; ϑ̃( f̃ , k̃), λ̃), where ϑ̃ is a vertical torse-forming potential. Then, the scalar curvature (τ̃) of this
manifold is the sum of the conformal scalar ( f̃ ) of ϑ̃ and the soliton function (λ̃), i.e., τ̃ = f̃ + λ̃.

Corollary 2. The potential (ϑ̃( f̃ , k̃)) of any Yamabe almost soliton (g̃; ϑ̃, λ̃) on (M, ϕ, ξ, η, g) is a
torqued vector field.

The following equality is given in [12] and expresses the relation between ∇ and ∇̃
for the pair of B metrics of an arbitrary accR manifold:

2g(∇̃xy, z) = 2g(∇xy, z)− F(x, y, ϕz)− F(y, x, ϕz) + F(ϕz, x, y)

+ {F(y, z, ξ) + F(ϕz, ϕy, ξ)−ω(ϕy)η(z)}η(x)

+ {F(x, z, ξ) + F(ϕz, ϕx, ξ)−ω(ϕx)η(z)}η(y)

− {F(ξ, x, y)− F(y, x, ξ)− F(x, ϕy, ξ)

−F(x, y, ξ)− F(y, ϕx, ξ)}η(z).

(44)

By setting y = ξ, the last equality implies the following:

2g(∇̃xξ, z) = 2g(∇xξ, z)− F(x, ϕz, ξ)− F(ξ, x, ϕz) + F(ϕz, x, ξ)

+ ω(z)η(x) + F(x, z, ξ) + F(ϕz, ϕx, ξ).
(45)

Taking into account (30), (33), (34), and (43), the relation (44) takes the following form:

2(h̃− h)g(ϕx, ϕz) = F(ξ, x, ϕz)− η(x)ω(z),
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which, for an F5 manifold, due to (41), implies h̃ = h, i.e.,

f
k
=

f̃
k̃

. (46)

To express some curvature properties of accR manifolds, an associated quantity (τ∗)
of the scalar curvature (τ) of g is used in [28]. It is defined by the following trace of the
Ricci tensor: ρ: τ∗ = gijρis ϕs

j with respect to the basis {e1, . . . , e2n, ξ}. The relation between

τ̃ and τ∗ for a manifold belonging to F 0
5 ⊂ F5 is given in ([28], Corollary 2) as follows:

τ̃ = −τ∗ − 2n + 1
2n

(θ∗(ξ))2 − 2ξ(θ∗(ξ)). (47)

The F 0
5 subclass of F5 is introduced in [13] by the condition that the Lee form (θ∗) of the

manifold be closed, i.e., d θ∗ = 0. The last equality is equivalent to the following condition:

d(θ∗(ξ)) = ξ(θ∗(ξ))η. (48)

Using (33), we compute that

θ∗(ξ) = 2nh, ξ(θ∗(ξ)) = 2n dh(ξ).

Therefore, (47) takes the following form:

τ̃ = −τ∗ − 2n(2n + 1)h2 − 4n dh(ξ). (49)

6. Example: A Cone over a Two-Dimensional Complex Space Form with
Norden Metric

In this section, we consider the accR manifold construction given in [29].
First, let (N , J, g′) be a two-dimensional almost complex manifold with Norden metric,

i.e., J is an almost complex structure, and g′ is a pseudo-Riemannian metric with a neutral
signature such that g′(Jx′, Jy′) = −g′(x′, y′) for arbitrary x′, y′ ∈ Γ(TN ). It is then known
that (N , J, g′) is a complex space form with constant sectional curvature, denoted, e.g.,
by k′.

Second, let C(N ) be the cone over (N , J, g′), i.e., C(N ) is the warped product (R+ ×t
N ) with a generated metric (g) as follows:

g
((

x′, a d
dt

)
,
(

y′, b d
dt

))
= t2 g′(x′, y′) + ab,

where t is the coordinate on the set of positive reals (R+), and a and b are differentiable func-
tions on C(N ). Moreover, C(N ) is equipped with an almost contact structure (ϕ, ξ, η) by

ϕ|ker η = J, ξ = d
dt , η = dt, ϕξ = 0, η ◦ ϕ = 0. (50)

Then, (C(N ), ϕ, ξ, η, g) is a three-dimensional accR manifold belonging to the F1⊕F5
class. In particular, this manifold can be of F5 if and only if J is parallel with respect to the
Levi–Civita connection of g′, but the constructed manifold cannot belong to F1 or F0 [29].

Let the considered manifold (C(N ), ϕ, ξ, η, g) belong to F5. Using the result (θ∗(ξ) = 2
t )

from [29], we verify that the condition in (48) holds; therefore, (C(N ), ϕ, ξ, η, g) belongs
to F 0

5 .
Let {e1, e2, e3} be a basis in any tangent space at an arbitrary point of C(N ) such that

ϕe1 = e2, ϕe2 = −e1, e3 = ξ,

g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1, g(ei, ej) = 0, i 6= j.
(51)

In [29], it is shown that the nonzero components of R of the constructed three-di-
mensional manifold with respect to the basis {e1, e2, e3} are determined by the equality
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(R1212 = 1
t2 (k′ − 1)) and the well-known properties of R. Obviously, (C(N ), ϕ, ξ, η, g)

is flat if and only if k′ = 1 for (N , J, g′). The nonzero components of the Ricci tensor
of (C(N ), ϕ, ξ, η, g) in the general case are then calculated as ρ11 = −ρ22 = 1

t2 (k′ − 1).
Furthermore, the scalar curvature (τ) and the associated quantity (τ∗) of (C(N ), ϕ, ξ, η, g)
are given by

τ =
2
t2 (k

′ − 1), τ∗ = 0. (52)

Then, taking into account the vanishing of τ∗, the expression

θ∗(ξ) =
2
t

, (53)

and n = 1, we calculate τ̃ according to (47) as

τ̃ = − 2
t2 . (54)

Using the results (∇e1 e3 = 1
t e1, ∇e2 e3 = 1

t e2, and ∇e3 e3 = 0) from [29] and e3 = ξ
from (51), we derive the following formula for any x on C(N ).

∇xξ = −1
t

ϕ2x. (55)

Comparing the last equality with (30), we conclude that

f
k
=

1
t

, (56)

i.e., h = 1
t holds due to (32), and (49) is also valid.

According to (39) and (56) and the expression of ξ in (50), we obtain the differential
equation tdk = kdt, the solution of which for the function k(t) is

k = ct, (57)

where c is an arbitrary constant. Hence, (56) and (57) imply

f = c. (58)

Taking into account (9), (55), and (57), we obtain

Lϑg = 2cg. (59)

Let us define the following differentiable function on C(N )

λ =
2
t2 (k

′ − 1)− c. (60)

Then, bearing in mind (52), (59), and (60), we check that the condition in (1) is satisfied and
that (g; ϑ, λ) is a Yamabe almost soliton with vertical potential (ϑ).

Due to (8) and (57), the soliton potential (ϑ) is determined by ϑ = ctξ. Then, because
dt = η according to (50) and (55), we obtain ∇xϑ = cx. This means that ϑ is torse-forming
with conformal scalar f = c and zero-generating form γ. According to Remark 1, the
torse-forming vector field (ϑ) is concircular in the general case of our example, and, in
particular, when c = 1, it is concurrent. Obviously, every concircular vector field is torqued,
which supports Corollary 1.

Taking into account (52), (58), and (60), we check the truthfulness of Theorem 3.
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In [30], a relation between the Levi–Civita connections (∇ and ∇̃) of g and g̃, respec-
tively, is given for F5 as follows:

∇̃xy = ∇xy− θ∗(ξ)

2n
{g(x, ϕy) + g(ϕx, ϕy)}ξ.

This relation for (C(N ), ϕ, ξ, η, g), and y = ξ implies ∇̃xξ = ∇xξ, which, due to (55), yields

∇̃xξ = −1
t

ϕ2x. (61)

The expression in (61) also follows from (40), (45), and (53).
Then, using (43) and (61), we obtain

f̃
k̃
=

1
t

, (62)

which supports (46) and (56).
In a manner similar to obtaining (57) and (58), starting with (62), we find

k̃ = c̃t, c̃ = const, (63)

f̃ = c̃. (64)

By virtue of (10), (61), and (63), we have

Lϑ̃ g̃ = 2c̃g̃. (65)

We define the following differentiable function on C(N ):

λ̃ = − 2
t2 − c̃, (66)

which, together with (54) and (65) shows, that the condition in (7) holds. Therefore, (g̃; ϑ̃, λ̃)
is a Yamabe almost soliton with vertical potential (ϑ̃).

Using (42), (63), (64), and dt = η from (50), we obtain ∇xϑ̃ = c̃x, which shows that ϑ̃
is torse-forming with conformal scalar f̃ = c̃ and zero-generating form γ̃. Therefore, ϑ̃ is
concircular for arbitrary c̃ and concurrent for c̃ = 1. Obviously, every concircular vector
field is torqued, which supports Corollary 2. Furthermore, the results of (54), (64), and (66)
support Theorem 4.
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