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Abstract: This article studies the partial eigenstructure assignment (PEA) problem for a type of linear
time-invariant (LTI) system. By introducing a dynamic output feedback controller, the closed-loop
system is similar to a given arbitrary constant matrix, so the desired closed-loop eigenstructure can
be obtained. Different from the normal eigenstructure assignment, only a part of the left and right
generalized eigenvectors is assigned to the closed-loop system to remove complicated constraints,
which reflects the partial eigenstructure assignment. Meanwhile, based on the solutions to the
generalized Sylvester equations (GSEs), two arbitrary parameter matrices representing the degrees
of freedom are presented to obtain the parametric form of the coefficient matrices of the dynamic
compensator and the partial eigenvector matrices. Finally, an illustrative example and the simulation
results prove the excellent effectiveness and feasibility of parametric method we proposed.

Keywords: partial eigenstructure assignment; dynamic compensator; parametric method; generalized
Sylvester equations (GSEs)
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1. Introduction

Consider the following linear time-invariant (LTI) system{
ẋ = Ax + Bu,

y = Cx,
(1)

where x ∈ Rn, u ∈ Rr and y ∈ Rm are the state vector, input vector and output vector,
respectively. A, B, C are coefficient matrices with appropriate dimensions.

As an important problem in linear control systems design, eigenstructure assignment
has attracted much attention among researchers in the last three decades, whether at
home or abroad [1–4]. According to the theories of the linear system, its response is
not only related to the eigenvalues of the system but also related to the corresponding
eigenvectors [5,6]. Therefore, compared with the simple pole assignment, the eigenstructure
assignment can grasp the dynamic performance of the system more accurately. Numerous
successes based on the eigenstructure assignment theory have been achieved in previous
years (see references in [7–9]).

Generally, we assign the whole set of right or left generalized eigenvectors into the
closed-loop system, which is also called entire eigenstructure assignment. However, when
the normality of the pair of right or left eigenvector matrices is abandoned, a large number
of complicated constraints can be removed. In this situation, we only need to assign
only a subset of left and right eigenvectors, not the whole set, which will reduce the
computational load and make the design of the controller more economical and efficient.
Due to this intriguing fact, the issue of partial eigenstructure assignment (PEA) arises.
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Some preliminary results of the PEA problem were given by Lu et al. and other authors
in [10]. In this study, Lu et al. proposed a parametric solution and applied it to large-scale
systems. Then, Duan et al. used the parametric method to solve the PEA problem of first-
order normal systems and descriptor systems [11–13]. Furthermore, by using the degrees
of freedom in the parameter matrix, Gu et al. extended the earlier results to high-order
systems and further enhanced the system performance [14–16]. Meanwhile, Ouyang et al.
also obtained a series of fruitful achievements for second-order vibration systems in [17–19].
They directly work on the second-order form and enable prior specification of the control
matrix. Under these circumstances, it naturally results in the feedback gain matrices having
a small norm solution. Additionally, there are also many positive results in different types
of linear systems for the PEA problem (see references therein [20–23]). Of note, the above
approach is for designing state feedback or static output feedback by the parametric or
polynomial matrix method. Although they can solve this kind of problem well, it also
inevitably has some drawbacks to some extent. On the one hand, due to the challenging
working conditions, the state variables of the original system are frequently inaccessible in
many practical applications. Based on this point, state feedback is sometimes difficult to
achieve. On the other hand, because the static output feedback cannot arbitrarily assign
to the poles of the closed-loop system, its control effect has great limitations. In order
to address the shortcomings of the aforementioned techniques, we design a dynamic
compensator, a form of dynamic output feedback controller. Gu and Zhang have performed
excellent work on dynamic compensators in [24,25]. Therefore, the goal of our work is to
fully utilize this type of dynamic compensator to address the issue raised in our paper.

For the system (1), we design the following dynamic compensator:{
ξ̇ = Fξ + My,

u = Pξ + Qy,
(2)

where ξ ∈ Rp is the compensation vector. F ∈ Rp×p, M ∈ Rp×m, P ∈ Rr×p, and Q ∈ Rr×m

are the coefficient matrices of the dynamic compensator (2) to be determined in our paper.
The closed-loop system with the aforementioned controller can be expressed as[

ẋ
ξ̇

]
= Ac

[
x
ξ

]
, (3)

where

Ac =

[
A + BQC BP

MC F

]
.

According to the theory of linear systems, the comprehensive performance of the
system (3) is totally determined by the closed-loop matrix Ac.

The main contribution of our work is designing a dynamic compensator and proposing
a parametric method to solve the problem of PEA. The proposed method has the following
features. Firstly, by letting the closed-loop system matrix be similar to a constant matrix with
the desired eigenstructure, we establish a general parametric expression of the coefficient
matrices of the dynamic compensator and other corresponding matrices to be solved.
Secondly, through the above process, a subset of the left and right eigenvectors, not the
whole set of eigenvectors, is assigned to the closed-loop system to reduce the large number
of constraints, which makes the design of controller more economical and suitable for most
of the practical applications. Finally, the system’s added performance is attained by fully
utilizing the degrees of design flexibility in arbitrary parameters.

The sections that make up the majority of this article are as follows: In Section 2, we
put forward some assumptions and notations needed in the text. Section 3 gives some
preliminary results and the problem description to pave the way for the following sections.
In Sections 4 and 5, parametric solutions and a design algorithm are given to solve the
main PEA problem in this paper. Meanwhile, the important role of arbitrary parameters in
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the controller design is discussed in Section 6. In Section 7, the efficiency of the suggested
strategy is illustrated with an illustrative example and simulation comparison results.
Finally, the work of this paper is summarized, and a conclusion is reached in Section 8.

2. Notations and Assumptions

Throughout this paper, the following assumptions, remark and notations in Table 1
should be addressed to better solve our problem.

Table 1. Notations and definitions.

Notations Definition

Rn set of all real vectors of dimension n
Cn set of all complex vectors of dimension n
C− the points on the left-half s-plane

Rn×m set of all real matrices of dimension n×m
In the identity matrix with n dimensions

rankA the rank of the matrix A
detA the determinant of the matrix A
eigA all eigenvalues of the matrix A
||K||2 the Spectral norm of matrix K

deg A(s) the degree n of polynomial matrix
A(s) = A0 + sA1 + · · ·+ sn An

diag(λi, i = 1, 2, . . . , m) the diagonal matrix with diagonal elements λi
Im(λl

j) the imaginary part of λl
j

Assumption 1. rankB = r, rankC = m.

Assumption 2. rank
[

sI − A B
]
= rank

[
sI − AT CT ] = n, ∀ s ∈ C.

Remark 1. Assumption 1 above ensures the effective input signal and measurable output signal of
the system, and Assumption 2 ensures the controllability and observability of the system.

3. Problem Description and Preliminary Results

In this paper, the work we conduct is to let the closed-loop matrix Ac have the desired
eigenstructure through the dynamic compensator (2). Specific details will be discussed later.

Usually, system (1) under the dynamic compensator (2) corresponds to the following
static output feedback form: {

Ẋ = AX + BU,

Y = CX,
(4)

where
XT =

[
xT ξT ]T,

U = KY,
(5)

and

A =

[
A 0
0 0

]
,B =

[
B 0
0 Ip

]
,

C =
[

C 0
0 Ip

]
, K =

[
Q P
M F

]
.

(6)

The closed-loop system can be obtained by using the aforementioned relationships as

Ẋ = AcX, (7)

where
Ac = A+ BKC.
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In light of the given description, we thus provide the following lemma to begin
our work.

Lemma 1. Let T, V ∈ C(n+p)×(n+p) be the left and right generalized eigenvector matrices of the
closed-loop system (3). Consider the following two generalized Sylvester equations

TTA+ GTC = ΓTT,

AV + BW = VΓ,
(8)

where
W = KCV, GT = TTBK,

and Γ ∈ C(n+p)×(n+p) is an arbitrary matrix.
Partitioning the matrices T, V and W as

T =
[

Ta Tb
]
, Ta ∈ C(n+p)×(n−m), (9)

V =
[

Va Vb
]
, Va ∈ C(n+p)×(m+p), (10)

and
W =

[
Wa Wb

]
, Wa ∈ C(r+p)×(m+p). (11)

1. If the matrices C and Va hold

det(CVa) 6= 0. (12)

2. Then the output gain matrix K can be given by

K = Wa(CVa)
−1. (13)

3.1. Partial Eigenvector Matrices

According to the above lemma, we first denote some matrices. Denote

Λ =

[
Λl 0
0 Λr

]
, (14)

where Λl ∈ C(n−m)×(n−m), Λr ∈ C(m+p)×(m+p) are two arbitrary given constant matrices.
Meanwhile, denote T ∈ C(n+p)×(n−m), V ∈ C(n+p)×(m+p) as a part of left and right gener-
alized eigenvector matrices, respectively, and W ∈ C(r+p)×(m+p) is a matrix corresponding
to the GSE (8).

Remark 2. For convenience, we still use the notations T, V and W to represent the left, right
eigenvector and correlation matrices. However, they are no longer the entire matrices described
in Lemma 1 but only a subset part of them. It can be easily observed that their dimensions are
significantly reduced. Therefore, matrices T and V in this article are called partial eigenvector
matrices.

In this paper, the goal is to let the closed-loop matrix Ac be similar to an arbitrary
given constant matrix Λ in (14). In other words, we let one part ofAc be similar to Λl while
the remaining part is similar to Λr.

3.2. Problem Statement

Following the aforementioned preparation, the problem of the partial eigenstructure
assignment via the dynamic compensator for a particular class of LTI systems is presented.
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Problem 1. Given the linear system (1) satisfying Assumptions 1 and 2. For two real given matri-
ces Λl ∈ R(n−m)×(n−m) and Λr ∈ R(m+p)×(m+p), design and obtain all the coefficient matrices
F, M, P, Q of the dynamic compensator and all the partial eigenvector matrices
V ∈ C(n+p)×(m+p), T ∈ C(n+p)×(n−m) satisfying the following equations:

TTV = 0, (15)

TTAcV =

[
Λl 0
0 Λr

]
. (16)

With the transformation proposed in (4)–(7), Problem 1 can be transformed into the
following Problem 2.

Problem 2. Given the linear system (4) and two arbitrary constant matrices Λl , Λr in (14), the
left and right partial eigenvector matrices T ∈ C(n+p)×(n−m), V ∈ C(n+p)×(m+p) and the static
output feedback gain matrix K ∈ R(r+p)×(m+p) satisfy

TTV = 0, (17)

rankT = n−m, (18)

det(CV) 6= 0, (19)

and

TTAcV =

[
Λl 0
0 Λr

]
. (20)

3.3. Preliminary Results

Before proposing the main solution regarding the problem, two pairs of polynomial
matrices and right coprime factorization (RCF) are introduced.

Consider a pair of polynomial matrices
N(s) =

ωr

∑
i=0

Nisi, Ni ∈ Rn×r,

D(s) =
ωr

∑
i=0

Disi, Di ∈ Rr×r,
(21)

which are right comprime and satisfy

(sI − A)−1B = N(s)D−1(s), (22)

where ωr = max{deg(dij(s)), i = 1, 2, . . . , r, j = 1, 2, . . . , r}when denoting D(s) =
[
dij(s)

]
r×r.

Similarly, there also exists another pair of polynomial matrices
H(s) =

ωl

∑
i=0

Hisi, Hi ∈ Rn×m,

L(s) =
ωl

∑
i=0

Lisi, Li ∈ Rm×m,

(23)

which are also right coprime and satisfy

(sI − AT)−1CT = H(s)L−1(s), (24)
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where ωl = max{deg(lij(s)), i = 1, 2, . . . , m, j = 1, 2, . . . , m} when denoting
L(s) =

[
lij(s)

]
m×m.

Lemma 2. Given the linear system (1) satisfying Assumptions 1 and 2, we have

N (s) =
[

0 N(s)
Ip 0

]
,D(s) =

[
0 D(s)

sIp 0

]
,

H(s) =
[

0 H(s)
Ip 0

]
,L(s) =

[
0 L(s)

sIp 0

]
,

(25)

where 
N (s) =

ωr

∑
i=0
Nisi,Ni ∈ R(n+p)×(r+p),

D(s) =
ωr

∑
i=0
Disi,Di ∈ R(r+p)×(r+p),

(26)


H(s) =

ωl

∑
i=0
Hisi,Hi ∈ R(n+p)×(m+p),

L(s) =
ωl

∑
i=0
Hisi,Li ∈ R(m+p)×(m+p),

(27)

and {
(sI −A)−1B = N (s)D−1(s),

(sI −AT)−1CT = H(s)L−1(s),
(28)

4. Parametric Solutions to Problem PEA
4.1. Λl and Λr Are Arbitrary

With the above description, a theorem regarding to Problems 1 and 2 can be given
as follow.

Theorem 1. Let N(s), D(s), H(s), L(s) be two pairs of polynomial matrices satisfying
RCF (22) (24), respectively. Additionally, N (s),D(s),H(s),L(s) satisfy RCF (28).

(1) Problems 1 and 2 have a solution if and only if there exist two arbitrary parameter matrices
Zl ∈ C(m+p)×(n−m), Zr ∈ C(r+p)×(m+p) that satisfy the following condition:

ΛT
elΨ(Zl , Zr)Λer = 0, (29)

with

Λel =


I

Λl
...

Λωl
l

, Λer =


I

Λr
...

Λωr
r

, (30)

and
Ψ(Zl , Zr) =

[
Ψij(Zl , Zr)

]
, (31)

where
Ψij(Zl , Zr) = ZT

l H
T
i NjZr, i = 1, 2, . . . , ωl ; j = 1, 2, . . . , ωr. (32)

(2) When the above condition is met, all the partial eigenvector matrices T, V in Equation (16)
can be obtained as

T =

[
T0
T1

]
=

ωl

∑
i=0
HiZl(Λ

T
l )

i =
ωl

∑
i=0
Hi

[
Zl1
Zl0

]
(ΛT

l )
i, (33)
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with T0 =
ωl

∑
i=0

HiZl0(Λ
T
l )

i,

T1 = Zl1,

(34)

and

V =

[
V0
V1

]
=

ωr

∑
i=0
NiZrΛi

r =
ωr

∑
i=0
Ni

[
Zr1
Zr0

]
Λi

r, (35)

with V0 =
ωr

∑
i=0

NiZr0Λi
r,

V1 = Zr1,

(36)

where Zl0 ∈ Cm×(n−m), Zl1 ∈ Cp×(n−m), Zr0 ∈ Cr×(m+p), Zr1 ∈ Cp×(m+p) are arbitrary
parameter matrices representing the degrees of freedom in the solutions satisfying the following
constraints:

Constraint 1. det(ĈV) 6= 0.

Constraint 2. TT
0 V0 + TT

1 V1 = 0.

Constraint 3. rankT = n−m.

(3) With the above deduction, the output feedback gain matrix K can be calculated as

K = W(CV)−1, (37)

where

W =

[
W0
W1

]
=

ωr

∑
i=0
DiZrΛi

r =
ωr

∑
i=0
Di

[
Zr1
Zr0

]
Λi

r, (38)

with

W0 =
ωr

∑
i=0

DiZr0Λi
r, W1 = V1Λr. (39)

Proof. Three parts make up the proof for this theorem.
Part 1 Derive the results in Equations (29)–(32).
Considering T and V in Equations (33) and (35), we have

TT =
ωl

∑
i=0

Λi
lZ

T
l H

T
i =

[
I Λl · · · Λωl

l

]
ΨT

M(Zl) = ΛT
elΨ

T
M(Zl), (40)

with
ΨM(Zl) =

[
H0Zl H1Zl · · · Hωl Zl

]
, (41)

and

V =
ωr

∑
i=0
NiZrΛi

r = ΨN(Zr)


I

Λr
...

Λωr
r

 = ΨN(Zr)Λer, (42)

with
ΨN(Zr) =

[
N0Zr N1Zr · · · Nωr Zr

]
. (43)
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Therefore, the Equation (15) can be rewritten as

TTV =
[

I Λl · · · Λωl
l

]
ΨT

M(Zl)ΨN(Zr)


I

Λr
...

Λωr
r


= ΛT

elΨ(Zl , Zr)Λer = 0.

(44)

Obviously, ΨT
M(Zl)ΨN(Zr) = Ψ(Zl , Zr), and the elements of Ψ(Zl , Zr) have the result

in Equation (32). Therefore, the proof of the first part is completed.
Part 2 Obtain matrices T, V and W(θ, x) in Equations (33), (35) and (38).
Now, we consider Equations (7) and (20); two generalized Sylvester matrix equations

can be given by
TTA+ GTC = ΛlTT,

AV + BW = VΛr,
(45)

where
W = KCV, (46)

GT = TTBK. (47)

Therefore, utilizing the solutions of the generalized Sylvester equation (see refer-
ences [26,27]), the parametric expressions of matrices T, V, W can be obtained.

Meanwhile, considering Equations (25) and (33), we have

T =
ωl

∑
i=0
HiZl(Λ

T
l )

i

=

[
0 H0
Ip 0

]
Zl +

[
0 H1
0 0

]
ZlΛ

T
l + · · ·+

[
0 Hωl

0 0

]
Zl(Λ

T
l )

ωl

=

[
0 H0
Ip 0

][
Zl1
Zl0

]
+

[
0 H1
0 0

][
Zl1
Zl0

]
ΛT

l + · · ·+
[

0 Hωl

0 0

][
Zl1
Zl0

]
(ΛT

l )
ωl

=

[
∑ωl

i=0 HiZl0(ΛT
l )

i

Zl1

]
=

[
T0
T1

]
.

(48)

Thus, Equation (34) holds. Similarly, Equation (36) also can be proved through the
above process. We complete the proof of the second part.

Part 3 Derive the parametric expression of the output feedback gain matrix K in (37).
Firstly, by combining Equations (25) and (38), W can be expressed in the following

form:

W =
ωr

∑
i=0
DiZrΛi

r

=

[
0 D0
0 0

]
Zr +

[
0 D1
Ip 0

]
ZrΛr + · · ·+

[
0 Dωr

0 0

]
ZrΛωr

r

=

[
0 D0
0 0

][
Zr1
Zr0

]
+

[
0 D1
Ip 0

][
Zr1
Zr0

]
Λr + · · ·+

[
0 Dωr

0 0

][
Zr1
Zr0

]
Λωr

r

=

[
∑ωr

i=0 DiZr0Λi
r

Zr1Λr

]
=

[
W0

V1Λr

]
=

[
W0
W1

]
.

(49)

Therefore, Equation (39) is proved.
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Secondly, consider Equation (45); post-multiplying V and pre-multiplying TT, both
sides, respectively, while using condition (17), we can obtain

TTAV + TTBW = 0,

TTAV + GTCV = 0.
(50)

Comparing the above two equations, we obtain the following relation:

TTBW = GTCV. (51)

Because Constraint 1 holds, the gain matrix K given by (37) obviously satisfies (46).
While utilizing the above relation, we also have

TTBK = TTBW(CV)−1

= GTCV(CV)−1

= GT,

(52)

which illustrates that the output feedback gain matrix K provided by (37) also satisfies (47).
The uniqueness of the output feedback gain matrix simultaneously satisfying

Equations (46) and (47) directly reveals the fact that Equation (46) has a unique solution
under Constraint 1. Hence, the proof of this part is finished.

To sum up, we completed the whole proof of Theorem 1.

4.2. Λl and Λr Are Two Diagonal Matrices

The diagonal matrix has similar properties to the non-defective matrix. To the best
of our knowledge, the eigenvalues of a non-defective matrix have a lower sensitivity to
changes in the parameters of the coefficient matrix. Hence, in many applications, matrices
Λl and Λr have a diagonal form, that is,

Λr = diag(λi, i = 1, 2, . . . , m + p), (53)

and
Λl = diag(λj, j = 1, 2, . . . , n−m), (54)

where λi, i = 1, 2, . . . , m + p and λj, j = 1, 2, . . . , n−m are eigenvalues to be assigned. In
this situation, matrices T, V, and W can be written in the following forms:

V =
[

v1 v2 · · · vm+p
]
,

vi =

[
v0i
v1i

]
= N (λi)zr

i = N (λi)

[
zr1

i
zr0

i

]
,

v0i = N(λi)zr0
i , v1i = zr1

i , i = 1, 2, . . . , m + p,

(55)



T =
[

t1 t2 · · · tn−m
]
,

tj =

[
t0j
t1j

]
= H(λj)zl

j = H(λj)

[
zl1

j
zl0

j

]
,

t0j = H(λj)zl0
j , t1j = zl1

j , j = 1, 2, . . . , n−m,

(56)


W =

[
w1 w2 · · · wm+p

]
,

wi =

[
w0

i
w1

i

]
= D(λi)zr

i = D(λi)

[
zr1

i
zr0

i

]
,

w0
i = D(λi)zr0

i , w1
i = λiv1i, i = 1, 2, · · · , m + p,

(57)
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with
Zr =

[
zr

1 zr
2 · · · zr

m+p

]
,

Zl =
[

zl
1 zl

2 · · · zl
n−m

]
,

(58)

and zr0
i ∈ Cr, zr1

i ∈ Cp, i = 1, 2, · · · , m+ p, zl0
j ∈ Cm, zl1

j ∈ Cp, j = 1, 2, · · · , n−m represent
three degrees of freedom in the solution.

Based on the above description, we give another theorem to address Problems 1 and 2.

Theorem 2. Let N(s), D(s), H(s), L(s) be two pairs of polynomial matrices satisfying
RCF (22) (24), respectively. Additionally, N (s),D(s),H(s),L(s) satisfy RCF (28).

(1) Problems 1 and 2 have a solution if and only if there exist two groups of parameter vectors
zr

i ∈ Cr+p, zl
j ∈ Cm+p, satisfying the relation

(zl
j)

THT(λl
j)N (λr

i )z
r
i = 0, i = 1, 2, . . . , m + p,

j = 1, 2, . . . , n−m.
(59)

and the following constraints:

Constraint 4.
(zl0

j )
THT(λj)N(λi)zr0

i + (zl1
j )

Tzr1
i = 0, i = 1, 2, · · · , m + p; j = 1, 2, · · · , n−m.

Constraint 5. det(CV(λi, zr
i )) 6= 0, i = 1, 2, · · · , m + p.

Constraint 6. zl
j = z−l

k if λl
j = λ−l

k , Im(λl
j) 6= 0, j, k = 1, 2, . . . , n−m.

Constraint 7. zr
i = z−r

k if λr
i = λ−r

k , Im(λr
i ) 6= 0, i, k = 1, 2, . . . , m + p.

(2) When the above relation and constraints are satisfied, all the parametric solutions of the
output feedback gain matrix K can be obtained as Equation (37), and the matrices T, V in (33)–(36)
and W in (38)–(39) can be parametrized by columns as (55)–(57).

Proof. When the matrices Λl and Λr are chosen as the diagonal form of (53) and (54),
matrices T, V, and W can be the form of columns given by Equations (55)–(57), respectively.

Note that

TTV =


(zl

1)
THT(λl

1)
(zl

2)
THT(λl

2)
...

(zl
n−m)

THT(λl
n−m)

[ N (λr
1)z

r
1 N (λr

2)z
r
2 · · · N (λr

m+p)z
r
m+p

]

=
[
(zl

j)
THT(λl

j)N (λr
i )z

r
i

]
(n−m)×(m+p)

= 0,

(60)

which is equivalent to Equation (59). Therefore, we can easily prove the results of this
theorem.

5. Design Algorithm for Problem PEA

In light of the aforementioned theorems, we provide a design algorithm step to address
Problem PEA.

Step 1 Obtain two pairs of coprime matrices N(s), D(s), H(s), L(s).
In the previous section, we mentioned that Problem PEA in this article can be trans-

formed into the solutions of two Sylvester equations. In addition to the parameter matrices
Zl and Zr that we choose arbitrarily, the most important point is to find two sets of right
coprime polynomial matrices that satisfy Equations (22) and (24)

Step 2 Choose an expected closed-loop eigenstructure.
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The primary task of the control system design is to ensure the stability of the closed-
loop system (7). To achieve the above goal, the matrices Λl and Λr are usually required to
be two Hurwitz matrices [28,29], which means

eig(Λl) ∈ C−, eig(Λr) ∈ C−. (61)

Step 3 Select proper parameters.
In this paper, the arbitrary parameter matrices Zr and Zl play an important role in

the design of the controller. Specifically, the above two matrices provide all the degrees of
freedom in the system design. By selecting the appropriate arbitrary parameters satisfying
the constraints in this article, the additional design requirements of the system can be
well met.

Step 4 Compute the partial eigenvector matrices T, V and other corresponding matrices.
Based on the solutions for matrices T, V, and W given in Equations (33)–(39)

or (55)–(57), compute the above matrices with the selected parameters given in Step 3.
Step 5 Obtain the parametric form of the output feedback controller matrix K.
Based on the solutions in Step 4, the static output feedback gain matrix K can be

solved by Equation (37). Therefore, utilizing the relation in Equation (6), the coefficient
matrices F, M, P, and Q of the dynamic compensator (2) can be obtained.

6. Utilizing the Degrees of Freedom in Parameters

Up to now, we recall the fact that all the solutions of the parametric method are closely
related to the arbitrary matrices Zl , Zr, that is,

T = T(Zl , Λl),

V = V(Zr, Λr),

W = W(Zr, Λr),

K = K(Zr, Λr),

(62)

if the two matrices Λr, Λl are determined in advance, then all the solutions depend on the
values of arbitrary parameters. The fundamental benefit of our approach is evident here.
The degrees of freedom can be greatly improved, that is, the desired control law can be
achieved by choosing different parameter matrices.

Based on the above discussion, we establish two indices and then implement the opti-
mization.

• Low control gain

The low control gain index is well known to have a significant influence on the design
of the controllers. The low control gain can reduce the series amplifier and make it difficult
to achieve self-oscillation, which has a significant practical impact. Consequently, we decide
on the following index as

J1(Zr) =
1
2
||P(Zr)||2 +

1
2
||Q(Zr)||2. (63)

• Low compensation gain

From Equation (2), we can find that the consumption of energy depends on the
compensation vector ξ. To reduce the energy loss and minimize the energy consumption
during the transient process, we choose the following index as

J2(Zr) =
1
2
||F(Zr)||2 +

1
2
||M(Zr)||2. (64)

Hence, a synthetic object function that describes the system performance is given by

J(Zr) = J1(Zr) + J2(Zr). (65)
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Based on the above preparation, an optimization problem can be defined as{
minJ(Zr)

s.t. (17), (18), (19), (61).
(66)

Of note, in this problem, the arbitrary matrix Zr serves as the optimization variable.
Hence, the desired index can be optimized and achieved by utilizing the degrees of freedom
in Zr. After that, another group of parameter matrix Zl can be obtained under the relation
in (17).

Remark 3. It is nearly impossible or even impossible to satisfy several sophisticated restric-
tions in many real applications. In the entire eigenstructure assignment by output feedback, the
condition (15) is TTV = I, which indicates that the system needs to solve the number of
(n + p) × (n + p) equations [30,31]. However, when we abandon a part of the left and right
eigenvectors for the partial eigenstructure assignment, the constraint becomes (15) and the number
of constraints is reduced to (n−m)× (m + p), which greatly facilitates the design of the controller
and makes the design process more straightforward, affordable, and efficient.

7. An Illustrative Example

In this example, we make a simple comparison with Liu and R. J. Patton in [32] to
better illustrate that we can not only obtain the expected eigenstructure of the closed-loop
system but also realize the additional design requirements of the closed-loop system by
making full use of the degrees of freedom provided by the arbitrary parameter matrices Zr
and Zl in this method.

7.1. System Description

Consider the following coefficient matrices for a linear system with the form (1)

A =

 0 1 0
1 1 0
−1 0 0

, B =
[

0 1 0
]T, C =

[
1 0 0
0 0 1

]
,

Before we analyze and design this system, it is simple to confirm that

rankB = 1, rankC = 2,

rank
[

sI − A B
]
= rank

 s −1 0 0
−1 s− 1 0 1
1 0 s 0

 = 3, ∀s ∈ C

rank
[

sI − AT CT ] = rank

 s −1 1 1 0
−1 s− 1 0 0 0
0 0 s 0 1

 = 3, ∀s ∈ C.

Therefore, Assumptions 1 and 2 hold. Meanwhile, we can easily deduce two RCFs
satisfying Equations (22) and (24):


N(s) =

 −s
−s2

1

,

D(s) = −s3 + s2 + s,


H(s) =

 0 s− 1
0 1
1 −s2 + s + 1

,

L(s) =
[

1 0
s −s3 + s2 + s

]
.

Letting p = 1, we design a dynamic compensator in the form of Equation (2) and
choose two diagonal matrices with the desired closed-loop eigenvalues

Λl = diag{−1}, Λr = diag{−1.5,−3,−6.5}. (67)
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Meanwhile, denote two arbitrary matrices Zr and Zl as

Zr =

[
Zr1
Zr0

]
=

[
α11 α12 α13
α21 α22 α23

]
, Zl =

[
Zl1
Zl0

]
=

 β1
β2
β3

, (68)

then condition (15) can be solved based on solutions (55)–(58): α11β1 + α21β2 + (−λr2

1 + λr
1 − λr

1λl − λ2
l + λl + 1)α21β3

α12β1 + α22β2 + (−λr2

2 + λr
2 − λr

2λl − λ2
l + λl + 1)α22β3

α13β1 + α23β2 + (−λr2

3 + λr
3 − λr

3λl − λ2
l + λl + 1)α23β3


T

= 0, (69)

where αij, βi, i, j = 1, 2, 3, are some arbitrary real scalars, and λl and λr
i , i = 1, 2, 3 are the

eigenvalues of the closed-loop system pre-determined in (67).

7.2. Non-Optimized Solution

Considering the arbitrary parameters in (68) and (69), particularly choose the values
as follows:

Zr =

[
5.25 15 55.25

1 1 1

]
, Zl =

[
1 1 1

]T, (70)

then based on the solutions in (53)–(58), we have

T0 =

 −2
1
0

, V0 =

 1.5 3 6.5
−2.25 −9 −42.25

1 1 1

, T1 =
[

1
]
, V1 =

 5.25
15

55.25

T

,

and
W0 =

[
4.125 33 310.375

]
, W1 =

[
−7.875 −45 −359.125

]
.

With the above solutions and based on Equation (37), the output feedback gain matrix
K can be obtained as

K =

[
−58.75 29.25 12
59.75 −29.25 −13

]
, (71)

which means
Q =

[
−58.75 29.25

]
, P =

[
12
]
,

M =
[

59.75 −29.25
]
, F =

[
−13

]
.

(72)

With the controller (71) or (72), the closed-loop system can be implemented as

[
ẋ
ξ̇

]
=


0 1 0 0

−57.75 1 29.25 12
−1 0 0 0

59.75 0 −29.25 −13

[ x
ξ

]
. (73)

7.3. Optimized Solution

Consider the optimization problem in (66). Choose the initial values in (70), then the
optimized parameters can be obtained by using the fmincon function (Equation (69)) in the
MATLAB Optimization Toolboxr:

Zr =

[
2.5346 16.6276 50.2855
0.7157 2.0781 1.9038

]
, Zl =

 5.5261
−3.7696
2.5279

,
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we have the following optimized solution

T0 =

 −5.0559
2.52779
−6.2976

, V0 =

 1.0736 6.23428 12.3744
−1.6104 −18.7028 −80.4338
0.7157 2.0781 1.9038

,

T1 =
[

5.5261
]
, V1 =

[
2.5346 16.6276 50.2855

]
,

and

W0 =
[

2.9524 68.5771 590.8794
]
, W1 =

[
−3.8018 −49.8828 −326.8559

]
.

With the above solutions and based on Equation (37), the output feedback gain matrix
K can be obtained as

K =

[
−58.75 −0.6443 26.2323
26.1931 1.4344 −13

]
, (74)

which means
Q =

[
−58.75 −0.6443

]
, P =

[
26.2323

]
,

M =
[

26.1931 1.4344
]
, F =

[
−13

]
.

(75)

With the controller (74) or (75), the closed-loop system can be implemented as

[
ẋ
ξ̇

]
=


0 1 0 0

−57.75 1 −0.6443 26.2323
−1 0 0 0

26.1931 0 1.4343 −13

[ x
ξ

]
. (76)

7.4. Simulation Results and Comparison

In order to more clearly illustrate the benefit of the parametric method, the following
simulation results and comparison are given.

Make the following initial value selections:x(0) =
[

1 1 1.5
]T,

ξ(0) =
[

2
]T,

then the simulation results are shown in the following Figures 1–5 and Tables 1–4.

0 1 2 3 4 5 6 7 8 9 10

Times [s]

-20

0

20

40

60

Liu and R. J. Patton (1998)

Non-optimized solution

Optimized solution

Figure 1. Variation diagram of control input u.
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0 1 2 3 4 5 6 7 8 9 10

Times [s]

0

0.5

1

1.5

2 Liu and R. J. Patton (1998)

Non-optimized solution

Optimized solution

Figure 2. Variation diagram of state variable x1.

0 1 2 3 4 5 6 7 8 9 10

Times [s]

-2

-1

0

1

2

3

4
Liu and R. J. Patton (1998)

Non-optimized solution

Optimized solution

Figure 3. Variation diagram of state variable x2.
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Times [s]

-0.5

0

0.5

1
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Liu and R. J. Patton (1998)

Non-optimized solution

Optimized solution

Figure 4. Variation diagram of state variable x3.
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Liu and R. J. Patton (1998)
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1.5
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2.5

3

Figure 5. Variation diagram of compensation vector ξ.

Table 2. Comparison of the closed-loop eigenvalues between three solutions.

Solutions Closed-Loop Eigenvalues

Liu et al. [32] −0.99979784, −1.49975243, −3.00067144, −6.49977829
Non-optimized solution −1.00000000, −1.49999999, −3.00000000, −6.49999999

Optimized solution −0.99999999, −1.50000000, −2.99999999, −6.50000000

Table 3. Comparison of the indices between three solutions.

Index
Value

J1 J2 J

Liu et al. [32] 111.0955 54.9084 166.0039
Non-optimized solution 39.7627 38.8143 78.5770

Optimized solution 19.6102 42.4929 62.1091

Table 4. Comparison of the amplitude between three solutions.

Maximal Amplitude
Value(m)

x1 x2 x3 ξ

Liu et al. [32] 2.125 4.109 0.580 14.200
Non-optimized solution 1.327 1.127 0.048 3.853

Optimized solution 1.101 0.746 ≈ 0 2.336

We analyze the above simulation results from the following three aspects:

1. It is not difficult to find from Figures 2–4 that the state variables of the closed-loop
system tend to zero in both the optimized and non-optimized solutions, which indi-
cates that the closed-loop system is stable and that the parametric method proposed
in this paper is effective.

2. Compared with Liu et al. in [32], the method presented in this paper greatly en-
hances the overall performance of the system. Specifically, Table 2 shows that the
precision of the closed-loop system’s eigenvalues is improved, and Tables 3–5 illus-
trate that the object function, maximum amplitude and expected error are greatly
reduced, respectively.

3. The optimized dynamic compensator achieves superior control performance to Liu
and the non-optimized dynamic compensator by utilizing the degrees of freedom
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offered in the parameter matrices (see Figure 5). Meanwhile, the optimized solution
consumes less energy than the non-optimized solution and that of Liu (see control
input in Figure 1).

Table 5. Comparison of the rapidity between three solutions.

Error
Value(s)

x1 < 10−3 x2 < 10−3 x3 < 10−3 ξ < 10−3

Liu et al. [32] 9.248 9.123 9.374 >10
Non-optimized solution 7.560 7.438 7.683 8.500

Optimized solution 6.693 6.699 6.693 7.534

Remark 4. Through the data in the above simulation diagrams and tables, we can summarize
two highlights of the method proposed in this paper. Firstly, we introduce a class of dynamic
compensators and obtain the desired closed-loop eigenstructure, which makes up for the defect that
the static output feedback cannot arbitrarily assign poles. Secondly, the degrees of freedom provided
by two groups of arbitrary parameter matrices Zl and Zr in the parameter solution are directly
utilized to realize the additional system design requirements.

Remark 5. For the classical solutions to the problem PEA, the design process in [33,34] involves too
many matrices calculation, so their results are complicated and without degrees of freedom. However,
the greatest strength of the parametric method is that it can provide all degrees of freedom of design.
In this paper, it is represented by two groups of arbitrary parameters Zl and Zr. The selection of
parameters only needs to meet several simple constraints, so it is very feasible. The eigenvalues
of the closed-loop system λl , λr

i , i = 1, 2, 3 in (69) may even be set undetermined and used as a
part of the degrees of freedom as well. This possibility will be taken into account in more detail in
subsequent work.

8. Conclusions

In this paper, a dynamic compensator-based parametric design approach for a class of
linear systems is proposed. Based on the solutions of GSE, we only need to assign a subset
of the left and right eigenvectors to obtain the desired closed-loop system eigenstructure,
which reduces a large number of complex constraints, so the design of the controller will
become simpler and cost effective. At the same time, the parametric expression of the
dynamic output feedback controller is established based on two groups of parameter
matrices Zr and Zl , which realize the arbitrary pole assignment of the closed-loop system.
Finally, an example and the simulation results are given, which further demonstrate the
proposed approach’s effectiveness. More importantly, the degrees of freedom in Zr and Zl
may be completely utilized to meet the additional design needs of the system, which is the
main advantage of our proposed method.
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