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Abstract: When deblurring an image, ensuring that the restored intensities are strictly non-negative
is crucial. However, current numerical techniques often fail to consistently produce favorable results,
leading to negative intensities that contribute to significant dark regions in the restored images.
To address this, our study proposes a mathematical model for non-blind image deblurring based
on total fractional-order variational principles. Our proposed model not only guarantees strictly
positive intensity values but also imposes limits on the intensities within a specified range. By
removing negative intensities or constraining them within the prescribed range, we can significantly
enhance the quality of deblurred images. The key concept in this paper involves converting the
constrained total fractional-order variational-based image deblurring problem into an unconstrained
one through the introduction of the augmented Lagrangian method. To facilitate this conversion
and improve convergence, we describe new numerical algorithms and introduce a novel circulant
preconditioned matrix. This matrix effectively overcomes the slow convergence typically encountered
when using the conjugate gradient method within the augmented Lagrangian framework. Our
proposed approach is validated through computational tests, demonstrating its effectiveness and
viability in practical applications.

Keywords: image deblurring; constrained problem; TFOV; ill-posed problem; augmented Lagrangian
method

MSC: 68U10; 94A08; 65K10; 65N12

1. Introduction

In image processing, image deblurring is an attractive topic due to its practical applica-
tions in robot vision [1], remote sensing [2], medical image processing [3], virtual reality [4],
astronomical imaging [5], and many other fields. The mathematical relationship between
the original u and blurry z images is follows:

z = Ku + ε, (1)

where ε denotes a noise function and K denotes the blurring operator:

(Ku)(x) =
∫

Ω
k(x, y)u(y) dy, x ∈ Ω, (2)

where k(x, y) = φ(x− y) is referred to as a translation-invariant kernel or a point spread
function (PSF). Therefore, the task of recovering the u and K from z is called the deconvo-
lution problem. If the blurring operator K is given, then the corresponding approach is
referred to as non-blind deconvolution [6–13]. However, when the blurring operator is
unknown, the corresponding approach is referred to as blind deconvolution [14–20]. In
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this paper, our primary focus is on non-blind deconvolution. K is the compact operator.
However, the recovering of u from z poses challenges as it transforms the problem (1) into
an unstable inverse problem [21–23]. To address this issue, researchers have extensively
explored the potential of energy minimization models to solve image deblurring problems,
which have attracted significant attention over the past few decades.

min
u∈C

∫
Ω
(k ∗ u− z)2dΩ + α̃R(u), (3)

where C represents a constrained set, R(u) is a regularization functional, and α̃ > 0 is a
smoothing parameter that determines the balance between the data fitting and smoothing
terms, and ∗ is a 2-D convolution operator. When applying these techniques to noisy
and blurry photos, researchers must overcome two major challenges. The first challenge
is dealing with non-linearity, while the second challenge involves resolving the massive
matrix system involved.

1.1. Related Works

Non-blind deconvolution poses significant challenges as an ill-posed inverse problem.
Numerous techniques for deconvolution have been developed to address these challenges
by incorporating different image priors to regularize the solution. One such example is the
utilization of the Tikhonov regularization model [21,22],

min
u∈C

∫
Ω
(k ∗ u− z)2dΩ + α̃‖u‖Tik, (4)

where ‖u‖Tik =
∫

Ω |u|dΩ. The Tikhonov model involves least-squares estimation, which of-
ten leads to excessively smoothed image reconstructions. As a result of its edge-preserving
property, the total variation (TV) model [23–25] has become the most widely recognized
non-linear energy minimization image deblurring model used for image deblurring.

min
u∈C

∫
Ω
(k ∗ u− z)2dΩ + α̃‖u‖TV, β, (5)

where ‖u‖TV,β =
∫

Ω | 5 u|βdΩ and | 5 u|β =
√

u2
x + u2

y + β. Here, β > 0 is used to make

functional ‖u‖TV,β differentiable at zero. The TV model possesses numerous advantageous
features; however, it does have one significant flaw. One notable drawback of the TV
model is its tendency to transform smooth functions into piecewise constant functions,
resulting in staircase effects in the restored images. The repaired photos appear blocky
as a result. To mitigate the staircase effects in restored images, one solution is to employ
total fractional-order variation (TFOV)-based models [26–32]. These models have been
proposed as an alternative approach to address the limitations of the TV model and reduce
the undesirable staircase artifacts.

min
u∈C

∫
Ω
(k ∗ u− z)2dΩ + α̃‖u‖TFOV, β, (6)

where α represents order of fractional derivative. ‖u‖TFOV,β =
∫

Ω

√
| ∇αu |2 +β2dΩ, and

|∇αu|2 = (Dα
xu)2 + (Dα

y u)2, where Dα
x and Dα

y are the fractional derivative operators along
the x and y directions, respectively. The x-direction derivative is also denoted by Dα

a,x.
Here, a and x are the lower and upper bounds of the integrals, and α represents the order
of fractional derivative. In this notation, 0 < n− 1 < α < n, where n = [α] + 1 and [·]
denotes the greatest integer function. Various definitions have been proposed to define a
fractional-order derivative [33–36]. The regularization models based on TFOV are known
for their exceptional efficiency. These models preserve edges in the recovered images while
simultaneously eliminating the undesirable staircase effect.
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In recent years, the utilization of TFOV-based image processing methods has attracted
increasing attention. Some basic conclusions have been drawn in the areas of image
denoising, edge detection, and reconstruction [31,37,38]. Mathieu et al. [37] proposed an
edge detection method based on fractional differential, which effectively enhances image
details such as edges and textures. Tian et al. [38] proposed a fractional-order adaptive
regularization primal–dual algorithm for image denoising. Furthermore, Zhang et al. [31]
proposed a TFOV model for image restoration, demonstrating its efficacy in suppressing the
staircase effect. These studies have shown that, compared to first-order and second-order
total variation methods, TFOV can more accurately and delicately represent image textures.
More recently, Fairag et al. [39] and Guo et al. [30] have incorporated the TFOV model
within the framework of image deblurring problems, further highlighting the applicability
and potential of the TFOV-based approaches.

1.2. Scope of the Paper

Particularly in astronomical images, image deblurring frequently requires that the
restored image has precisely non-negative intensities [40–44]. However, it has been noted
that solutions using current techniques may not always produce favorable outcomes. Im-
ages with many pixels having intensity values equal to or close to zero are known as
images with negative intensities or black space. In this research, we provide a model for
TFOV-based image deblurring that guarantees strictly positive outcomes for image intensi-
ties. The suggested model additionally restricts the image intensity values, maintaining
them within a specified range. The removal of negative intensities or their confinement
within the prescribed range also contributes to improving the quality of deblurred im-
ages. The main idea behind this paper is to convert the TFOV-based constrained image
deblurring problem into an unconstrained one and then introduce the Lagrange multiplier.
The optimization issues in computer vision and image processing have been successfully
addressed by augmented Lagrangian methods [45–47]. Augmented Lagrangian methods
have demonstrated superior speed compared to other numerical techniques. It has been
demonstrated that the original nontrivial minimization problem can be broken down into a
number of straightforward and quick-to-solve subproblems using augmented Lagrangian
methods. Some of them have closed forms of solutions, while others can be quickly solved
using tools such as the fast Fourier transform (FFT). In our augmented Lagrangian method,
the solution of one of the subproblems requires the conjugate gradient (CG) method. How-
ever, the CG method exhibits slow convergence due to an ill-conditioned matrix system.
To overcome the slow convergence problem of CG, we introduce a new preconditioned
matrix in this paper.

The main contributions of this paper are as follows: (i) it presents the one-sided
and two-sided constraint methods for the TFOV-based constrained image deblurring
problem; (ii) the proposed methods limit the upper boundary of the image intensity values,
maintaining them within a specified range, while also guaranteeing strictly positive results;
(iii) it presents a new circulant preconditioned matrix to improve the convergence of the
CG method within the augmented Lagrangian method; and (iv) the proposed methods
generate high-quality restored images compared to the most recent existing TFOV-based
image deblurring methods.

This paper is divided into different sections. We discuss one-sided and two-sided
constraint problems in Section 2. Section 3 presents Euler–Lagrange equations. Section 4
presents the cell discretization and the matrix-system of the model. The proposed precondi-
tioned matrix is also presented in Section 4. The numerical application of our approaches is
presented in Section 5. Section 6 contains the conclusions regarding the suggested methods
and the Appendix A.

2. Constraint Image Deblurring Problem

In this section, we present a model for TFOV-based image deblurring that guaran-
tees strictly positive image intensities as an outcome. The proposed model also imposes
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restrictions on the upper boundary of image intensity values, constraining them within
a specified range. The main idea of this model is to convert the TFOV-based constrained
image deblurring problem into an unconstrained problem and subsequently introduce a
Lagrange multiplier.

2.1. One-Sided Constraint Problem

Consider the constrained image deblurring problem

min
u

∫
Ω
(k ∗ u− z)2dΩ + α̃ ‖ u ‖TFOV, β (7)

subject to : u ≥ 0 (8)

We convert the inequality constrained (8) into an equality constrained by introducing
a function γ

−u + γ2 = 0. (9)

Now, Equations (7) and (8) become

min
u

∫
Ω
(k ∗ u− z)2dΩ + α̃ ‖ u ‖TFOV, β (10)

subject to : − u + γ2 = 0. (11)

We have that u∗ is a local (global) minimum of Equations (7) and (8) if and only if
(u∗, γ∗), where γ∗ =

√
u∗ is local (global) minimum of Equations (10) and (11). Now,

consider the augmented Lagrangian functional for Equations (10) and (11) defined for
positive penalty parameter c > 0 and multiplier λ by

fc(u, γ, λ) =
∫

Ω
(k ∗ u− z)2dΩ + α̃ ‖ u ‖TFOV, β

+
∫

Ω
λ(−u + γ2)dΩ +

c
2

∫
Ω
(−u + γ2)2dΩ (12)

We are interested in minimizing augmented Lagrangian Equation (12) with respect to
(u, γ) for different λ and c. Observe that the minimization of fc(u, γ, λ) with respect to γ
can be found explicitly for each fixed u [48]. The minimization of the problem above with
respect to γ is equivalent to

min
w

{∫
Ω

[
λ(−u + w) +

1
2

c(−u + w)2
]

dΩ
}

. (13)

The above integrand is quadratic in w. The unconstrained (global) minimum at which
the derivative is zero is w∗. We have

w = u− λ/c. (14)

Therefore, the solution to Equation (13) is

w∗ = max { 0, u− λ/c }. (15)

Substituting w∗ into the functional (12) gives

fc(u, λ) =
∫

Ω
(k ∗ u− z)2dΩ + α̃‖u‖TFOV,β +

∫
Ω

λ(−u + max{0, u− λ/c})dΩ (16)

+
c
2

∫
Ω
(−u + max{0, u− λ/c})2dΩ.
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Now, the method of multiplier [49,50] can be described as follows: For a given mul-
tiplier λ(k) and the penalty parameter c(k), we minimize fc(k)(u, γ, λ(k)) by obtaining u(k)

and γ(k); subsequently, we set

λ(k+1) = λ(k) + c(k) max{−u(k), − λ(k)/c(k)}.

In order to minimize the functional (12), we first pick a value for c and a function λ, then
we compute w using Equation (15). Next, we compute u by minimizing the functional (12). This
suggests following the one-sided constraint method (OSCM) Algorithm 1.

Algorithm 1 ONE-SIDED CONSTRAINT METHOD

function: [u] = OnesideConstraint(c, λ, u, k)

1. Set: c(0) = c, λ(0) = λ

2. Set: u(0) = u
3. Set: w(0) = max{0, u(0) − λ(0)/c(0)}
4. For m = 1, 2, ...
5. Find u(m): minu fc(m−1)(u,

√
w(m−1), λ(m−1))

6. Set: λ(m) = λ(m−1) + c(m−1) max{−u(m−1), λ(m−1)/c(m−1)}
7. Test: Stopping criteria
8. Set: c(m) = d ∗ c(m−1)

9. Set: w(m+1) = max{0, u(m) − λ(m)/c(m)}
10. end
11. Set: u = u(m)

2.2. Two-Sided Constraint Problem

Next, we take the case where pixel values of digital images must lie in a specific
interval [a1, a2]. For instance, for 8-bit images, the interval is [a1, a2] = [0, 255]. We consider
solving the constrained model:

min
u

∫
Ω
(k ∗ u− z)2dΩ + α̃‖u‖TFOV, β (17)

subject to : a1 ≤ u ≤ a2. (18)

First, we convert the inequality (18) into two equalities

−u + a1 + γ2
1 = 0 and u− a2 + γ2

2 = 0. (19)

Then, Equations (17) and (18) become

min
u

∫
Ω
(k ∗ u− z)2dΩ + α̃‖u‖TFOV,β (20)

subject to : − u + a1 + γ2
1 = 0, (21)

u− a2 + γ2
2 = 0. (22)

Let us consider the augmented Lagrangian functional for Equations (20)–(22) defined
for a positive penalty parameter c > 0 and multipliers λ1, λ2 by

gc(u, γ1, γ2, λ1, λ2) =
∫

Ω
(k ∗ u− z)2dΩ + α̃‖u‖TFOV,β +

∫
Ω

λ1(−u + a1 + γ2
1)dΩ (23)

+
∫

Ω
λ2(u− a2 + γ2

2)dΩ +
c
2

∫
Ω

{
(−u + a1 + γ2

1)
2 + (u− a2 + γ2

2)
2
}

dΩ
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Now, we want to minimize augmented Lagrangian (23) with respect to (u, γ1, γ2) for
different λ1, λ2, and c.

Similar to the one-side constraint case, minimization of gc with respect to γ1 and
γ2 can be explicitly found for each fixed u. Minimization with respect to γ1 and γ2 are
equivalent to

min
w1

{∫
Ω

[
λ(−u + a1 + w1) +

1
2

c(−u + a1 + w1)
2
]

dΩ
}

, (24)

min
w2

{∫
Ω

[
λ(u− a2 + w2) +

1
2

c(u− a2 + w2)
2
]

dΩ
}

. (25)

Hence, the solutions of Equations (24) and (25) are

w∗1 = max { 0, u− λ1/c− a1 }, (26)

w∗2 = max { 0, − u− λ2/c + a2 }. (27)

The method of the multiplier can be described as follows: Given multipliers λ
(k)
1 , λ

(k)
2 ,

and a penalty parameter c(k) , we minimize gc(k) by obtaining u(k), γ
(k)
1 and γ

(k)
2 , then we set

λ
(k+1)
1 = λ

(k)
1 + c(k) max {−u(k), − λ

(k)
1 /c(k) − a1 }, (28)

λ
(k+1)
2 = λ

(k)
2 + c(k) max {u(k), − λ

(k)
2 /c(k) + a2 }. (29)

In order to minimize the functional (23), we first select a value for c and a function
λ1. Then, we compute w∗1 using Equation (26). After that we choose a function λ2 and
compute w∗2 using Equation (27). Next, we compute u by minimizing the functional (23).
This two-sided constraint method (TSCM) is explained in Algorithm 2.

Algorithm 2 TWO-SIDED CONSTRAINT METHOD

function: [ u ] = TwosidesConstraint(c, λ1, λ2, u, k)

1. Set: c(0) = c, λ
(0)
1 = λ1, λ

(0)
2 = λ2

2. Set: u(0) = u

3. Set: w(0)
1 = max{0, u(0) − λ

(0)
1 /c(0) − a1}

4. Set: w(0)
2 = max{0,−u(0) − λ

(0)
2 /c(0) + a2}

5. For m = 1, 2, · · ·

6. Find u(m): minu gc(m−1)(u,
√

w(m−1)
1 ,

√
w(m−1)

2 , λ
(m−1)
1 , λ

(m−1)
2 )

7. Set: λ
(m)
1 = λ

(m−1)
1 + c(m−1) max{−u(m−1),−λ

(m−1)
1 /c(m−1) − a1}

8. Set: λ
(m)
2 = λ

(m−1)
2 + c(m−1) max{u(m−1),−λ

(m−1)
2 /c(m−1) + a2}

9. Test: Stopping criteria
10. Set: c(m) = d ∗ c(m−1)

11. Set: w(m)
1 = max{0, u(m−1) − λ

(m−1)
1 /c(m−1) − a1}

12. Set: w(m)
2 = max{0,−u(m−1) − λ

(m−1)
2 /c(m−1) + a2}

13. end

Set: u = u(m)

In both algorithms (OSCM and TSCM), we have to compute u by minimizing the
functionals (12) and (23), respectively. In both cases, we require Euler–Lagrange equations
to compute u. The Euler–Lagrange equations for u are the same for both cases.

3. Euler–Lagrange Equations

This section includes the presentation of the Euler–Lagrange equations connected with
TFOV for the image deblurring problem.
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Theorem 1. For the functional given in Equation (12) and α ∈ (1, 2), the Euler–Lagrange
equations are

K∗(Ku− z) + α̃Lα(u)u = 0, on Ω,

Dα−2

(
∇αu√

|∇αu|2 + β2

)
·~η = 0, Dα−1

(
∇αu√

|∇αu|2 + β2

)
·~η = 0, in ∂Ω,

(30)

where ~η is the unit outward normal vector. The K∗ is an adjoint operator of the integral operator K
and non-linear differential operator Lα(u) is defined as follows:

Lα(u)w = (−1)n∇α.

(
∇αw√

|∇αu|2 + β2

)
+ cw. (31)

Proof. The proof is given in Appendix A.

Note that Equation (30) can be written as follows:

K∗Ku + α̃∇α.~v + cu = K∗z, (32)

−∇αu +
√
| ∇αu |2 +β~v =~0 (33)

with the dual, or flux, variable

~v =
∇αu√

| ∇αu |2 +β
. (34)

We apply the Galerkin method to Equations (32) and (33) together with midpoint quadrature
for the integral term and the cell-centered finite difference method for the derivative part.

4. Numerical Implementation

First, we will present the discretization of our proposed model. The computational
domain Ω = (0, 1)× (0, 1) is divided into N2 equal squares (cells), where N represents the
number of equispaced partitions in the x or y direction. We proceed the same discretization
approach in [31,51]. Next, let (xk, yl), k, l = 0, 1, ..., N + 1 be discrete points for the image
domain Ω. We assume that u satisfies homogenous Dirichlet boundary condition. To dis-
cretize the fractional derivative of order α at the inner point (xk, yl) (for k, l = 0, 1, ..., N) in
the x-direction, we employ the shifted Grünwald approximation approach [52].

Dα f (xk, yl) =
δα

0 f (xk, yl)

hα
+ O(h) =

1
2

(
δα
− f (xk, yl)

hα
+

δα
+ f (xk, yl)

hα

)
+ O(h)

=
1

2hα

(
Σk+1

j=0 ωα
j f l

k−j+1 + ΣN−k+2
j=0 ωα

j f l
k+j−1

)
+ O(h),

(35)

which is applicable to both Riemann–Liouville and Caputo derivatives [53,54]. Here,

f l
s = fs,l and ωα

j = (−1)j
(

α
j

)
j = 0, 1, ..., N and ωα

0 = 1, ωα
j = (1− 1+α

j )ωα
j−1 for j > 0.

From Equation (35), one can observe that the first-order approximation of D[a,b]
α f (xk, yl)

along x-direction at point (xk, yl) is a linear combination of N + 2 values f l
0, f l

1, ..., f l
N , f l

N+1
with fixed yl . After using the homogenous boundary condition in the matrix estimation of
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the fractional-order derivative, all N equations of the fractional derivatives in the x-direction
in Equation (35) can be expressed as follows:

δα
0 f (x1, yl)

δα
0 f (x2, yl)

...

...
δα

0 f (xN , yl)

 =

1
2hα



2ω1
α ω0

α + ω2
α ω3

α . . . ωN
α

ω0
α + ω2

α 2ω1
α . . . . . .

...

ω3
α . . . . . . . . . ω3

α

...
. . . . . . 2ω1

α ω0
α + ω2

α

ωN
α . . . ω3

α ω0
α + ω2

α 2ω1
α


︸ ︷︷ ︸

Bα
N



f l
1

f l
2
...
...

f l
N

.

By the definition of fractional derivative (35), for any 1 < α < 2, the coefficients ωk
α

possess the properties given below:

(1) ω0
α = 1, ω1

α = −α < 0, 1 ≥ ω2
α ≥ ω3

α ≥ ... ≥ 0.
(2) ∑∞

k=0 ωk
α = 0, ∑m

k=0 ωk
α ≤ 0(m ≥ 1).

By applying the Gershgorin circle theorem, it can be concluded that the matrix Bα
N is a

symmetric and negative-definite Toeplitz matrix (i.e., −Bα
N is the positive definite Toeplitz

matrix). Let U ∈ RN×N represent the solution matrix at all nodes (khx; lhy), k, l = 1, ..., N
corresponding to the spatial discretization nodes in the x and y directions. The ordered
solution vector of U is denoted by ~u ∈ RN2×1. The discrete and direct analogue to differen-
tiation for an arbitrary order α derivative is

ux
α = (IN ⊗ Bα

N)~u = Bx
α~u (36)

In the same way, all values in the y-direction having order α derivative of u(x; y) for
these nodes are estimated using

uy
α = (Bα

N ⊗ IN)~u = By
α~u, (37)

where

ux
α = (u11

α, ..., uN1
α, u12

α, ..., uNN
α)T , uy

α = (u11
α, ..., u1N

α, u21
α, ..., uNN

α)T , (38)

~u = u11, u12, ..., uNN and ⊗ represents the Kronecker product. The αth-order derivative of
ux

α of u(x; y) along all x-direction nodes in Ω can be represented by the matrix Bα
NU. For fur-

ther details on the discretization, we recommend reading References [35,54]. The fractional
discretization mentioned above utilizes cell-centered finite difference method (CCFDM)
and takes advantage of the fact that [(−1)n∇α·] is the adjoint operator of the operator ∇α.
Consequently, Equations (32) and (33) yield the following system

V + KhU = Z,

K∗hV − α̃(Lα
hUm)Um+1 = 0, m = 0, 1, 2...NF,

(39)

where NF is the number of the Fixed Point Iterations (FPI) used to linearize the non-linear
term in the square root in (34). The matrix Kh is obtained by using the midpoint quadrature
for the integral operator as follows:

(Ku)(xi, yj) ≈ [KhU]ij, i, j = 1, 2, ..., N (40)
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with entries [KhU]ij,lm = h2k(xi − xj, yl − ym), where the lexico-graphical order is used, Kh
is a block Toeplitz with Toeplitz block (BTTB) matrix. The discrete scheme of the matrix
Lα

hU is given by

(Lα(Um))Um+1 = [BN(D1(Um)) ◦ (BNUm+1)] + [(D2(Um) ◦ (Um+1BM))]BN + cIN , (41)

where ◦ is the point-wise multiplication, m is the m-th fixed-point iteration, and U is an
N× N-sized reshaped matrix of the vector u. D1(Um) and D2(Um) are the diagonals of the
Hadamard inverses of Bx

α(Um) and By
α(Um), respectively. IN is the identity matrix.

Now, if we eliminate V from the system (39), then we have the following primal
system of the TFOV-based image deblurring model:

(K∗hKh + α̃Lα(Um))Um+1 = K∗h Z. (42)

If we use a simple total variation (TV) regularization functional, then we have the
following similar primal form:

(K∗hKh + α̃LTV
h (Um))Um+1 = K∗h Z, (43)

where
LTV

h (Um) = G∗h H−1
h (Um)Gh. (44)

The LTV
h (Um) is derived from the discretization of total variational functional. The de-

tails can be seen in Reference [22]. The matrix Bh has the following structure,

Gh =
1
h

[
G1
G2

]
,

where both G1 and G2 are of size nx(nx − 1)× n2
x, and

G1 = F⊗ Ĩ and G2 = Ĩ ⊗ F.

F =



1 −1
1 −1

. . . . . .
. . . −1

1 −1


is a matrix of size (nx − 1)× nx. Hh is a diagonal matrix obtained by the discretization of

the expression
√
|5u|2 + β2, which has the following structure:

Hh =

[
Hx 0
0 Hy

]
,

where Hx is a size of (nx − 1)× nx, and Hy is a size of nx × (nx − 1).
To obtain the value of our primal variable u, one needs to solve the matrix system (42).

As for the remaining variables and Lagrange multipliers, we solve them directly after
discretizing them at the grid points (xi, yj).

As mentioned earlier, to compute the value of u, we need to solve the matrix sys-
tem (42), which is a nonlinear system. The Hessian matrix Λ = K∗hKh + α̃Lα(Um) of the
system (42) is extremely large and tends to be ill-conditioned when α̃ is small. This is
primarily due to the clustering of eigenvalues of Kh around zero [23], while K∗hKh is a full
matrix, the Fast Fourier transformation (FFT) can be used to evaluate K∗hKhU in O(nxlognx)
operations [23] because the blurring kernel exhibits translation-invariant behavior. The ad-
vantageous aspect is that the Hessian matrix is symmetric positive definite (SPD).
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Therefore, the conjugate gradient (CG) method is suitable for solving the system (42).
However, the CG method can have a slow convergence rate for large and ill-conditioned
systems. In order to achieve faster convergence, we use the preconditioned conjugate
gradient (PCG) method [55–57]. Here, we introduce our SPD circulant preconditioned
matrix P of Strang-type [58].

P = K̃∗h K̃h + α̃diag(LTV
h (Um)), (45)

where K̃h is a circulant approximation of matrix Kh. The diag(LTV
h (Um)) is a diagonal

structure of LTV
h (Um). This is summarized in Algorithm 3.

Algorithm 3 THE PCG METHOD

function: [ U ] = PCG(α̃, U, K, Z)
1. Set: U(0) = U, on mesh Ωh ,
2. For m = 1, 2, · · ·
3. Find U(m): AmUm+1 = bm,
4. Set: Am = K∗hKh + α̃Lα

h(U
m),

5. Set: bm = K∗h Z,
6. Set: P = K̃∗h K̃h + α̃diag(LTV

h (Um)),
7. Test: Stopping criteria
8. end

Set: U = U(m)

While applying PCG to Equation (42), we need to take the inverse of the preconditioned
matrix P. For the inversion of the first term K̃∗h K̃h, we require O(nxlognx) floating-point
operations using FFTs [23]. As for the second term in P, which is a diagonal matrix,
inversion is not problematic.

Now, let the eigenvalues of K∗hKh, Lα
h and LTV

h be λK
i , λα

i and λTV
i , respectively, such

that λK
i → 0, and λα

i → ∞. Consequently, the eigenvalues of P−1Λ are given by

ηi =
λK

i + α̃λα
i

λK
i + α̃λdTV

i
, (46)

where λdTV
i are the eigenvalues of diag(LTV

h (Um)). It is evident that ηi → 1 as i → ∞
because λdTV

i ≤ λTV
i ≤ λα

i . Therefore, the spectrum of P−1Λ is more favorable than that of
the Hessian matrix Λ. The flowchart of our proposed method is illustrated in Figure 1.

Figure 1. Flow chart of TFOV-based constraint image deblurring method.
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5. Numerical Experiments

In this section, we use our algorithms to solve the unconstrained TFOV problem (5)
and compare the results with the one-sided constrained problems (7) and (8) and two-
sided constrained problems (17) and (18). We conduct several sets of experiments using
different digital images. The algorithm code is written in MATLAB and all computational
experiments are performed on an Intel(R) Core(TM) i7-4510U CPU @2.60 GHz. To evaluate
the quality of the restored image, we use the peak signal-to-noise ratio (PSNR) in decibels
(dB) [59] and the structural similarity index measure (SSIM) [60]. A higher PSNR and SSIM
value indicates a high quality of the restored image. The degree to which the algorithms
satisfy the constraints is measured by counting the number of pixels with negative values
for the one-sided constraint method and the number of pixels outside the range [0, 255] for
the two-sided constraint method. To observe the optimum values of our initial parameters
c0 and d, we performed computations on the Barbara image. We observed numerically (see
Figure 2) that the optimum ranges for the initial parameters c(0) and d of the augmented
Lagrangian method are c(0) ∈ [1× 10−5, 1× 10−4] and d ∈ [4, 10], respectively. For our
experiments, we choose c(0) = 0.000085, d = 5. The λ(0) = λ

(0)
1 = λ

(0)
2 = c(0)z and u(0) = z.

The values of α = 1.8, α̃ = 1 × 10−8 and β = 0.1 are chosen according to [39]. In all
experiments, the stopping criterion for the numerical iterations is defined as ‖b− Axk‖ <
tol ‖ b ‖, where xk = (vk, uk) is the solution vector in the k-th iteration. The results are
presented in figures and tables.
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Figure 2. PSNR for Barbara image against different values of parameters.

Example 1. Here, we have compared Algorithm 1 (OSCM) with an unconstrained TFOV-based
deblurring technique. We used Barbara’s image, which presents a challenge due to the combination
of a large-scale cartoon element (the face) with a small-scale texture (the shirt). The restored images
are shown in Figure 3, with each subfigure having a size of 256× 256. Table 1 lists the PSNR,
SSIM, and the number of negative pixels in the experiment. In this example, the test images are
blurred using the PSF given in Figure 4, which is a circular Gaussian kernel. The criterion to stop
the computational algorithm is based on a tolerance value of tol = 1× 10−7.

Remark 1.

1. From Figure 3, it can be observed that the deblurred images produced by the OSCM exhibit
significantly better quality compared to the unconstrained method.

2. In Table 1, one can observe that the PSNR and SSIM values of the OSCM are considerably
higher than the PSNR and SSIM values of the unconstrained method. The OSCM identifies
negative pixels and reduces them as the iterations progress. Finally, it removes them in just
12 iterations, resulting a clear, blur-free image.
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Figure 3. (a) is an exact image. (b) is a blurry image. (c) is a deblurred image by the unconstrained
method. The images from (d–o) are deblurred by the OSCM according to iterations from k = 1 to
k = 12, respectively.

Figure 4. The circular Gaussian Kernel.
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Table 1. The PSNR, SSIM, and number of negative pixels for Example 1.

k ck PSNR SSIM Negative Pixels

Blurred – – 25.5453 0.7212 –
Unconstrained – – 42.7844 0.9834 –

Constrained 1 1 × 10−5 35.2141 0.9479 538
2 4.8 × 10−5 40.0719 0.9775 229
3 2.4 × 10−4 42.1297 0.9849 140
4 1.2 × 10−3 42.8566 0.9871 115
5 5.9 × 10−3 44.4585 0.9912 77
6 3.0 × 10−2 45.5307 0.9935 56
7 1.5 × 10−1 45.6246 0.9936 55
8 7.4 × 10−1 46.4088 0.9950 34
9 3.7 × 100 46.5475 0.9951 25

10 1.9 × 101 46.5729 0.9953 14
11 9.3 × 101 46.5579 0.9953 3
12 4.6 × 102 46.5578 0.9952 0

Example 2. Here, we have compared Algorithm 2 (TSCM) with the unconstrained TFOV-based
deblurring method. We used the Moon image, which is a non-texture image. The restored images are
shown in Figure 5, each of size 256× 256. Table 2 lists the PSNR, SSIM, and the number of pixels
outside the interval [0, 255]. In this example, we have used the PSF given in Figure 4. The criterion
to stop the computational algorithm is based on a tolerance of tol = 1× 10−7.

Figure 5. Cont.
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Figure 5. (a) is an exact image. (b) is a blurry image. (c) is a deblurred image by the unconstrained
method. The images from (d–s) are deblurred by TSCM according to iterations k = 1 to k = 16,
respectively.

Table 2. The PSNR, SSIM, and number of pixels outside the interval [0, 255] for Example 2.

k ck PSNR SSIM Pixels Outside
[0, 255]

Blurred – – 25.7620 0.8750 –
Unconstrained – – 51.6217 0.9932 –

Constrained 1 1 × 10−5 47.8605 0.9892 929
2 2.9 × 10−5 50.7834 0.9941 379
3 8.6 × 10−5 50.7834 0.9959 379
4 2.6 × 10−4 50.7834 0.9960 379
5 7.7 × 10−4 50.7834 0.9961 379
6 2.3 × 10−3 50.7834 0.9961 379
7 6.9 × 10−3 50.7834 0.9962 379
8 2.1 × 10−2 50.7834 0.9964 379
9 6.2 × 10−2 50.7834 0.9969 379

10 1.9 × 10−1 52.3107 0.9973 202
11 5.6 × 10−1 53.2440 0.9974 112
12 1.7 × 100 53.7802 0.9974 72
13 5.0 × 100 54.0844 0.9979 46
14 1.5 × 101 54.2197 0.9978 24
15 4.5 × 101 54.2212 0.9979 12
16 1.4 × 102 54.3087 0.9980 0

Remark 2.

1. From Figure 5, it can be seen that the deblurred images created by the TSCM are much better
than those of the unconstrained method. This can also be verified with the data given in Table 2.

2. In Table 2, one can observe that the PSNR and SSIM values of TSCM are considerably higher
than the PSNR and SSIM values of the unconstrained method. The TSCM identifies pixels
that are outside the given range of [0, 255] and modifies them as the number of iterations
increases.
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Example 3. Here, we have compared our algorithms (OSCM and TSCM) with the TFOV-based
methods by Fairag et al. [39], in which they created the one-level method (OLM) and the two-level
method (TLM) for the TFOV-based image deblurring problem. Two different kinds of images were
used in this investigation: Goldhills (actual) and Cameraman (complicated). Figures 6 and 7 display
the various facets of each picture. Each subfigure has a size of 512× 512. In this example, test
images are blurred by a Gaussian kernel (PSF). Additionally, Gaussian noise with mean µ = 0.01
and variance σ2 = 0.5 is added to the images. For the TFOV-based algorithms (OLM and TLM),
we used α = 1.8, λα

L = 1× 10−16, and β = 0.1. The Level-II parameter λJ in TLM is calculated
according to the formula given in Reference [39]. OLM and TLM also use the CG method for
numerical solution. The stopping criterion of the computational algorithm is based on a tolerance
tol = 1× 10−7. Table 3 contains all the information related to this experiment.

Remark 3.

1. One can see from Figures 6 and 7 that our algorithms (OSCM and TSCM) produce results of
slightly higher quality compared to other methods.

2. From Table 3, it can be observed that our algorithms (OSCM and TSCM) consistently achieve
higher PSNR and SSIM values compared to other methods (OLM, and TLM) for all photos.
Although the TLM generates higher PSNR and SSIM values more quickly, the quality of the
PSNR and SSIM is inferior to that of OSCM and TSCM.
Despite taking less time, our algorithms produce significantly better quality compared to other
methods. For example, for the Goldhills image, OLM and TLM require 1005.2589 and 526.5476
s, respectively, to achieve PSNR/SSIM values of 33.1589/0.7704 and 33.1458/0.7690, respec-
tively. However, OSCM and TSCM take 896.4058 and 909.5469 s, respectively, to achieve
higher PSNR/SSIM values of 34.8945/0.7788 and 34.8965/0.7759, respectively. Similar
trends can be observed in the Cameraman’s image. Therefore, our algorithms (OSCM and
TSCM) produce high-quality deblurred images compared to other methods.

Figure 6. Cont.
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Figure 6. (a) is an exact image, (b) is a blurry image, (c) is an image deblurred by OLM, (d) is an
image deblurred by TLM (e), deblurred image by OSCM and (f) is a deblurred image by TSCM.

Figure 7. (a) is an exact image, (b) is a blurry image, (c) is an image deblurred by OLM, (d) is a an
imaged deblurred by TLM (e) deblurred image by OSCM and (f) is a deblurred image by TSCM.
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Table 3. PSNR, SSIM, and CPU-Time comparison of different methods for Example 3.

Blurred OLM TLM OSCM TSCM

Goldhills PSNR 23.1256 33.1589 33.1458 34.8945 34.8965
SSIM 0.5687 0.7704 0.7690 0.7788 0.7759

CPU-Time – 1005.2589 526.5476 896.4058 909.5469

Cameraman PSNR 23.5693 43.4561 43.5489 46.0056 45.9967
SSIM 0.7524 0.7047 0.9113 0.9186 0.9121

CPU-Time – 592.3464 345.2675 512.3641 526.3428

Example 4. Here, we have also compared our algorithms (OSCM and TSCM) with the TFOV-based
methods (OLM and TLM) proposed by Fairag et al. [39]. We used a Pepper image (a non-texture
image) for this comparison. Figure 8 displays various facets of the given image, with each subfigure
having a size of 512× 512. In this example, the test images are blurred by a motion kernel (PSF)
with a motion length of l = 256 and an angle of motion θ = 150. Salt and pepper noise with a
small density of 0.01 is added to the blurry image. For the TFOV-based algorithms (OLM and
TLM), we used α = 1.8, λα

L = 1× 10−12, and β = 0.1. The Level-II parameter λJ in TLM is
calculated according to the formula given in [39]. The stopping criterion of the computational
algorithm is based on a tolerance of tol = 1× 10−6. Table 4 contains all the information related to
this experiment.

Remark 4.

1. One can see from Figure 8 that our algorithms (OSCM and TSCM) produce results of slightly
higher quality compared to other methods.

2. From Table 4, it can be observed that for all photos, our algorithms (OSCM and TSCM)
exhibit higher PSNR values compared to other methods (OLM and TLM). Although the TLM
generates faster PSNR and SSIM computation, its quality is inferior to that of OSCM and
TSCM. Therefore, our algorithms (OSCM and TSCM) produce superior-quality deblurred
images when compared to other methods.

Figure 8. (a) is an exact image, (b) is a blurry image, (c) is a deblurred image by OLM, (d) is an image
deblurred by image TLM, (e) is an image deblurred image by OSCM, and (f) is an image deblurred
by TSCM.
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Table 4. PSNR, SSIM and CPU-Time Comparison of different methods for Example 4.

Blurred OLM TLM OSCM TSCM

Pepper PSNR 23.1579 45.2366 45.4559 46.2973 46.3012
SSIM 0.7103 0.8395 0.8425 0.8438 0.8442

CPU-Time – 880.2645 524.7881 764.5225 791.2988

Example 5. In this example, we used two satellite images from Reference [61]. The blurred images
were corrupted by Poisson noise and blurring artifacts. The blurring process was conducted using
the f special(′gaussian′, 9, sqrt(3)) kernel. Dealing with the addition of Poisson noise in the images
proves to be particularly challenging for most deblurring methods. Imaging modalities like this
often exhibit the presence of Poisson noise, primarily arising from photon counting. Simultaneously,
blurring is an inevitable outcome resulting from the physical mechanism of an imaging system,
accurately represented as the convolution of the image with a point spread function. For comparison,
we used the non-blind fractional order total variation-based method (NFOV) [61] and Richardson–
Lucy algorithm with total variation regularization (RLTV) [62]. The restored images of Galaxy
are shown in Figure 9, each with a size of 256× 256. The restored images of Satel are shown in
Figure 10, each with a size of 128× 128. For the NFOV and RLTV methods, the parameters used
are according to [61]. Table 5 lists the information about this experiment.

Figure 9. Galaxy image: (a) The blurry image, (b) deblurred image by the RLTV method, (c) deblurred
image by the NFOV method, (d) deblurred image by the OSCM and (e) deblurred image by the TSCM.

Figure 10. Satel image: (a) the blurry image, (b) image deblurred using the RLTV method, (c) image
deblurred using the NFOV method, (d) image deblurred using OSCM and (e) image deblurred by
the TSCM.
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Table 5. PSNR and SSIM comparison of different methods for Example 5.

Image Galaxy Satel
Method PSNR SSIM PSNR SSIM

Blurred 20.6620 0.6712 20.4559 0.7994
RLTV 23.8769 0.7560 22.2881 0.8731
NFOV 24.1417 0.8222 22.7439 0.8759
OSCM 25.0424 0.8409 24.1290 0.8829
TSCM 25.0519 0.8425 24.1952 0.8837

Remark 5.

1. From Figures 9 and 10 and Table 5, one can observe that all of the methods generated nearly
identical results. However, OSCM and TSCM exhibit better PSNR and SSIM values com-
pared to all other methods. This demonstrates the effectiveness of the OSCM and TSCM in
generating high-quality images.

Example 6. In this example, we used four different images from the dataset of Levin et al. [63].
The kegen(N, 100, 5) kernel was used for blurring. For comparison, we used TV, OLM, TLM,
RLTV, NFOV, OSCM, and TSCM. Restored images are shown in Figures 11–14. Each one is of the
size 255× 255. Table 6 lists the information of this experiment.

Figure 11. Image 1: (a) Exact image, (b) blurry image, (c) image deblurred by the TV method,
(d) image deblurred by the OLM, (e) image deblurred by the TLM, (f) image deblurred by the
RLTV method, (g) image deblurred by the NFOV method, (h) image deblurred by the OSCM and
(i) deblurred image by the TSCM.
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Figure 12. Image 2: (a) Exact image (b) blurry image, (c) deblurred image by the TV method,
(d) deblurred image by the OLM, (e) deblurred image by the TLM, (f) deblurred image by the
RLTV method, (g) deblurred image by the NFOV method, (h) deblurred image by the OSCM and
(i) deblurred image by the TSCM.

Figure 13. Cont.
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Figure 13. Image 3: (a) Exact image, (b) blurry image, (c) image deblurred by the TV method,
(d) image deblurred by the OLM method, (e) image deblurred by the TLM, (f) image deblurred by
the RLTV method, (g) image deblurred by the NFOV method, (h) image deblurred by the OSCM
method, and (i) deblurred image by the TSCM.

Figure 14. Image 4: (a) Exact image, (b) blurry image, (c) image deblurred by the TV method,
(d) image deblurred by the OLM method, (e) image deblurred by the TLM, (f) image deblurred by
the RLTV method, (g) image deblurred by the NFOV method, (h) image deblurred by the OSCM
method, and (i) deblurred image by the TSCM.

Table 6. PSNR and SSIM comparison of different methods for Example 6.

Image Img1 Img2 Img3 Img4

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Blurred 20.6620 0.6712 20.4559 0.7994 20.0261 0.6126 21.8748 0.6910
TV 23.8769 0.7560 22.2881 0.8731 35.1520 0.9417 36.6872 0.9656

OLM 23.8769 0.7560 22.2881 0.8731 41.9824 0.9723 42.7467 0.9878
TLM 23.8769 0.7560 22.2881 0.8731 41.9562 0.9799 42.8641 0.9864
RLTV 23.8769 0.7560 22.2881 0.8731 39.7634 0.9719 42.8737 0.9869
NFOV 24.1417 0.8222 22.7439 0.8759 41.1822 0.9782 41.6221 0.9834
OSCM 25.0424 0.8409 24.1290 0.8829 42.3956 0.9826 43.5442 0.9885
TSCM 25.0519 0.8425 24.1952 0.8837 41.7253 0.9803 43.5522 0.9886
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Remark 6.

1. From Figures 11–14, and Table 6, it is evident that our methods, OSCM and TSCM, consis-
tently produce better values for PSNR and SSIM when compared to all other methods. These
results demonstrate the strong performance of the OSCM and TSCM, which consistently
generate high-quality images. A comparison of PSNR and SSIM values for different methods
using Levin’s dataset is depicted in Figure 15.

Figure 15. Comparison of PSNR and SSIM values for different methods using Levin’s dataset.

6. Conclusions

For the image deblurring problem, we presented OSCM and TSCM using a TFOV
regularization functional. In addition to guaranteeing strictly positive outcomes, both
OSCM and TSCM impose upper limitations on image intensity levels, maintaining them
within a predetermined range. We applied our proposed approaches to conduct numerical
tests on various image types, including synthetic, real, complex, satellite and non-texture
images. To evaluate our algorithms, we also used images from Levin’s dataset [63]. We
compared the OSCM and TSCM with the most recent TFOV-based approaches, mainly
TV, OLM, TLM, RLTV, and NFOV. The numerical tests demonstrated the efficiency of
our proposed techniques. In the future, we plan to develop the OSCM and TSCM for
the other computationally expensive regularization functionals, such as mean curvature
functional will be pursued in the future. Additionally, we aim to design a constrained
model within a similar framework for the blind image deblurring problem. It is worth
noting that under specific conditions, the proposed techniques can be implemented in other
image processing models.
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Appendix A

Proof of Theorem 1. From Equation (12), let the functional Fα(u) be

Fα(u) =
∫

Ω
(k ∗ u− z)2dΩ + α̃ ‖ u ‖TFOV, β +

∫
Ω

λ(−u + γ2)dΩ +
c
2

∫
Ω
(−u + γ2)2dΩ.

Let ν ∈ Wα
1 (Ω) = {v ∈ L1(Ω) : ‖v‖Wα

1 (Ω) =
∫

Ω |v|dx +
∫

Ω | 5 v|dx < +∞} be a function.
Then, for u ∈Wα

1 (Ω) ⊂ BVα(Ω), the Gâteaux derivative of functional Fα(u) of first-order
in the direction of ν is

∂Fα(u)ν
∂ν

= lim
t→0

Fα(u + tν)− Fα(u)
t

(A1)

= lim
t→0

G1(u + tν)− G1(u)
t

+ lim
t→0

G2(u + tν)− G2(u)
t

+ lim
t→0

G3(u + tν)− G3(u)
t

,

where G1(u) = 1
2

∫
Ω(Ku− z)dx, G2(u) = α̃Jα

TVβ(u), and G3(u) =
∫

Ω[λ(−u+γ2)+ c
2 (−u+

γ2)2]dΩ. By using the Taylor series in the direction of t, we have

∂Fα(u)ν
∂ν

=
∫

Ω
K∗(Ku− z)νdx +

∫
Ω
(W.5α ν)dx +

∫
Ω

c(uν)dx, (A2)

where W = α̃ ∇αu√
|∇αu|2+β2

. Now, by using α-order integration by parts [31], we have

∫
Ω
(W.5α ν)dx = (−1)n

∫
Ω
(νCdivαW)dx (A3)

−
n−1

∑
j=0

(−1)j
∫ 1

0
Dα+j−n
[a,x] W1

∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣x1=1

x1=0
dx2

−
n−1

∑
j=0

(−1)j
∫ 1

0
Dα+j−n
[x,b] W2

∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣x2=1

x2=0
dx1,

where we know that for 1 < α < 2 , n = 2.
Case-I: If u(x)

∣∣∣
∂Ω

= b1(x) and ∂u(x)
∂n

∣∣∣
∂Ω

= b2(x), so
(

u(x) + tν(x)
)∣∣∣

∂Ω
= b1(x) and

∂

(
u(x)+tν(x)

)
∂n

∣∣∣
∂Ω

= b2(x). Then, it suffices to take ν ∈ C1
0 (Ω,R) (the space of first-order

differentiable functions vanishes at the boundary), which implies

∂iν(x)
∂ni

∣∣∣
∂Ω

= 0, i = 0, 1,

⇒ ∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣
x1=0,1

=
∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣
x2=0,1

= 0, n− j− 1 = 0, 1.

Hence, Equation (A2) reduces to Equation (30).
Case-II: If ν ∈Wα

1 (Ω), then

∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣
x1=0,1

6= 0,
∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣
x2=0,1

6= 0, n− j− 1 = 0, 1.

Therefore, the boundary terms in Equation (A3) can only become zero if

Dα+j−n
[a,x] W1

∣∣∣
x1=0,1

= Dα+j−n
[x,b] W2

∣∣∣
x2=0,1

= 0

⇒ Dα+j−nW.~η = 0, j = 0, 1.
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This concludes the proof.
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